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A coupled-channels Born approximation formalism for breakup reactions recently proposed by
Udagawa and Tamura is compared with the distorted-wave Born approximation formalism dis-

cussed by Ichimura, Austern, and Vincent. Udagawa and Tamura claimed that the distorted-wave

Born approximation method erroneously includes pure inelastic scatterings. %'e show that their ar-

gument is invalid and that there is no asymptotically observable inelastic scattering in the distorted-
wave Born approximation breakup formalism.

A recent paper by Udagawa and Tamura (UT) (Ref. 1)
presents a coupled-channels Born approximation (CCBA)
formalism for breakup-fusion reactions. In comparisons
with the DWBA formalism discussed by Ichimura,
Austern, and Vincent (IAV), UT assert that the IAV ap-
proach erroneously includes mere inelastic scattering as
part of its breakup-fusion cross section. We again com-
pare the two methods; we show the limitations of the UT
method and the absence of inelastic scattering in the IAV
method.

Much of the discussion by UT arises from their concern
about nonorthogonality of the basis states in a coupled
channels (CC) model of a rearrangement reaction. How-
ever, this is not a problem of fundamental reaction theory.
Although nonorthogonality causes real difficulties in
dynamical calculations, it does not affect the structure of
formal expressions for cross sections and there is no diffi-
culty in distinguishing breakup from inelastic scattering.
The CCBA formalism of UT has no relation to this dis-
tinction; they themselves advocate a return to DWBA for
actual calculation. (See their subsections D D and II E.)

The definition of breakup fusion in Ref. 1 differs from
the old one of Udagawa et al. , adopted by IAV. The
old definition actually means nonelastic inclusive breakup,
while the new one of UT excludes both the elastic and in-
elastic parts of the inclusive breakup cross section. To
avoid confusion, we avoid these distinctions and discuss
only the overa11 inclusive breakup

a +A ~b +anything,

where b is a directly emitted fraginent of a ( = b +x) and
the remaining system (x +A) is unbound.

Since Refs. 1 and 2 do not use identical notation, and
they sometimes introduce different meanings for the same
notation, we start with a brief review of the theory and
notation.

In the spectator model used by both UT and IAV, the
tota1 Hamiltonian is given by

H =Hg+Tb+T„+V„g+V„b+Ub, (2)

where H„is the internal Hamiltonian of the target A, Tt,
and T„arethe kinetic energy operators of b and x, and

VtI is the microscopic interaction between i and j. The
microscopic spectator-nucleus interaction Vbz has been
replaced by an optical potential Ub. It is assumed that A

is infinitely massive and b and x are structureless. The
wave function and energy of the nth bound state A„of
the target are denoted by 4z and ez, respectively, and
n =0 denotes the ground state. The system (b+x) is as-
sumed to have only one bound state whose wave function
and energy are written as (b, and e„respectively. The
eigenstates 4„'z'of the system (x+A) satisfy the equa-
tion

&x~+a~ '=E'+&~ '

with

(3)

0 ~=H~+~ +~~ (4)

respectively. UT introduce the coupled channel wave
function

%z ——P%,'+'(E) =X„u„(r,)P,4"„,
where 4,'+'(E) is the eigenstate of the total Hamiltonian
(2) with the incident wave in the channel a +A with total
energy E. The projection operator I' is given by

The optical model wave functions of relative motion in
the (a+A), (b+A), and (x+A) channels satisfy the
equations

[T,+ U, E, ]X',+'(E, ) =0-,

[Th+ Ut EaP''t '«b—)=0,

[T +U„E„]X„''(E„)=0—,
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P= l((). &P~&4. 1* P~=&. l~'~)&K I
. (7) Up =P(V,g+ Us)P+PHQ (E —QHQ+i e) 'QHP,

The CC equation for %~ is written as

[Hq+ T, + Up+e, E—]+p 0——,
where

with Q =1 P-.
The DWBA of IAV expresses the differential inclusive

breakup cross section in prior form as

d2 IAU

d QsdEb
p(E, )X, l&X' '4,'„'IV, IX',+'((),e'„)l'5(E E —E')—

U.
'' '

p(Eb)1m&X,'+'P, 4g I V, IXy ')(E Es —H„g—+is) '(Xb 'I V, IX,'+'P, 4g),
Ug

1m&x.'+'y. c 0„
I v.'6,' v. I x.'+'y. c '„),

f7 Ug

(13)

where

Gj =(E Hg+ie)—
Hd HxA+~b+Ub HA+ Tx+ vxA+~b+Ub .

(14)

(15)

On the other hand, UT start with the integrated in-
clusive breakup cross section [Eq. (2.24) of Ref. 1]

1m&+,
l

V,G„V,Ie, ),1 2m

Ug

with

where p(Eb ) is the density of states of particle b and

~o = ~xa+ Ut —U~ ~

We note that the above U, is the optical potential of the
elastic channel, whereas the U, of UT is the diagonal ele-
ment of the CC potential Up in the elastic channel. The
coefficient (2m ) in IAV is replaced by (2ir) in (10}.

UT prefer to discuss the energy and angle integrated in-
clusive breakup cross section. For comparison we there-
fore integrate (11) over the energy and angles of particle b
and use the completeness properties of the Xs

' functions.
(In this step we follow Sec. III of UT and assume Us is
real and energy independent. } The eigenvalue Eb in the
Green's function is replaced by the corresponding opera-
tor Tb+Ub, to give

d 2~IAv
Og —— Qg Eb

s b

Comparing Eqs. (13) and (16}, one sees three major
differences between the IAV and UT formulas.

1. The initial state is expressed by the optical model
wave function X,'+'P, 4„in IAV, but by the CC wave
function %p in UT. By using the CC initial state wave
function, UT include huo step ine-lastic breakup mecha-
nisms, a +A ~a +A'~b+x +A'.

2. The intermediate Greens function is G~ in IAV,
with the full V~& interaction, but it is the optical Green s
function G~ in the UT formula. This difference comes
from the UT starting approximation, in which the micro-
scopic interaction V,q in the full Green s function for (2)
simply is replaced by the optical potential U„in Gd. This
replacement, without derivation, loses the extra terms that
IAV (Sec. IV) obtain by their exact optical reduction of
(13). These important terms guarantee post-prior symme-
try and they help to include breakup that is simultaneous
with target nucleus excitation.

3. The interaction responsible for breakup is given by
V, of (12) in IAV but by Vz of (17) in UT. Namely, the
potential subtracted is the optical potential U, in IAV,
but the CC potential Uq in UT. This is an automatic re-
sult of the different choice of the unperturbed Hamiltoni-
an in the initial channel.

We comment first regarding the second difference in
the above list: The exact optical reduction of IAV, Sec.
IV can be applied to the CCBA formula of UT as easily
as to the DWBA formula of IAV. The optical reduction

(@g
I
(E+ Eb Hg) '

I
4g)=(—E, —T„—U, )—

is generalized in the form

PA (E+ Eb H~g ) 'P—
g (E+—Eb Hq ———T„—U—„)—

(20)

Vr = ~ ~+Ub —U~

Gq (E Hd +ie)—— —

Hg =H~+ Tx+ Ux+ Ta+ Ub

(17}
where U„is the effective interaction in CC calculations
for the x +A system within the Pz space. The U„ofUT
is understood as the diagonal part of U„.The nonortho-
gonality term and the source function are now given by

obtained by their starting approximation ( E H-
+i@) '=Gq [Eq. (2.22} of Ref. 1]. For consistency of
comparison with (13) the present discussion must suppose
that U~ in o~ is real and energy independent.

I
n ) =(Xb '

I
%p ) =X„n„(r„)@g,

(21)
IPa)=(X's 'I Ub+U U~

I
q'~)=&.P.—(r.}K .
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The missing terms of the CCBA formalism of UT are
then

2Re&n
~
W„G,

~ p, &+ &rT [ @'„~iT&, (22)

where W, =(U, —U„)/(2i). These correspond to the
second and third terms of Eq. (4.14) of IAV, respectively.

By the step from DWBA to CCBA, UT include in
principle a part of the breakup that is simultaneous with
target nucleus excitation. The major difference between
use of the Green's functions Gd and Gd is, finally, that
IAV treat the final state wave functions of the (x+3)
system exactly, but UT deal with them implicitly through
the approximate optical potential Green's function Gd.

UT consider the third of the above differences to be of
major importance. They claim that the use of Y, includes
mere inelastic scatterings in the inclusive breakup formu-
la, but that this does not happen if Vp is used. Their ar-
gument is the following: They apply the projection opera-
tor P to select a component of the integrated IAV cross
section (13),

The projected Green's function is converted to the form

PG,P=G.rf=~E. +&y.
~
v„b~y. & H-„T.

Ueff+ ]
—i (24)

with E,=E —e„andwith

U,' =P(v„g+Ub)P+PHeQ(E QHg—Q+ie) 'QHdP .

From the identity

ImG =(1+6 Ut) Im60(1+UG)+6 ( ImU)6

for 6 =60+60 UG Eq. (23) is written as

IAV IAV IAV
&P 4 P, O ++P,ab ~

where

(26)

op = —— 1m&X',+'P, 4g
~

V,PGePV,
~

X',+'$, @g & .
V~

(23)

op 0 X„——p( E,') [ & 4'p '(A„,E,')
~

V,
~
X,'+'P, 4g & (

Va
(27)

o = —— &g,'+'$,4„i V, G,' (ImU,' )6,' V, iX,'+'$, 4, &,
TT Vg

E; =E. ("" ')+-&~.-i V:t~. &

The wave function qi'p '(A„,E,') satisfies the CC equation

(H„+T.+U.ff E. e„)e-;~~(~—„,E.)=O,

and has its inhornogeneous term in the channel a+A„
with the relative enerlIy E,'. [We think that in Ref. 1, He
in Eq. (3.12) and 4',„,in Eq. (3.13) were meant to be He
and %p '(A„,E,'), respectively. We also correct the folded
potential term of U,' in Eq. (25).] Interpreting opo
of Eq. (27) as the sum of inelastic cross sections and argu-
ing that

&'P'p '(~n Ea)
I Va I

&a+'4aM &&0

but

of "inelastic" cross sections, these are not the cross sec-
tions of actually observable inelastic processes. The UT
interpretation of (27) does not hold.

2. The UT derivation of (27) is invalid. The interac-
tion PHeQ in the second term of (25) is of infinitely long
range, because it includes a term PT„bQ (= —PV„bQ).
This pathology is inherited by U,', with the result that no
solutions of (30) exist that satisfy the boundary conditions
appropriate to an inelastic distorted wave.

3. One can directly confirm that the result (26)—(28)
obtained by the UT analysis of the projected Green's func-
tion is invalid, without examining the misleading transfor-
mation (24). To have a relation to a sum of inelastic
scattering cross sections, the intermediate states in the
Green's function PGeP in (23) should have asymptotic
channels proportional to the bound state P, (rb ). We
therefore examine the function

&e,'-'(~„,E.') i v, ix."'y.e'„&=o =-= G„PV.
~
X.'+'y. eo„&. (31)

(with suitable changes due to the difference of Hd and
He}, UT conclude that oi, erroneously includes mere

inelastic scatterings but o.
b does not.

We criticize (23) and the subsequent discussion on three
levels.

1. As already noted in UT Appendix B, the final state
asymptotic kinetic energy of inelastic scattering,
a+A-+a+A„, is E, —(ez —ez }, which differs from E,'
of (29) by the expectation of the potential energy of a.
This means that although expression (27) looks like a sum

To contain inelastic scattering the asymptotic behavior of
I'- would have to be

P:-~X„r,'f„(r,) exp(ik„r,)P,4"„, (32)

with the appropriate inelastic roomenta k„.However, be-
cause Ge in (31) operates on a source function that is
short ranged in all variables, the solution = actually
reduces asymptotically to a sum of terms of the familiar
three-body breakup form e'" /9F r, with

A'=(( m„rb+mbr„)/(m„+mb)]'
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using various values of the breakup momentum k for the
various excited states of A. Because the quantity P:" is
proportional to (P, ~

"), and because the range of P, (rb„)
is small compared to rb or r„,P:- is asymptotically pro-
portional to a sum of terms of the form r, exp(ikr, ).
&bviously, (P, ~:-) decreases faster than the right-hand
side of Eq. (32) as r, -+ 00. Therefore, the function P:-
has vanishing asymptotic flux in the inelastic channels. It
is not surprising that the actual P:- falls off faster than
the UT analysis claims. Bo:ause G~ has no interaction
between b and x, as seen in (14) and (15), (31) has no
channels in which those particles are bound asymptotical-
ly. We again conclude that the UT analysis of the pro-
jected Green's function is erroneous, and the IAV formal-
ism is fry from the inelastic scatterings that UT criti-
cized.

Finally we note that UT object to the use of a Huby-
Mines convergence factor exp( er„—) in the Appendix of
IAV. They warn that the possibility of taking the limit
@~0+ before evaluating the nonuniformly convergent in-

tegral leads to an "a-dependent ambiguity" in the IAV re-
sult. However, this convergence factor is already dis-
cussed in Sec. II (not Sec. III) of IAV, where it is used to
provide a mathematically unambiguous definition of the
post-form sum rule. There it is emphasized that the limit
@~0+ must be taken after the radial integration is per-
formed; the identities derived (including the equivalence
of the post and prior sum rules), hold if and only if the
limit and integration are performed in this order. It is
only by departing from this canonical prescription that
one can produce an "a-dependent ambiguity. "

Note added in proof. In response to comments, we wish
to emphasize that the DWBA approximation in Eq. (10)
consists in the use of product wave functions in the en-

trance channel, not in approximating some other Green's
function by Gq. The steps leading from Eq. (10) to Eq.
(13) are exact.
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