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Analysis of the truncation schemes for the physical boson states with Dyson's description
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%e analyze various truncation schemes for the physical boson basis states which are required for
the calculations in the boson space, in the Dyson boson mapping formalism. The available approxi-
mate schemes violate the Pauli principle and are found to be inadequate. The necessity to evolve yet
a reliable and useful truncation scheme is stressed.

In recent years much effort has gone into the formula-
tion of a microscopic theory with the sole aim to relate
the phenomenologieal neutron-proton interacting boson
model (IBM2} (Ref. 1) to the nuclear shell model. These
microscopic theories, also referred to as boson expansion
theories, start with the expansion of bifermion operators
in terms of bosons through a suitable mapping procedure.
The mapping is determined through the requirement that
the respective commutation algebras be fully preserved.
Both unitary and nonunitary mappings have been used.
The nonunitary mapping of bifermion operators is
achieved through the generalized Dyson boson mapping
(DBM) and is represented for the uncoupled case as

(C Cp)~b p bop gb rbpsbrs (la)
rs

(lc)

(2b)

The boson vacuum
~
0) is likewise defined through

b p ~
0)=0. Equations (la)—(le) ensure that any fermion

operator in DBM will have a finite number of terms in
the boson space. The DBM mapping [Eqs. (la)—(lc)]
can be generalized for the case of coupled and/or collec-
tive bifermion operators in a straightforward manner.
The collective bifermion operators can be introduced ei-
ther before or after the mapping, i.e., either in the fer-
mion space itself or in the boson space.

We begin by introducing collective fermion pair excita-
tion operators Q defined as

A~ (ab)
Q„= gXJ (ab) {3a)

a &b
" 1+5ab

with

AJ (ab)=[C, Cb]J

The label a represents all but the magnetic. quantum num-
ber m, of the sp state

~

a). The amplitudes X appearing

(CpC~)~b~p=b~p, (lb)

«.Cp} Xb.rb pr
r

Co (Co }are the fermion single-particle (s.p.) creation (an-

nihilation) operators for the state
~

a= nljrn ) and—obey
anticommutation relations; the ferinion vacuum ~0) is
defined through C ~0) =0. The b p (b p) are the boson
creation (annihilation) operators, and satisfy

[b.p»„'s] =4r&ps &~&py- (2a)

[b p bys]=lb p brs]=0.

in Eq. (3a) should be calculated taking into account all the
valence fermions using shell-model techniques. We use
here the broken-pair approximation (BPA) (Ref. 4} which
has been found to be suitable in such microscopic
theories. The BPA assumes the ground state

~
4o) for p

pairs of identical valence nucleons to be of the form

I C.&-S~+ I» . (4)

where the pair distributed operator S+ is analogous to the
Q„operator with J„=O. The distribution coefficients

g~ ——0 appearing in the definition of S+ operators can be

calculated by minimizing the Hamiltonian with respect to
the ground state ~4o). This is termed as zero-BPA
(BPAO). Next, the BPA basis states

~
4&M(ab) ) are ob-

tained through the replacement of one of the S+ opera-
tors appearing in Eq. (4) by an operator AJxe(ab). For the
case of J=O these basis states are not orthonormal and
therefore an orthonormal set is constructed from these
BPA basis states. The Hamiltonian is then diagonalized
in this space. This is termed as one-BPA or simply re-
ferred to as BPA. The eigenstates

~ 4„) so obtained can
be rewritten as

qt„= gal (ab} ~4s ss (ab))

~g g„'(S'}t'-'
~
0) . (5)

The amplitudes X are explicitly related to a~J and the nor-

malization NJ" and hence may in general depend on the

Hamiltonian H and p—the number of pairs of valence
nucleons. It should be pointed out that an accurate set of
Xj Q(aa } for the lowest %„~J Q) can be obtained through

the following iterative procedure, starting from any arbi-
trary set of XJ p', tile BPA wave function Eq. (5) for the

ground state is rewritten as

gÃs 'oooo(aa)(S }t' ' iO) . (6)

The new set of XJ o(aa) are determined from the calcu-

lated Xs o(aa) by requiring that Eq. (6) has the same

form as Eq. (4). The BPA calculations are again per-
formed and the new set of gJ o(aa) determined. This

procedure is repeated until the convergence is obtained.
This iterative procedure avoids minimization (BPAO) and
is fast converging, in fact, in practice two or three itera-
tions are sufficient to yield an accurate set of Xs,(aa).

For the purpose of analyzing the original fermion prob-
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TABLE I. Calculated ground state energies Eo and occupation probabilities for the tin isotopes. The

strength 6 of the Hamiltoman and s.p. energies e, used are 6 =0.187 MeV and e, =0.22, 1.90, 2.20,
and 2.80 MeV for 1d5/2, 1g7/2, 3s1/q, 2d3/2, and 1h 1 1/2, respectively.

—2.269
—2.621
—2.623
—2.623
—2.624

0.315
0.306
0.325
0.325
0.325

2

0.221
0.226
0.214
0.214
0.214

2

0.029
0.032
0.029
0.029
0.029

0.023
0.025
0.023
0.023
0.023

2d3/2

0.016
0.016
0.016
0.016
0.016

g2
11/2

BCS
NOA

Li
BPAO
Exact

—2.450
—3.150
—3.085
—3.074
—3.084

0.706
0.765
0.712
0.713
0.715

0.610
0.565
0.609
0.609
0.607

0.085
0.081
0.079
0.078
0.078

0.063
0.062
0.060
0.060
0.060

0.038
0.040
0.038
0.038
0.038

BCS
NOA

Li
BPAO
Exact

—0.150
—1.200
—0.741
—0.634
—0.700

0.902
1.070
0.913
0.930
0.936

0.869
0.791
0.912
0.913
0.909

0.189
0.113
0.127
0.118
0.120

0.126
0.087
0.090
0.082
0.085

0.063
0.056
0.051
0.046
0.048

BCS
NOA

Li
BPAO
Exact

2.925
3.200
1.506
2.200
2.150

0.931
1.223
1.030
0.936
0.931

0.914
0.933
1.010
0.922
0.914

0.368
0.130
0.208
0.388
0.370

0.247
0.100
0.135
0.234
0.249

0.114
0.064
0.067
0.107
0.115

BCS
NOA

Li
BPAO
Exact

TABLE II. Calculated ground state energies Eo and occupation probabilities for the tin isotopes,
with the energy shift DE=1.0 MeV relative to the 2d&/2 level. The parameters 6 and e, are the same
as those of Table I.

—1.277
—1.256

e2
2d5/2

0.861
0.865

2

0.081
0.079

3S1/2

0.015
0.015

2
2d 3 /2

0.013
0.012

2
lhl /2

0.009
0.009

Li
BPAO

—0.318
0.040

1.078
0.885

0.161
0.289

0.021
0.033

0.017
0.026

0.113
0.017

Li
BPAO

1.606
1.943

1.050
0.914

0.406
0.496

0.041
0.049

0.031
0.038

0.020
0.025

Li
BPAO

TABLE III. Calculated ground state energies Eo and occupation probabilities for the nickle isotopes.
The parameters used for the pairing Hamiltonian are the following: G =0.331 MeV, and e, =0, 0.78,
1.56, and 4.52 MeV for 2p3q2, 1f,zq, 2@~q2, and 1g9/J respectively.

-1.670
—2.090
—2.090
—2.100

g2
+3/2

0.565
0.624
0.624
0.629

I5/2

0.236
0.201
0.201
0.198

2
2P 1/2

0.096
0.081
0.082
0.081

g2
lg9/2

0.013
0.013
0.013
0.013

BCS
Li

BPAO
Exact

—0.160
—1.770
—1.740
—1.750

0.732
0.801
0.759
0.764

0.420
0.383
0.407
0.404

0.177
0.148
0.155
0.153

0.020
0.020
0.021
0.021

BCS
Li

BPAO
Exact

2.500
1.72G
1.730
1.700

0.928
0.925
0.932
0.934

0.827
0.866
0.855
0.856

0.532
0.395
0.416
0.408

0.026
0.031
0.031
0.031

BCS
Li

BPAO
Exact



TABLE IV. Calculated ground state energies Eo and occupation probabilities for the nickel isotopes
with the energy shift hE =0.5 MeV relative to the 2@3/2 level.

—1.529
—1.529

2p3/2

0.802
0.802

'fs/2

0.102
0.102

0.046
0.046

1g9/2

0.009
0.009

Li
BPAO

—0.618
—0.369

1.056
0.858

0.024
0.357

0.091
0.126

0.013
0.017

Li
BPAO

lem in the boson space, all the relevant fermion operators
are first expressed in terms of bosons with the help of
Dyson boson mapping [Eqs. (la)—(lc)]. For carrying out
the explicit calculations in the boson space, one needs to
construct a suitable set of basis states. This is a nontrivial
problem, the prime reason being that the ordinary boson
basis (BB) states are overcomplete and do violate the Pauli
principle; as a result these basis states contain spurious
components. An obvious way to rectify these drawbacks
is to start with an orthonormal set of fermion states in-
volving Qt operators, which with the help of mapping
[Eqs. (la)—(lc)] yields the corresponding basis states in
terms of boson operators. The states so obtained are re-
ferred to as the physical boson basis (PBB) states. Due to
the nonunitary nature of the Dyson mapping, this pro-
cedure yields biorthonormal set of PBB states. The PBB
bra states are trivially obtained just by replacing Q„ fer-

I

mion operators by the corresponding coupled collective
boson operators b„. On the other hand, an explicit ex-
pression for a general PBB ket state is quite involved.
However, for the case of a single b„ for each spin and
parity (J„), the lowest PBB ket state corresponding to
each J„can be expressed in a closed form.

The calculations in the boson space with the full PBB
states is equivalent to carrying out the exact shell-model
calculations in the fermion space. Therefore, various
schemes for truncating the PBB states are being en-
visaged, the idea being to consider only a limited number
of terms appearing in the expression of PBB states. This
would therefore violate the Pauh principle. This is still an
open problem and awaits a satisfactory solution. As an
example, we consider the lowest J=0 PBB state, the only
case studied extensively. The explicit expression for this
state is

+gl' (b ) ( ')i' '+ QI'i'"~(b b ) ( 'Y-'+ QI'i'"'I'[(b„'b„'), b'], ,(s'y' ' ~0)+ ~ ~ .S

nl @=0 P
V jtcv IJ&

Here we have used st to represent the lowest J=0 boson
analogous to the St operator emgloyed in the fnmion
case. The coefficients I'~+, I'"",I'""'i', etc., are func-
tions of the amplitudes g„and the couphng coefficients.

Their explicit expressions are lengthy and therefore will
not be presented here. In the lowest order one considers
just the first term of the PBB state [Eq. (7)]. This corre-
sponds to the complete neglect of the Pauli principle and

+~ F =0-0
o« =0.5
~~E =1.0

+&E =0.0

0 &E =0.S

1.0-

05-

I I I & l
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No- of pairs(p)

FIG. 1. The calculated occupation probabilities 5~ with
5/2

Li s prescription using the shift ~=0.0, 0.5, and 1.0 MeV are
plotted versus the number of neutron pairs p for even Sn iso-
topes. The arrows indicate the values exceeding unity.

I l & l I

2 3 4 5 6 7 8

No of pairs(p)
FIG. 2. The calculated occupation probabilities 5I& with

Li s prescription using the shift AE =0.0 and 0.5 MeV are plot-
ted versus the number of neutrons pairs p for even Ni isotopes.
The arrows indicate the values exceeding unity.
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is referred to as the one-boson approximation In the next
order one retains all the terms involving a maximum of
two b operators or up to the terms containing a
minimum of (p —2) st operators. This truncation scheme
is exact for two pairs (p =2) of particles. Recently, Li
proposed an iterative procedure and in practice advocates
retaining only the terms with a maximum of two b„
operators. The author introduces the collective operators
in the boson space—and determines the corresponding
coefficients X„(ab} through the minimization of the ex-
pectation value of the transformed Hamiltonian between
the truncated lowest J=0 PBB state. As stated before,
all the relevant expression for p =2 pairs are exact; how-

ever, the differences do creep in for higher p values. It is
to be noted that the inclusion of all the terms in Eq. (7)
corresponds to the exact shell model/BPAO state depend-

ing upon the use of the corresponding X coefficients. The
BPAO has been shown to be a good approximation to the
shell model ground state which is also revealed through
the results presented later.

In order to ascertain quantitatively the extent of viola-
tion of the Pauli principle in the various truncation
schemes for the PBB states, explicit numerical calcula-
tions for even Ni and Sn isotopes have been performed.
This will also demonstrate the limitations, if any, of these
approximate schemes. For Sn isotopes the neutrons out-
side the Z =50, X=50 inert core are restricted to occupy
five (2d5/&, lg7/2 3$i/2 2d3/2, and 1hii/i) valence lev-

els having 0.0, 0.22, I.90, 2.20, and 2.80 MeV unperturbed
sp energies, respectively. The pairing Hamiltonian with
strength 6=0.187 MeV has been used as the model in-
teraction. In the case of Ni isotopes the neutrons outside
the Ni inert core (Z =28, N =28} are restricted to oc-

cupy four (2@i/2, lf5/2, 2@i/z, and Ig9/i)
having 0.0, 0.78, 1.56, and 4.52 MeV s.p. energies, respec-

tively, and 6 =0.331 MeV has been used. This input in-
formation is identical to that used by Li in his investiga-
tions. The results of the calculations obtained with Li's
approximation scheme labeled "Li" are presented in
Tables I and III for selected Sn and Ni isotopes. The
tables also include the corresponding results obtained with
the BCS, the BPAO, and the exact shell model and are la-
beled BCS, BPAO, and Exact, respectively. The results
obtained with number operator approximations (NOA's)
are also included in Table I. The method seems to work

up to p =7 (the shell closure of 21,/z and lg7/2 which are
nearly degenerate; energy difference 0.22 MeV). It is
found that for p =8 (16 particles} in the case of Sn, the
occupation probability of the 215/2 level with Li s pro-
cedure exceeds unity. The maximum error in energy is
found to be exactly at this value of p and is equal to -0.5

MeV (see Table I for p =8). The differences in the calcu-
lated occupation probabilities are also substantial for this
value of p (p =8). In general, Li overestimates the occu-
pation probabilities (5 ) for the lowest level(s}.

The extent of overestimation of 0, i.e., the violation of
the Pauli principle for the set "Li," sensitively depends
upon the single particle energies for a given Hamiltonian.
To dramatize this, we introduced a shift hE in the s.p. en-
ergies relative to the lowest s.p. valence state. The results
are displayed for three sets of hE =0.0, 0.5, and 1.0 MeV
for Sn isotopes in Fig. 1 and for two sets of hE =0.0 and
0.5 MeV for Ni isotopes in Fig. 2. The similar results
with DE=1.0 for Sn isotopes are presented in Table II,
while those with b,E=0.5 MeV for Ni isotopes are
presented in Table IV. It is observed that even at p =4
the @M in the case of Sn and at p =3 the 5iz, , in the

case of Ni exceed unity. The maximum error in the ener-

gy is found to occur exactly at these values of p for which
the occupation probabihty exceeds unity. The difference
in the calculationed 5 are also substantial for these values
of p. Thus the iterative scheme proposed by Li is found
to work for the case of (near) degenerate s.p. levels. The
extent of the Pauli violations depends sensitively upon the
explicit values of the s.p. energies for a given interaction.
Therefore, this iterative scheme may or may not work in

the realistic cases depending upon the explicit values of
the s.p. energies. It further implies that the model studies
with a single level or degenerate levels may not reveal im-
portant effects like the Pauli principle, etc. Therefore, the
model case studies may not necessarily be sufficient to
demonstrate the general applicability of a particular for-
malism.

In conclusion, we note that the available truncation
schemes for the PBB states may not be adequate in realis-
tic cases. Therefore, the need to evolve yet a reliable and
useful truncation scheme for working in the boson space
is stressed.
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