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Deformation effects on the experimental widths of giant dipole resonances
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Using a microscopic semiclassical approach we analyze the effect of deformation on the splitting

of giant dipole resonances and consequently on the observed experimental widths.

We study the

behavior of the width for the Nd, Sm, Sn, and Mo chain of isotopes. Altogether these effects can

account for 30—40 % of the observed widths.

Giant resonances are often considered as highly collec-
tive modes of nuclear excitation in which an appreciable
fraction of the nucleons of a nucleus move together.
Indeed, the motion is so collective that it is appropriate to
think of these modes of excitation in fluid dynamic terms
like the oscillations of a two-fluid drop.

Recently microscopic semiclassical approaches have
been introduced, based on the analysis of small amplitude
motions of a nuclear system following a Vlasov evolution
equation, which is the semiclassical limit of a time depen-
dent Hartree-Fock theory."? The results, which are fully
self-consistent, are of the same quality as complete
random-phase approximation (RPA) calculations. How-
ever, they require less computational effort and are more
transparent in their interpretation. In previous papers>*
we presented some calculations on isovector and isoscalar
giant resonances performed within a scaling approxima-
tion from the study of a linearized version of the nuclear
Vlasov equation and the related chain of p-moment equa-
tions for the distribution function. The phase space
method also allows microscopic calculations to be done
for collective motions built on complicated reference
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states, like a fast rotating nucleus® or a dinuclear system,’
where a full RPA theory is almost impossible to handle.
Following the same philosophy in this Brief Report we
systematically analyze deformation effects on giant reso-
nances for various isotopic chains. In particular we dis-
cuss the influence of the energy splitting on the observed
widths of isovector dipole resonances for nuclei which are
symmetrically deformed in the g.s. configuration. For
such nuclei, assuming the z axis to be the symmetry axis,
we have only two possible isovector dipole modes (those
along the x and y axes being degenerate), and the frequen-
cies are given by*
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where, for Skyrme forces, the collective inertial function,
I, is given by

I.=m f d’r, (2)
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which is independent of the direction of the mode, and the
restoring function is
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o is 1 for I to VI Skyrme interactions, while it is -é— for the
modified Skyrme (SKM). st is used to denote stationary
values, m is the nucleon mass, and
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We need only some knowledge of matter dens1ty, p and
kinetic energy density, —r;, distributions in the reference
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state on top of which we build the giant mode. In this pa-
per all this information is obtained with a self-consistent
Hartree-Fock plus Bardeen-Cooper-Schrieffer (BCS) cal-
culation with the same effective interaction. We remark
that the major contributions to the integrals (3) come
from the nuclear surface. Thus it is not the detailed
behavior of the static local density inside the nucleus
which is important here, but the shape at the surface. For
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this reason and in order to emphasize the main effects of
the deformation on the dipole frequencies, we can assume
a proportional density distribution of neutron and protons
and Woods-Saxon spheroidal shapes deformed along the z
axis,
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with

R(6)=Ry(B)[1+BY(cosh)] . (5)

Assuming for the squared radial first derivative of the to-
tal local density a & structure with a suitable Woods-
Saxon normalization
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in a Thomas-Fermi approximation for the kinetic energy
density, we can solve analytically the integrals (2) and (3)
and we get the two frequencies® Q, ,(8), which for small
values of B assume the simple form
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where (), is the giant dipole resonance (GDR) frequency

for spherical nuclei, which is very sensitive to the interac-
tion used. For a SKM force we get a general trend

#iQy~354 "1/ MeV ,

which provides a good estimate of the experimental
values.” Moreover, the energy splitting results are easily
related® to the deformation parameter 8 by
‘Qx"n'z _ 1 B
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Similar results are well known in the hydrodynamic
model.® This is not surprising for the GDR case where
distortions in the momentum distribution are not involved
in the collective oscillation. In this case, just by chance,
the liquid drop model with its locally equilibrated
momentum distribution should be in very close agreement
with our microscopic phase space approach. The situa-
tion would be very different, for instance, for giant quad-
rupole resonances.>*

We remark that the GDR energies presented here are
evaluated self-consistently from Eq. (1) by using a static
Hartree-Fock (HF) code for axially deformed nuclei,'”
while we use the approximate Eq. (7) only to estimate the
corresponding axial deformation parameter. Now the
problem is how to analyze the data, i.e., how to relate the
observed widths to the widths I', and ', of the split reso-
nances™? and to a “splitting width,” T';, defined by
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Important information comes from the cases
(Nd,%>1%%sm), where the GDR splitting is clearly
resolved. A fit of the photoneutron cross section in the
GDR region with Lorentz lines'!"12
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gives an area ratio between the two resonances
o,
22, (10)
o'y
The resonance 2 is the higher energy one, but with
O)>~0 (11)
and
I,~2T . 12)

Since for such prolate nuclei we expect two independent
higher energy transverse modes, Eq. (12) means that the
intrinsic width of each giant level is approximately the
same,

F,=T,=[,=C=T"+T". (13)
Finally from the equality Eq. (11) of the peak values, we
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FIG. 1. (a) Comparison between the axial deformation pa-
rameters (symbol with filled circle) deduced from the experi-
mental reduced electric quadrupole transition probabilities
B(E2,0>2%) and those obtained by using Eq. (7) for Nd iso-
topes. (b) Relative comparison between the total experimental
GDR width (less 4.0 MeV) and the splitting contribution [Eq.
(8)]. The point corresponding to N =90 (symbol with filled tri-
angle) is the experimental observed energy splitting. The sub-
tracted width gives an evaluation of the spreading width in this
isotopic chain.
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FIG. 2. (a) and (b) are the same as Fig. 1, but for Sm iso-
topes. Two experimental energy splittings (for N =90,92) are
observed in this case. The total experimental GDR widths
(symbol with filled circle) reported in the figure are lessened by
3.5 MeV. The points corresponding to N =90,92 (symbols with
filled triangles) are the experimental observed splitting energies.

can safely define a total experimental width, to be used
also when the splitting is not resolved:
r I, R
rexp=7+—2—+rsgrs+7(r +T). (14)
Before going on to the discussion of our results, we would
like to make a comment on Eq. (10). A 2:1 weight for the
two levels means an equal absorption probability for the
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FIG. 3. The same as Fig. 1, but for Sn isotopes. The total ex-
perimental GDR widths are subtracted by 3.5 MeV.
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FIG. 4. The same as Fig. 1, but for Mo isotopes. The total
experimental GDR widths are subtracted by 5.0 MeV.

three modes. This was predicted by Okamoto and Danos®
on the basis of the hydrodynamical model. We easily get
the same result in our scaling approximation to the Vlasov
equation. Indeed we have a reduced transition strength,’

I,
B(El,x,p,z)~ s (15)
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and therefore an equal absorption probability o ~EB in
the resonance region since the collective mass does not de-
pend on the particular mode.

In Figs. 1—4 we show for the Nd, Sm, Sn, and Mo iso-
topes, respectively, a relative comparison between the ex-
perimental width!!~'5 and the theoretical splitting width
obtained from Egs. (1)—(3) and (8) (upper parts of the fig-
ures). For *°Nd and !**'3*Sm, since the GDR splitting is
clearly experimentally resolved, we can directly compare
absolute experimental and theoretical values. The excel-
lent agreement between observed and theoretical splitting
widths for '*2!%Sm isotopes gives an indication of the
goodness of our method in predicting their absolute
behavior with an increasing number of neutrons (or defor-
mation) and supports our conclusions. In the lower parts
of the figures we also report a comparison between defor-
mation parameters deduced from the experimental re-
duced electric quadrupole transition probability!® by

_ 47 [B(E2,0527)]'
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(16)

and those predicted from Eq. (7). For Nd and Sm iso-
topes (Figs. 1 and 2), we get good agreement for the S8
values and almost the same behavior between the scaled
experimental widths!!~!3 and the theoretical splitting
widths, for increasing neutron number out to the closed
N =82 shell. Since in this mass region the escape width
can be neglected,!' ~'° our result means that the spreading
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width contribution to the observed total width is almost
constant with increasing deformation parameter, at least
for these isotopes. Indeed the subtracted width in Figs.
1—4 gives an approximate measure (AT ~3T") of this
spreading width which does not depend much on the g.s.
deformations.

In the Sn case (Fig. 3) we have a clear effect of the clo-
sure of the 82 neutron shell in the direction of a larger
sphericity and a consequent decrease of the splitting. Ex-
perimentally this trend is not evident, although there is
some disagreement in the data.!>!* The situation is com-
pletely different for the Mo isotopes,'>!> where the
discrepancy is extremely clear (Fig. 4). We think that in

this case our description of the ground state properties of
these isotopes is inadequate, essentially because we are
completely neglecting n-p pairing couplings which are
particularly important for 40—50 n-p shell nuclei.'®!’

The conclusion of our semiclassical analysis of defor-
mation effects on the observed widths of giant dipole reso-
nances is very clear: for unclosed shell nuclei about
30—40 % of the width can be directly related to ground
state deformation properties. This is essentially a warning
for people who are trying to reproduce the experimental
resonance widths as being just due to the spreading prop-
erties of the collective mode, second order RPA terms, or
two-body collision effects.
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