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Shell-model calculations are presented for electric quadrupole moments of A =17—39 nuclei.
The shell-model wave functions, which span the complete Ods/2-1sl/2 Dd3/2 model space in all in-

stances, are obtained by diagonalizing an sd-shell Hamiltonian which consists of a fixed single-

particle energy spectrum and a single set of two-body matrix elements scaled as a function of the
mass number A. Results obtained with harmonic oscillator and Saxon-Foods single-particle radial
wave functions and matched effective-charge models are presented for ground states of odd-even

and doubly odd nuclei and for J =2+ first-excited states of doubly even sd-shell nuclei.

I. INTRODUCTION

Static electric quadrupole moments of nuclear states
provide fundamental information about nuclear deforma-
tions. Their variations in sign and magnitude as a func-
tion of the mass and charge numbers A and Z are sensi-
tive manifestations of the many-particle structures of the
nuclear wave functions. To account for the complete
range of quadrupole moments within a major shell is a
thorough and comprehensive test of any theory for the
structure of the relevant nuclei. In the sd shell, measure-
ments of quadrupole moments have been carried out for
almost all mass numbers and a complex sequence of
structural transitions thereby mapped out. It is a funda-
mental challenge for a microscopic theory such as the
shell model to account for the nuclear shape features re-
flected by these data.

Previous comprehensive analyses of A =17—39 quad-
rupole moments with shell-model wave functions' s re-
lied on calculations which incorporated different model-
space truncations, different effective charges, and dif-
ferent model Hamiltonians for different portions of the
mass range. These discontinuities and inconsistencies in
earlier calculations made it difficult to distinguish sys-
tematic nuclear structure effigy:ts in the results from the
inadvertent consequences of changes in the scope of the
configuration space or of the specification of the effective
interaction.

The predictions presented here surmount these earlier
deficiencies. The present shell-model calculations are
internally consistent in that the models spaces uniformly
span the complete Od5/2-lsl/2 Od3/2 configuration space,
in that every state is calculated from a model Hamiltonian
generated from the same set of two-body matrix elements
and single-particle energies, in that the effective charges
used in the model E2 operator are independent of state
and mass, and in that the single-particle radial wave func-
tions are parametrized as functions of the mass in sys-
tematic ways.

The multiparticle wave functions used in this study
have been shown to yield predictions which agree well
with experimental data on level energies, single-nucleon
transfer, 6 and Gamow-Teller/magnetic dipole phenome-
na. ' The present comparisons of their predictions for
electric quadrupole moments with experimental data pro-
vide tests of quite different properties of the wave func-
tions, namely their shape-collective features. These com-
parisons can also provide information about the appropri-
ate formulation of the effective charge of the model E2
operator and about the optimum prescription for the
single-particle radial wave functions. Such features of the
wave functions of Ref. 6 have been studied9 in another
context by a comparison of measured and predicted in-
elastic electron scattering form factors.

II. THEORY

A. General structure of multiparticle
shell-model matrix elements

In this study we make the conventional assumption of
the impulse approximation, namely, that the operator
mediating electric quadrupole observables of a many-body
nuclear state

~
NJTT, ) can be represented as a sum of

one-body operators. A one-body operator 0 in the nu-
clear shell model can be represented in the second quan-
tized formulation as'

0= g Op= g (pm ~0 ~p'm')ap ap
PP

where the first summation runs over all nucleons, the
second summation runs over all active single-particle
states

~
pm) =

~
njlmtt, ) in the shell-model basis space,

and aP and aP are the single-particle creation and an-
nihilation operators, respectively, for these states. If the
operator 0 is a spherical tensor of rank I. in coordinate
space, 0 =0(I.,M), then the Wagner-Eckart theorem in
the form
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(pm I
O(LM)

I

p'm') = ( —I&'™~ (jmj
' —m'

I
LM)

2L+1
x &pll«L) fip'&

can be used to factor out all rn, m', and M dependence
and reduce Eq. (1) to

«L) =X &Pll«L)lip'& '2L ',[ae Xae ]

PzP

(3)

In Eq. (3) we have converted to the spherical tensor,

a&
——( —1/+ ae ~ and have already performed the sum

over all coordinate magnetic substates in the coupling

[a Xa ] = g (jmj'rn' ILM)a a
m, m'

The reduced multiparticle matrix element of the one-

body operator, (NJTT, I IO (L)
I
INJTT, ), may then be ex-

pressed as

& NJTT,
I
IO(L) I I»», )

=g (PIIO(L)IIP')D *(L,p,p'), (5)
PzP

where (pl IO(L)
I
lp'& are single-particle matrix elements

and

(NJTT,
I f[a, xa, ]'I INJTT, )

D *(L,p,p') =
v'2I. +1

(6)

are one-body-transition densities. The values of the
MTT

D '(L,p,p') are determined by the appropriate algebra-
ic operations on the model wave functions. They were
thus completely determined by the diagonalizations of the
Schrodinger equation H

I
NJT ) =E 1»T ) which yield-

ed the wave functions and energies of Ref. 6. The values
of these one-body-transition densities for the states of in-
terest in this study are listed in Table I.

B. Electric quadrupole operator and moment

The electric multipole operator is defined by

O(E,LM)k ekrk ——YLM(rk ),
and the definition of the total electric quadrupole moment
inastate

I
NJ(J, =J)TT, ) is'

A

Q=V 16m'I5(NJ(J =J)TT
I g O(E'L =»M =0)k INJ (8a)

which, with the %igner-Eckart theorem, can be written as

J 2 J A

Q=&16rr~5 J 0 J &NJTTzll X O(E2)I IINJTTz)
k=1

Here [ ] represents the 3j symbol for the angular momentum factor, the value of which is given by

1/2
J(2J —1)

(2J+1)(J+I)(2J+3)

(8b)

It is useful to separate the proton and neutron contributions to the quadrupole matrix element and factor out the charge
ek and write

J 2 J
Q=&16~/'5 J () J &NJTTzll y O(E2)pffNJTT, &+ y (8c)

protons neutrons

or

J 2 J
Q =&16m/5 [e A(E2) +e„A(E2)„],

where A (E2)~/„represents the E2 matrix elements,

3 (E2)p/„——y (NJTT
I fr /„Y2O(r /„) I

INJTT )
p/n

or

/I (E2)p/„——Q D '(2,p,p')

(Sd)

C. Formulation of single-particle matrix elements

It can be shown that the reduced single-particle matrix
elements for r YLM(r ) can be factored as'

&pffr'YLM(r)lip'& = &p I

r'I p'&f'E"(jt;tj''), (10)

where (p I
r

I
p') is the radial integral and

f' '(jt;tj'')= —,'( —I )J+'/'(j ——,
' j' —,

'
I
LO)

X [1+( —1)'+'+']

X v'(2j+ 1}(2j'+I )/4w .

X &Pllr&/. Y20(r,/. )Ilp'&„, „„,. (9b)
Note that f' '(jt;tj'')=( —I&' 1f' '(tj'', tj) and that
for quadrupole moment calculations in the sd shell one
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MTT
TABLE I. One-body-transition densities D '(2,p,p') for the ground states and 2~ states of vari-

ous sd-shell nuclei as calculated from the wave functions of Ref. 6. Note that in the sd she11, one has
NJTT NJTT

D '(2,p,p*)=( —1) +~+'D '(2,p', p).

"x(J, )

17O{5 +)

1&O(2+)

1&F(5+)

1&F( 5 +)

20F g+ )

~ Nt:(2+))

~'Ne( — )

Ne(2+()

'Na( —, )

Mg(2i )

2~Mg(
z )

Mg(2i )

Al(2 )

2&Si(2+&)

Si(2+))

"S(2+)

"S(2 )

34S(2+)

35S( 3 +)

3'Cl( — )

"so+)

"Cl(2+)

Ar(2) )

Cl( — )

Ar{2+))

39K( 3 +)

n/p ( —-—)
5 5
2 2

1.0
0.0

—0.0858
0.0
1.0653
1.0653
0.5098

0.4757
—0.2894
—0.06SO

0.2998
0.2998

—0.2317
—0.2314

0.4748
0.2887

—0.3330
—0.2164

0.4584
0.4584

—0.3482
—0.6790
—0.1004

0.4036
—0.0465
—0.6533
—0.3631
—0.3631

0.0102
—0.1645

0.0263
0.0263
0.0591

0.0749
—0.0613
—0.0411
—0.0020
—0.0437

0.0620

0.0568
0.0
0.0009
0.0014

—0.0037
—0.0612
—0.0612

0.0
0.0234
0.0

—0.0010
0.0

(—-—)
5 I

2 2

0.0
0.5222
0.0
0.0
0.0
0.2S60

0.1023
—0.1937
—0.1117

0.3622
0.3622

—0.3497
—0.2690

0.3545
0.3591

—0.2438
—0.3427

0.3460
0.3460

—0.3210
—0.3336

0.1102
0.3339

—0.2713
—0.1917
—0.3875
—0.3875
—0.0681
—0.0925

0.0827
0.0827
0.0643

0.0703
—0.0899
—0.1234
—0.0089
—0.0196

0.0557

0.0598
0.0
0.0595

—0.0006
0.0084

—0.1281
—0.1281

0.0
0.0065
0.0

—0.0177
0.0

(p-p')
(—-—)

5 3
2 2

0.0
0.0
0.0788
0.0
0.0
0.0
0.1039

—0.0137
—0.1539
—0.0673

0.0975
0.0975

—0.1340
—0.0448

0.2397
0.0783

—0.1811
—0.1080

0.2376
0.2376

—0.3077
—0.2985

0.1152
0.1393

—0.2172
—0.2337
—0.2880
—0.2880
—0.1241
—0.0060

0.0288
0.0288
0.0822

0.1161
0.0100

—0.1281
—0.0046
—0.0800

0.0698

0.0985
0.0

—0.0244
—0.0430
—0.0325
—0.0221
—0.0221

0.0
0.0441
0.0
0.0631
0.0

(—-—)
1 3
2 2

O.O

0.0
0.0613
0.0
O.O

0.0
0.0830
0.0543

—0.0570
—0.0470

0.1515
0.1515

—0.0779
—0.1101

0.1260
0.1000

—0.1049
—0.0587

0.1356
0.1356

—0.1338
—0.1317

0.1063
0.1321

—0.0633
—0.1463
—0.0869
—0.0869

0.1248
—0.0156

0.2915
0.2915
0.1152

0.1309
—0.4029
—O.OS 17
—0.0069
—0.1042

0.1398

0.1281
0.0
0.2272
0.0149
0.0006

—0.3717
—0.3717

0.0
0.0791
0.0

—0.2823
0.0

(—-—)
3 3
2 2

0.0
0.0
0.0359
0.0
0.0
0.0
0.0896
0.0148

—0.0490
—0.0300

0.0855
0.0855

—0.0455
—0.0435

0.0230
0.0541

—0.0083
—0.0232

0.0319
0.0319

—0.0793
—0.0755

0.0326
0.0182

—0.0916
—0.0996
—0.1569
—0.1569

0.4901
—0.0742

0.4143
0.4143
0.6042

—0.0292
—0.2126

0.3225
—0.9021

0.0138
0.4720

0.4039
0.0
0.8695

—0.0022
—0.0109
—0.2855
—0.2855

0.0
0.9121
0.0

—0.0403
0.0

A (E2)'

—7.820

0.0
—7.833

0.0
—8.447
—8.447
—9.877
—5.793

7.216
3.326

—10.45
—10.45

9.052

7.545
—12.54
—9.610

9.079
8.447

—12.71
—12.71

12.42

15.33
—3.239

—11.33
7.721

13.07
13.70
13.70

—2.864
3.654

—8.381
—8.381
—8.052
—4.330

8.592
1.891
6.767

2.726
—7.322
—6.967

0.0
—9.982

0.224
0.280
9.757
9.757
0.0

—8.431
0.0
3.728
0.0

0.0 7.3850.0 0.0 0.0P

'The values of the matrix elements A (E2) defined in Eq. (8d) (units of fm ) are calculated using the har-
monic oscillator potential vrith flu =453 ' ' —253 ' (MeV).
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has I and I' equal to 0 or 2 (and therefore even), and
L =2. Hence f' '(j;j'), with I and I' suppressed,
reduces to

f' '(jj')= ( —1)'+' (J zJ T I
20)

X &2j+1)(2j'+ I)/4n . (12)

The values of f' '(jj;') for the sd shell are given in
Table II. The radial wave functions in Eq. (10) typically
are calculated from a central potential. If we assume a
spherical harmonic oscillator potential, V(r) = ,

'
mr—o r

(where m is the proton mass), then the single-particle ra-
dial wave functions R„i(r) are given in terms of the length
parameter b (b =R/mni) by standard formulae [see, for
example, Eqs. (2.21) and (2.23) in Ref. 10]. In the sd shell
we have

i d) =Ri2(r) and
i
s) =Rqo(r), which leads to

the following expressions for the single-particle radial ma-
trix elements:

(d
i

ri id) = I'[(L+7)/2],
15 n

(13a)

(d
i

ri
i
s ) = I [(L +5)/2],

3 5m
(13b)

where I'(x) is the gamma function. Equations (13a) and
(13b) (for L =2) reduce to (d i

r
i
d ) =3.5b and

(d
i
r

i
s ) = —~10b

The value of b can be obtained from the rms point pro-
ton radius rp for nuclei in the sd shell via the expression"

18+3.5(Z —8 )fp= z
3b
2A

(14)

where the rms charge radius rch is related to rp via the
equation

2 2 2 2 3 2"ch rp+rproton+(IV/Z)rneutron+ 4(~/mc) (15)

or, equivalently,

b =0 9603 ' [1—(0 556)A ' ] ' (fm)

In this work we take rp„„„=(0.86) and r „,„„,„= —(0.34) .
The experimental rms charge radii for stable sd-shell

nuclei and their corresponding b values are given in Ref.
3. They are also presented here in the No. 2 entries of
Table III. These experimental r,h values are plotted
versus mass number A in Fig. 1. An estimate for the
dependence of the oscillator parameter upon mass number
which yields a reasonably accurate fit to data for closed-
shell nuclei is given" by

(16)

The b values from this expression, when put into Eqs. (14)
and (15), produce rms charge radii which are also plotted
in Fig. l. It can be seen that while this formula repro-
duces the overall trends of the experimental values of r,„,
some data, particularly around Ne, deviate appreciably
from the smooth trend.

The conventional alternatives to harmonic oscillator
single-particle wave functions are obtained from Saxon-
%oods potentials. The Saxon-%oods potential must be
specified in terms of several parameters, the choices of
which can affect the relative as well as absolute values of
the rms radii of the individual single-particle wave func-
tions. In this study we utilize a local Saxon-%oods poten-
tial which is parametrized according to the approach of
Ref. 13. The spin-orbit radii and diffusivities are set
equal to the corresponding central values, and values of
the well depth, radius, and diffusivity of the central po-
tential are fixed independently for ' 0 and Ca so as to
give agreement with the data on the charge distribution
and single-particle separation energies for these systems.
Parameters for nuclei in the interior of the sd shell are
then determined by a smooth interpolation (X=a
+PA '

) between the ' 0 and Ca values. This choice of
parametrization for the Saxon-Woods potentials gives an
accounting of experimental r,h values (also shown in Fig.
1) which is analogous to that provided by the oscillator
parametrization of Eq. (16), although the oscillator pa-
rametrization is not so focused on reproducing precisely
the ' 0 and Ca radii.

The different potential formulations yield different rel-
ative values of the rms radii for the individual njlt, orbits.
For nuclei with only a few sd-shell particles, the values of
r,h are dominated by the protons in the Os and Op shells.
Hence, the rms radii of the sd orbits from the two
prescriptions of the potential can be appreciably different
and not affect the value of r, h significantly. As we pro-
gress to nuclei with more sd-shell nucleons, however, the
values of r,h depend more and more on the rms radii of
the sd orbits themselves. Hence, the requirement that the
theoretical value of r,h in each model fits the Ca radius
has the consequence that the oscillator and Saxon-Woods
values of the rms radii of the sd orbits are essentially
equal to each other at A =40.

A finite-depth potential such as the Saxon-Woods can
in principle be parametrized to take account of specific
binding-energy effects. These effects should be especially
important for proton-rich states for which the separation
energy is small. The smooth variation with mass that is
used here does not account for these individual variations,
so this particular rationale for choosing a Saxon-Woods
over an oscillator potential is not exploited. The present
Saxon-%oods formulation, however, is systematically dif-

TABLE II. Values of the expression f' '(p, p') and (p ~

r ip') as defined in Eqs. (12) and (13),
respectively, for the single-particle orbits of the sd sheB.

f(E2)(p pi)

&p I "Ip')

(—-—}
5 5
2 2

—0.7378
3.5b 2

5 I
(—-—}2 2

0.6910
-v 10b'

(—-—}
5 3
2 2

—0.3693
3.5b

(—-—}
I 3
2 2

0.5642
~iOb'

(—-—}
3 3
2 2

—0.5642
3.5 b
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TABLE III. Calculated and experimental electric quadrupole moments in units of e fm'.
tion No. 1 uses the harmonic oscillator potential with ~ =453 ' —25& 2 ' (Me&) and No. 2 uses
the harmonic oscillator (HG) potential with b values obtained from r,h (experiment) for each stable nu-

cleus. In these two calculations, the effective charges are e~ = 1.35e and e„=0.35e. Calculation No. 3
uses a Saxon-%'oods (S%) potential with effective charges of e~ = 1.15e and e„=0.45e.

17F( 5 +)

18O(2+)

18F(5+)

"F(2+)

"Neg+)

2'Ne{
2 )

Ne(2+1)

23N (3 )

"Mg(2+, )

~Mg( 2 )

"Mg(2+, )

Al{— }

2sSi(2+)

"Si(2+)

2S(2+1)

33S( 3
)2

Calc. Potential

HO

HO
S%'

HO

HO
S%'

HO
HO
S%'

HG
HO
S%'

HO

HO
SW
HO
HO
S%
HO
HG
S%'

HO

HO
SW
HO
HO
SW
HO

HG
S%
HO
HO
SW
HO

HO
S%'

HO
HO
S%'

HO

HO
SW
HO
HO
SW

HG
SW
HO
HO
S%'

HO
SW

r,h (fm)

2.676

2.712
2.684
2.766

2.801
2.889
2.689
2.794
2.664
2.781
2.882
2.842
2.794

2.897
2.813
2.807
2.946
2.792
2.880
3.020
2.942
2.893

2.984
2.917
2.906
2.949
2.899
2.979
2.986
3.004
3.041
3.035
3.098
3.053

3.003
3.078
3.065
3.017
3.062
3.119
3.058
3.142
3.168
3.125
3.215
3.199
3.137
3.190
3.271
3.263
3.335
3.285

3.264
3.321

b (fm)

1.739
1.765

1.739
1.763

1.751
1.826

1.751
1.821

1.763

1.833

1.774
1.869

1.774
1.867

1.785

1.845

1.795
1.824

1.805

1.810

1.815
1.811

1.824

1.792

1.834
1.803

1.843

1.804

1.851
1.824

1.868
1.829

1.884
1.879

1.878

Q (theor. )

—2.12
—2.18
—3.13
—8.17
—8.39
—8.70
—2.08
—2.26
—3.59

—10.43
—11.27
—11.00
—8.72
—9.43
—9.85

5.32
5.90
6.22

—13.46
—14.92
—14.81

9.47

10.12
10,29

—13.16
—13.58
—13.86

10.34

10.39
10.65

—16.38
—16.31
—16.82

19.37

18.69
18.97

—12 45
—12.04
—11.34

15.74

15.08
14.86
17.65
17.14
17.35
2.98
2.86
2.17

—10.80
—10.74
—10.42
—6.14
—6.06
—6.10

Q (expt. )'

—2.58+0.05

%10%2

+13+2

—12+2

7.0+1.3

—23+3'

10.3+0.8

—19+4

10.06+0.20'

—18+2

20.1+0.3

—13+3'

15.0+0.6'

16+3'

—16+2

—6.4+ 1.0
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TABLE III. ( Continued).

Ax (J7l') Calc. Potential r,h (fm) b (fm) Q (theor. ) Q (expt. )'

34S(2+)

35S( )

35Cl( & +)

"S(2+, )

36Cl(2+ )

Ar(2) )

"Ar(2+, )

39K( 3 +)

1

3
1

3

1

2
3
1

2
3
1

2
3
1

3
1

2
3
1

3

1

2
3

HO
HO
S%'

HO

HO
S%'

HO

HO
S%'

HO
HO
SW
HO
HO
S%'

HO
HO
SW
HO

HO
SW
HO
HO
S%'

HO

HO
SW

3.300
3.264
3.311
3.311
3.335
3.303
3.331

3.351
3.360
3.322
3.363
3.297
3.342
3.382
3.350
3.359
3.399
3.407
3.353

3.351
3.344
3.381
3.414
3.388
3.410
3.437
3.431

1.899
1.877

1.906

1.921

1.906

1.919

1.913
1.938

1.913
1.938

1.913
1.937

1.920

1.919

1.927
1.947

1.934
1.950

4.21
4.12
4.55
4.29

4.36
4.32

—8.49
—8.60
—7.96

—10.21
—10.48
—8.27

0.346
0.355
0.317

12.57
12.89
11.81

—8.07
—8.06
—6.64

3.81
3.89
3.14
7.07

7.19
5.96

4+3

4.5 + 1.0

—8.249+0.002

—1.80%0.04

11+6b

—6.493+0.002

5.2+0.3

'All entries not otherwise referenced are taken from the compilation of Ref. 18.
'Taken from the compilations of Ref. 29.
'Reference 22.
Rcfcrcncc 23.

'Average from Refs. 29 and 32.
Average from Refs. 34—36, assuming constructive interference. Note that the uncertainty in the

weighted value is significantly smaller than each individual measured uncertainty.

ferent from the analogous oscillator results in that the
proton radii for any given system are larger than the asso-
ciated neutron radii because of the repulsive Coulomb po-
tential. The consequences of this for the full E2 operator
will be discussed in the next section.

D. Effective charges

Calculation of a nuclear observable such as the electric
quadrupole moment in terms of the matrix elements of an
operator evaluated between a limited range of single-
particle states of the shell model, as defined in Eq. (5), im-
plies a correspondence between this "model" matrix ele-
ment and the "true" matrix element, for which the sum
over single-particle states is unlimited. It is desired, obvi-
ously, that the "true" and the "model" matrix elements be
equal. Since it is unlikely that the contributions from or-
bits excluded from the model space are exactly zero, the
"model" operator must hence differ from the "true, " or
"free-space" operator to compensate for the model-space
truncations.

The configurations excluded by the sd-shell model

which presumably are most iinportant for a complete
description of E2 phenomena are those which incorporate
one-particle, one-hole excitations from the Os to the Od, ls
orbits, from the Op to the Of, lp orbits, and from the Od, ls
to the Og, ld, 2s orbits. These particle-hole excitations,
acting coherently„are the basis of the so-called "giant E2
resonance, " which is found in all nuclei at an energy of
approximately E =653 ' MeV and which has a
strength comparable to that of the strong E2 excitations
between low-lying nuclear levels. These same one-
particle, one-hole excitations should also affect the
strength of the E2 matrix elements between low-lying
states, even though the admixtures of such configurations
into the wave functions are quite small.

This general problem manifests itself in the case of the
sd-shell and electric quadrupole moments in the classic
example of ' O. The conventional shell-model truncation
for sd-shell nuclei corresponds to the assumptions that
' 0 forms an inert core for 8 &X,Z &20 nuclei and that
the single-particle orbits lying higher in energy than the
sd orbits are completely vacant. %'ith this model and
with the free-space (e~ = le and e„=Oe) E2 operator, the
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FIG. 1. Comparison of experimental values of ~,h with predictions from Saxon-Woods (solid line) and harmonic oscillator (dashed

line) (Ace =453 ' —253 MeV) potentials.

quadrupole moment of the ground state of '70 must be
zero, since the ground state of ' 0 is modeled purely in
terms of a single neutron. (It likewise follows that sd-
shell model wave functions for all states of the oxygen iso-
topes have vanishing quadrupole moments. ) However, the
quadrupole moment of the ground state of ' 0 is found
experimentally to be not zero but —2.58+0.05 efeP.
Hence, the E2 operator must be renormalized if the sd or-
bits of the shell model are to be able to deal quantitatively
with these experimental data. Further study shows that
observed E2 matrix elements in ail nuclei tend to be larger
than the predictions of shell-model wave functions when
the protons and neutrons of the model are given charges
of 1 e and Oe, respectively.

The simplest procedure by which shell-model matrix
elements for electric qiuidrupole observables can be
brought into agreement with experiment is to assign "ef-
fective" charges, e~ and e„, to the protons and neutrons
which are active in the model space. The ' 0 problem,
for example, is thus solved tautologically by having the

d&zz neutron carry a charge of the appropriate magnitude.
The test of the efficacy of this simple approach is whether
a sequence of states with different N and Z values is con-
sistent with values of e~ and e„which are constant or
slowly varying.

As a procedure for renormalizing shell-model E2 ma-
trix elements for the effect of excluded configurations,
this effective charge model is extremely simple. It could
be expected that each single-particle orbit or single-
particle matrix element might require its own individual
renormalization and that these renormalixations might de-

pend strongly on the individual masses and states. '

State dependence is particularly strong for A =17 where
the effective charge is smaller for states that are loosely
bound. '~'s However, for well-bound states, the state
dependence as obtained in recent random-phase approxi-
mation (RPA) Hartree-Fock calculations is weak. ' The
effo:tive charge is also expected to increase as a function
of mass in going from the beginning to the end of the sd
shell, ' ' and there is some experimental evidence for
this increase. '6

However, on the whole, the sd shell experimental data
on E2 transitions are consistent with an effective charge
which is constant, independent of state and mass. ' '6
Thus, as a working hypothesis we will present compar-
isons of the experimental quadrupole moment data with
theoretical matrix elements in which the free-space
charges of the proton and neutron (le and Oe) are re-
placed by the constant effective charges ez ——e+ b,ez and
e„=he„, respectively. Any deviation between experiment
and theory might then be ascribed to a breakdown of this
assumption about the effective charge and/or to a defi-
ciency in the multiparticle wave functions.

As is obvious from Eqs. (8d) and (9b), the model values
of electric quadrupole moments depend on the assump-
tions about the radii of the single-particle wave functions
and about the charges on the model particles in a correlat-
ed fashion. In our empirical approach the effective
charges are the parameters by which the model E2 matrix
elements A (E2)~ and A (E2)„are normalized to optimize
their agreement with experimental data. Different choices
for single-particle wave functions presuppose different
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values for the effective charges. In this study we follow
the conclusions of Ref. 13 for the optimum values of ef-
fective charges for the sd-shell space and the parametriza-
tions of single-particle radial wave functions described
above.

For the harmonic-oscillator radial prescriptions the op-
timum values from Ref. 13 are be& —be„=—0.35e. These
effective charges are used here for calculations which use
oscillator wave functions with b values given by Eq. (17)
(results labeled No. 1 in Table III) and, alternatively, b
values chosen to fit the individual experimental values of
r,h for each A value (results labeled No. 2 in Table III).
The consequences of using this same choice for effective
charges with the Saxon-Woods radial wave functions are
E2 matrix elements which are larger than the correspond-
ing oscillator values at the beginning of the shell and very
nearly equal to most of the oscillator values above A =30.

The conclusions of Refs. 13 and 14 are that, when using
Saxon-Woods wave functions, the value of b,e~ should be
smaller than the value of he„ for sd-shell nuclei. The ac-
tual choices from Ref. 13 are De~ =0.15 and he„=0.45e.
These values reflect rms radii for the Saxon-Woods sd-
shell orbits which are larger on the average than the corre-
sponding oscillator radii and proton radii which are larger
than neutron radii. The consequences for E2 matrix ele-
ments of using these values of effective charge (results la-
beled No. 3 in Table III) differ from the results No. 1 and
No. 2 principally for states which are pure proton or pure
neutron configurations in the model context.

E. Summary and discussion of the theory

The procedure for calculating model values of
Q(J","X) is clear from the preceding discussion. Values
of the single-particle matrix elements (p(~r I'20(r")~(p')
are obtained according to Eq. (10) by using the values of
f' '(j;j') from Eq. (12) (values given in Table II) and by
adopting a model for the radial wave functions which en-
sures that the observed nuclear radii are approximately
reproduced. These single-particle matrix elements are
then combined according to Eq. (9b) with the one-body-
transition densities defined in Eq. (6) (values for each
AJTT, given in Table I) in order to obtain the full proton
and neutron matrix elements A (E2)„&„. These multipar-
ticle matrix elements then are combined with e~ and e„
according to Eq. (Sd) to obtain the quadrupole moments
Q. It is important to emphasize that the sum in Eqs. (5)
and (9b) must be over all (j,j') pairs in the model space;
i.e., both the (j,j') and (j',j) combinations for an orbit
pair with j different from j' must be included.

In the present calculations, the basis vectors 4 are
represented as

(g)(+JT) I [(d )
1 1 1)( ( )

2 2 2] 12 12

p3 3 3
I

JVJT

where n ~+n2+n3 —X—A 16 and the n; J; T; give the
number of nucleons in the orbit j; and the values of the
internal angular momentum and isospin couplings in that
orbit. An eigenfunction 3p of the inodel is then

4(XJT)=g a;4;(XJT),

where the sum runs over the basis states 4;(NJT) up to
the dimension d. In the present calculations, the model
spaces uniformly include every basis state that can be con-
structed from the three sd-shell orbits.

The features of E2 matrix elements predicted in this
model can be traced back to the number and identity of
the single-particle orbits p which define the model space,
and to the distribution of probability over the various
basis vectors. The orbits of the sd-shell yield 16 one-body

XJTT
density, D '(2,p,p'), combinations for the E2 operator.
The s i &2s»2 combination is forbidden because of
angular-momentum constraints. The inequivalent-orbit
combinations p-p' and p'-p have equal magnitudes in the
situations treated here, since the initial-state and final-
state wave functions are identical. The relative signs of

NJTT XJTT
the D *(2,p,p') and D *(2,p', p) pairs coincide with
those of their associated single-particle matrix elements,
so that each pair need be specified only by a single value.
In the p-p' sequences listed in Tables I and II, the single-
particle matrix values all have the same sign. Hence, it is
obvious from the signs listed in Table I whether the vari-
ous one-body contributions to the value of a total moment
combine constructively or destructively. The magnitudes
of the single-particle matrix elements of the sd-shell orbits
differ from each other by at most a factor of 2. Hence, a
one-body-density contribution from any given pair of or-
bits is approximately equivalent to that from any other
pair in constructing the total matrix element.

The essence of configuration-mixing shell-model calcu-
lations is the detailed distribution of probability over the
individual basis vectors 4;(NJT). It is instructive to con-
sider the mixed-configuration wave function which results
from diagonalizing the model Hamiltonian in comparison
to the "jj-limit" wave function corresponding to the single
C3;(lilJT) which corresponds to filling the model orbits in
the conventional jj-coupling sequence. As a simple exam-
ple, the jj-limit wave function for the first 2+ state of 'sO

would be (ds~2) ' = . The configuration-mixed wave
function for this state has a probability of 61% for the
(d, &2) component and a 32% probability for the (d5&z)'-
(sinai) component, the remaining probability being distri-
buted over the (did)'-(diqz)', (siq2)'-(diq2)', and (diq2)'
components.

For quadrupole moment calculations in jj-coupling rep-
resentation, the vital difference between the
"configuration-mixed" wave function 3'f23(NJT) and any
single-component wave function 4; (l3lJT) is that the
former allows one-body-density terms for which pgp',
while the latter does not. This difference is not a function
of the constitution of the particular single component, but
results just because it is impossible to annihilate a particle

p from a basis vector 4;(lilJT), create a different kind of
particle p', and then return to the same 4;(l3lJT). By the
same token, the one-body-density terms with p&p' can
originate only by connecting one basis vector 4;(NJT) to
a different one. Also, obviously, basis vectors which
differ in orbit occupations by more than one particle or
hole cannot be connected by any one-body operator pair.



2288 M. CARCHIDI, B. H. WILDENTHAL, AND B. A. BROWN 34

The consequences of this difference between single-

component jj-limit and many-component configuration-
mixed wave functions for the value of Q are profound.
For example, the value of the quadrupole moment from
the jj-limit wave function for ' 0 is + 1.23 e fm, while
for the actual configuration-mixed wave function the

MTT
value is —2.08 e fm . The values of D *(2,p,p') for
the jj-limit wave function are —0.583 for p-p'= 2- —,

'
and

zero for all others. For the mixed configuration wave
functions (see Table I), the dominant term is

D *(2,—,, —, ), with a value of +0.522; the value of
NJTT

D '(2, —,, —, ), along with the others, is an order of mag-
nitude smaller. Thus, a 32% admixture of the secondary
configuration into the wave function results in a reversal
of the sign of the moment from positive to negative. The
origins of this reversal are twofold. First, the 32%

1
(d5/q) -(si/i) component yields a D *(2,—,, —,) contri-
bution that largely cancels the contribution from the 61%
(15/z) component. Second, the (ds/z) and the (d5/i)'-
(s»i ) '-(s i/i )

' components are connected (twice) by
the p-p'= —,'- —,

' one-body operators to give a large

D '(2, —', , —,
'

} contribution which has the opposite sign

from that of the D '(2, —,', —', ) from (ds/i) .
The influence of configuration mixing upon predicted

quadrupole moments is even more striking than in this
' 0 illustration for eases in which the jj-limit wave func-
tion yields I.=2 one-body densities which are identically
zero because of a general selection rule. For example, in
the "hole" analog of ' 0, Ar, the basis vector of the first
2+ state which has the largest amplitude (93%) is
( d3/i ) . Due to the selection rule' that E2 matrix e!e
ments between states of the same seniority uanish for a
half filled shell, the value of D '(2, —', ,

—', ) for (d&/z) is

zero. This, not cancellation as in the case of ' 0, explains

the small value of the D *(2,—,', —,
'

) for Ar in Table I.
(The deviation from zero comes from the contributions of
the small components in the mixed-configuration wave
function. ) Given the dominance of the (d3/2) com-

ponent in the wave function, the values of D '(2,p,p'),
and hence the value of Q, depend very sensitively upon
the magnitudes and relative signs of the ( d 5/z )

( d3/2 )
' and ( s i /z ) '-( di/2 ) wave fuiletioil cotn-

ponents which connect with (di/i)
The fact that (di/2} has an L =2 one-body density

which is equal to zero is important for the entire range of
states from Si on up to Ar, because it is an important,
often dominant, component of the wave functions for all
of these nuclei. Since their contributions to diagonal

XJTT
D '(2,p,p) values vanish, these wave function com-
ponents contribute to the values of the quadrupole mo-

XJTT
ments only through off-diagonal D '(2,p,p') terms, in
proportion to the amplitudes of typically much smaller
components. The consequence is an extreme sensitivity of
the predicted values of Q to the details of configuration
mixing in the individual wave functions.

Beyond the specific dramatic effects just described, con-
figuration mixing also typically creates an enhancement in
the predicted magnitude of Q over the value which can be
obtained with any corresponding jj-limit, single-

component, wave function. Of course, this coherent am-
plification is under the control of the inodel Hamiltonian
and the relative phases of the various components which
it creates, but in the typical case for which the phases are
"constructive, " the amplification can be a factor of 3 to 4.

III. EXPERIMENTAL VALUES OF sd-SHELL
QUADRUPOLE MOMENTS

%e concern ourselves in the present study with values
of electric quadrupole moments which are determined
with (nuclear) model-independent experimental tech-
niques. The classic quadrupole moment experiments are
based on measurements of the hyperfine splittings of
atomic spectra. Values are summarized in standard com-
pilations of nuclear data' and are listed here in Table III.
These traditional "electronic" values of Q incorporate dif-
ficult to quantify and potentially serious systematic uncer-
tainties which arise in converting observed line splittings
into the inferred quadrupole-moinent magnitudes. The
difficulty lies in calculating the precise value at the nu-
cleus of the electric field from the surrounding atomic
electron configuration, as this configuration is perturbed
by the nuclear moments themselves. ' ' It is not easy to
evaluate the quoted values of quadrupole moments de-
rived from older atomic-spectra measurements because of
the uncertainties in these "Sternheimer corrections. "
Without extensive reanalysis of these older measurements,
the uncertainties to be associated with the quoted experi-
mental values from this effect may be 1 e fm or larger.
New measurements ' with laser spectroscopy techniques
have yielded quadrupole moment values for the S, Cl,
and Cl ground states which are consistent with the older
values listed in Table III.

Muon-production facilities at high-intensity, medium-
energy proton accelerators have made it possible to utilize
muonic atoms in modern analogs of the traditional
electronic-atom measurements. These "muonic" measure-
ments provide values of quadrupole moments free from
the dominant source of systematic uncertainty in the elec-
tronic values, since the relevant muon orbits are both sig-
nificantly larger than the size of the nucleus and signifi-
cantly smaller than the atomic K shell. The values of the
electric gradients at the nucleus in the muonic atom are
hence straightforward to calculate. Recent measure-
ments~ ' at SIN have provided values of the ground-state
quadrupole moments of ~ Na, Mg, and 7A1. These
values, also listed in Table III, are the experimental ful-
eruin of the present study. Perhaps more important than
the values themselves, however, is the confidence in the
estimation of their uncertainties. Additional measure-
ments of other nuclei with the same technique would be
extremely valuable.

Electric quadrupole moments of nuclear states which
are unstable to P or y emission can be studied in nuclear-
magnetic-resonance experiments if the nuclei can be im-
bedded in a crystal structure which creates an appropri-
ately strong, nonisotropic and known electric field. The
magnitudes of the values for the fluorine isotopes have
been obtained " in a series of such measurements and
are also included in Table III.
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There are two methods for measuring electric quadru-

pole moments of nuclear states which circumvent the need
to know the electric field from the electronic, the analo-
gous muonic, or the solid-state crystal structure which
surrounds the nucleus. Elastic electron scattering experi-
ments can determine in principle all the multipole mo-
ments of the nuclear ground state. In practice, however,
the uncertainties in the determination of the monopole
charge distributions are such as to render the uncertainty
in the associated quadrupole moment values uncompeti-
tively large.

The "reorientation effect" technique, which utilizes
the Coulomb scattering of heavy ions, provides a method
for determining the electric quadrupole moments of excit-
ed nuclear states. In reorientation-effect measurements,
the observed small deviations from the pattern of the
purely Coulomb inelastic scattering associated with the
electric-quadrupole excitation from the 0+ ground state to
the 2+ first-excited state are interpreted as the conse-
quences of the higher-order coupling of this excitation to
the quadrupole moment of the 2+ state. The sign and
magnitude of the deviation then yields the sign and mag-
nitude of the moment. This method has been applied to
determine the quadrupole moments of the J =2+, first-
excited states of almost all doubly-even nuclei of the sd
shell. These values are also presented in Table III.

It typically is difficult to achieve high statistical accu-
racy in reorientation-effect measurements, particularly
when care is taken that the bombarding energies are low
enough to ensure that the scattering process is purely
Coulomb and thus not contaminated by nuclear effects.
The technique is complicated in that the perturbation of
the excitation of Os, to the 2~ state by its coupling to
Q (2+& ) is of the same order as the second-order excitations
of 2~ through higher-lying states. The dominant term of
this type in the typical case is proportional to the product
of the three E2 matrix elements, M(E2;Os+, ~2+&),
M(E2;Os+, ~2+&), and M(E2;2+&~2+2), but higher 2+
states and 4+ states can also be important. These terms
contribute uncertainties to the extracted value of Q(2& ),
since, while the magnitudes of these matrix elements
might be experimentally determined, their signs are not.

The experimental values of Q (2+& ) obtained from
reorientation-effect measurements are often quoted as a
function of the assumed relative sign of the competing
second-order corrections. If the product p3 of the
three matrix elements M(E2;Os, ~2~ )M(E2;Os+,~I„+)M (E2;2

&

—+1„+) is negative ("destructive interfer-
ence"), which decreases the scattering cross sections, a
positive increment should be added to the value of the
quadrupole moment extracted from the deviation of the
observed cross sections from the pure Coulomb predica-
tions; likewise, if the product p3 is positive (constructive
interference), a negative increment should be added to the
extracted value of Q.

The shell-model wave functions provide predictions of
these matrix elements and their (relative) signs along with
other observables. Such predictions for J„=22 are
presented in Table IV, along with the signs of the product
p3. It should be noted that the reliability of these predic-
tions is questionable in many instances. For nuclei near

1Sg

J; ~Jf
0,+, 2+

M(E2;J; ~Jf )'

—3.43
—0.67
—3.09

P3:

(efm )

0+, -2+ —16.41
0.38
4 43

P3: +

22Ne 0+ 2+ —15.21
—4.47

1.14
P3: +

Og, —+2) 18.60
—5.56
—8.69

P3: +

Si

"Si

32S

3Q

36S

Ar

"Ar

0+ 2+

0+ 2+

Og+, ~2)

0+ -2+

0+, -2+

Og, ~2+1

+ 2+

0+ 2+

17.35
3.00

13.15

P3: +
8.46
1.09

—6.84
P3:

—13.97
—7.84
17.97

P3. +
14.91

—7.47
—15.50
P3: +

12.73
4.74

—14.08
P3:

10.68
0.90

—10.81
P3:

—15.64
1.09

—9.84
P3: +

12.00
6.06

13.49
P3:

'Values of M(E2), defined as M(E2) =(2J;+1)8(E2),calcu-
lated with harmonic oscillator potential in prescription No. 2.

TABLE IV. Calculated E2 matrix elements connecting the
2& and 2z states in doubly-even sd-shell nuclei to each other
and to the 0+ ground state.
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the shell boundaries, the model predictions for higher ex-
cited states do not correspond necessarily wj.th the match-
ing experimental states, since the experimental spectra
have large "intruder state" contaminations. Moreover, in
any instance of a small matrix element there is the possi-
bility that the intrinsic uncertainty in the model results
might also allow a comparably small matrix element of
the opposite sign. Finally, in many cases there is no dom-
inant second-order path to the 2+I state, and the correction
must come from a more complex sum over several such
products. Nonetheless, the predicted signs of pq corre-
spond to the choices made in analyzing all of the quadru-
pole moment data for which this correction is relevant.

Because of the variety of difficulties inherent both in
acquiring and analyzing reorientation-effect data, the
value chosen for a particular 2+, state is often not a simple
average over the different existing experimental values. In
most cases the choices made for Table III parallel those of
Spear in Ref. 29. We briefly discuss here our choices for
these values.

The magnitude of the 'sO quadrupole moment is rela-
tively small. As a consequence, the various corrections in-
volved in reducing the data are important. This is reflect-
ed in the uncertainty of the value quoted in Table III.
The value quoted in Table III for Ne is based on rela-
tively old measurements, and the uncertainty perhaps does
not reflect some sources of systematic error. The value
quoted for Ne is based on experiments in which Ne
and Ne were both measured. Hence, the ratio of the
magnitudes of the two values, Q(2 Ne, 2+)/Q( Ne, 2+)
=0.83, should be more reliable than either individual
value.

The value quoted for Mg is based on the two mea-
surements for which nuclear interference with the
Coulomb scattering is evaluated to be negligible. Some
older, higher-energy, measurements give

lardier
magni-

tudes. The value quoted in Table III for Mg is the
weighted average of the value quoted in Ref. 29 (the origi-
nal data are from Refs. 30 and 31) and the value of Ref.
32. The value quoted for Si is based on relatively
modern measurements and is consistent with the average
of older measurements. The value listed for Si is the re-
sult of a single measurement. Its small magnitude
makes it difficult to draw conclusions beyond the obvious
one that the quadrupole moment of this state is small rel-
ative to the size of typical quadrupole moments and col-
lective E2 matrix elements in this region.

The value of the quadrupole moment of the first 2+
state of S has been the subject of particular interest be-
cause of the possible vibrational nature of the low-lying
energy levels of this system and because of the significant
variations in the results of a sequence of different mea-
surernents. The value quoted in Table III is the weighted
average of the results of Refs. 34—36. The value quoted
for S is based on measurements done in conjunction with

8 measurements. As such there should be good relative
agreement between the values of the two nuclei. The key
features of all the S values are their small magnitudes
and positive signs. The value of the quadrupole moment
for the first 2+ state of Ar comes from a single measure-
ment, i and there has been no measurement for the quad-

rupole moments of the first excited 2+ states of S and
"Ar.

The quadrupole moments of the mass distribution of
J =2+ excited states can be measured with intrinsically
nuclear physics techniques which are analogous to the
reorientation-effect measurements of the charge-
distribution quadrupole moments. Quoted values for

Mg, Si, and S are —14 efm, +17 efm, and —13
e fm, respectively, with uncertainties estimated at
20—40%. These values are consistent with those quoted
in Table III. In addition, the signs of the interference
products p3 listed in Table IV are consistent with the as-
sumptions of Ref. 38. Further development and exploita-
tion of this technique may provide a valuable supplement
to Coulomb reorientation-effect studies.

IV. COMPARISON OF
THEORY VfITH EXPERIMENT

AND DISCUSSION OF RESUI.TS

Theoretical values of the electric quadrupole moments
for sd-shell states, calculated as described in Sec. II, are
presented and compared with experimental values in
Table III. Results from combining the one-body-
transition densities with three different combinations of
single-particle radial wave functions and effective charges
are given to illustrate the variations which can arise from
this component of the calculation.

A. Trends of the predictions
and relationships with previous results

l. Ground states ofstable odd ntass sd sh-ell nucle-i

As presented in Table III, the values of electric quadru-
pole moments for the ground states of the stable odd-mass
nuclei of the sd shell (' 0, 'Ne, iNa, 2sMg, z Al, iS,
i Cl, i Cl, and i9K) calculated in the present study agree
with the corresponding experimental values within the
quoted (or estimated) uncertainties in almost every case.
The calculations of Ref. 3 use the same full sd-shell space,
the same effective-charge parametrization, and the same
radial matrix element sizes as were employed in the
present calculations to obtain the results labeled No. 2 in
Table III. The differences between the present predictions
and those of Ref. 3 thus must result from differences in
configuration mixing induced by the different Hamiltoni-
ans used in the two studies, the Hamiltonian of Ref. 6 in
the present case and the Chung-Wildenthal-particle
(CWP) and Chung-Wildenthal-hole (CWH) Hamiltoni-
ans in Ref. 3. Of course, the ' 0 and ~9K results are in-
dependent of the Hamiltonian in the context of purely sd
configurations and depend only on the radial matrix ele-
ment and effective charge parametrizations, and so there
are no differences at aB in these instances.

The values of Q calculated in parametrization No. 2 for
'Ne, Na, and Cl in the present work are very similar

to the results of Ref. 3. The new calculated values of
5Mg and ~ Al are slightly larger than the older results

and, in each case, are in slightly better agreement with ex-
periment. The new value for S is smaller in magnitude
than the older result, the two numbers bracketing the ex-
perimental result and each falling well within its uncer-
tainty. The No. 2 value for Cl is appreciably different
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from that obtained in Ref. 3, however.
The calculations for Na, Mg, Al, and S presented

in Ref. 2 were carried out in a variety of incomplete sd-
sheH model spaces and with a variety of complementary
Hamiltonians and effective charge parametrizations. The
minor differences between these results and the present
predictions are thus unimportant. However, the results
presented in Ref. 2 for 'Ne, Cl, and Cl were obtained
in the same full ds&z-s»z-d3&z space used in Ref. 3 and
the present work, and hence detailed comparisons again
can highlight different configuration-mixing effects from
different Hamiltonians. The quadrupole moment values
obtained for 'Ne and Cl in Ref. 2 (with Hamiltonians
from Refs. 40 and 41, respectively} are very similar to
those obtained both in Ref. 3 and in the present work.
The value obtained for Cl is similar to the value ob-
tained in the present work and thus also different from
that obtained in Ref. 3.

2. First-excited 2+ states
of doubly-even sd-shell nuclei

The present results for static quadrupole moments of
2+ first-excited states in doubly-even nuclei are quite
similar to older" full-space results for A =18—28 which
were based on the CWP Hamiltonian. The salient
features, both of the present and the previous predictions
and of the associated experimental values, are a small neg-
ative value for ' 0, large negative values for Ne, zzNe,

and z~Mg, a smaller negative value for Mg, and a large
positive value for Si. The values for Ne, Ne, and

Mg presumably reflect strong, stable prolate intrinsic
states. In this same vein, the Mg and Si values refiect
a rapid shape transition from prolate to oblate between
A =24 and 28. The results for these nuclei presented in
Ref. 2, obtained in truncated sd-shell spaces, are similar
to the present and past results from calculations in full
sd-shell spaces with the exception of Mg. The two-
orbit, d»z-si~z, wave functions used in Ref. 2 predicted a
vanishing quadrupole moment. This result can be under-
stood as a near complete cancellation in the E2 contribu-
tion coming from near-equal (d5&z)' and (diaz) -(siqz)'
configurations. In the full-space results the (d5&z)' con-
figuration dominates.

The present predictions for Si, S, S, Ar, and Ar
exhibit a variety of significant differences from the older
results of Refs. 2 and 4; in addition, the older results also
differ among themselves. Many of these variations can be
understood as the consequences of the fact that the dom-
inant configurations of most of these states,
(diaz) ' = =' or (diaz)

= ' =, yield vamshing ma-
trix elements (the selection rule mentioned earlier) for the
E2 operator. Hence, the predicted values of Q depend
critically on smaller components of the wave functions.

The truncated-space results for Si, S, and S of Ref.
2 should be inferior to full-space results of Ref. 3 and the
present work in principle. The truncated-space result
from Ref. 3 for Si was —6.6 e fm, while the value ob-
tained in Ref. 4 with the CWH Hamiltonian in the full
space was +9.9 efm and the present value is +2.9
efm. The present prediction for S of about —10.5
efm agrees reasonably well with the current consensus

for the experimental value. The truncated-space value
from Ref. 2 of —14 e fm is similar to the present value,
but the CHW result in the full space is much smaller in
magnitude, —2.7 efm . The present results for S of
about 4.2 e fm are slightly smaller than the two, similar,
older results, but not significantly different. There is also
no significant difference between the new results and the
older (full-space in both cases) values for Ar.

B. Discussion of individual states

The theoretical values for the quadrupole moments of
' 0 and ' F are functions only of the assumptions made
for the effective charges and the rms radii of the d5&z
neutron and proton. The radii of the valence particle in
A = 17 are not directly measurable except via elastic mag=
netic electron scattering on ' 0. Measurements of the
charge radius of ' 0 are dominated by the radii of the p
orbits, and there is no direct measurement of any sort for
' F. The Saxon-Woods calculation is most appropriate
for A =17. The fact that the calculated Saxon-Woods
moment for ' 0 is somewhat larger than experiment indi-
cates either that the size of the valence radius is too large
in the Saxon-Woods calculation or that the effective neu-
tron charge is smaller than 0.45e. The possible change in
radius may be correlated with a similar problem for the
magnetic form factor and the possible change in effective
charge may be correlated with the expected state and
binding-energy dependence of the effective charge. '

The predicted negative value of Q(2i, ' 0), and hence
the prolate shape of its intrinsic state in the context of the
rotational model, is, as was discussed in Sec. II, a manifes-
tation of strong mixing between the (15qz) (61%) and
(dsyz)'-(si~z)' (32%) configurations. It is impossible
within the sd-shell space to generate values of Q for this
system which significantly exceed the present result.
There is agreement between experiment and theory for
' 0, but the large experimental uncertainty precludes a
quantitative comparison.

The predicted value of Q(5+i, ' F) is, like the A =17
values, invariant to choice of Hamiltonian, since there is
only one sd-shell configuration which can yield J =5 for
two particles. The predicted value of Q( —.. .' F) is simi-
lar to the value for ' F and also agrees within the uncer-
tainty with experiment. This model wave function is
dominated (48%) by the (d5&z} configuration, with the
(15')'-(si&z) (seniorities 1 and 3) configurations (11%
and 6%) being next largest. Configuration mixing has a
relatively small (20%} enhancement effect here on the
value of Q. The proton matrix element A (E2)~ is close
to the jj limit, (ds~z), value while the neutron matrix ele-
ment A (E2)„is enhanced by a factor of 2.

The predicted value of Q(2i, F) also agrees with ex-
periment within experimental uncertainty, completing the
chain of agreement between theory and experiment for all
four fiuorine isotopes. The model wave function of this
state is dominated (38%) by the (d5~z) configuration
with the (d5&z) -(s,&z)' configuration (12%) being the
next largest. Configuration mixing increases the magni-
tude of both the neutron and proton matrix elements of
this state over the jj-limit, (dzzz), estimate and yields an
enhancement of 2.5 in the value of Q.
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The model wave function for zoNC(2+, ) exhibits exten-
sive configuration mixing. The largest probability (21%)
component has a (d5iz) -(siiz)' configuration and the
second largest (14%} is (d5iz) . The value of Q is
enhanced by a factor of 2.4 over the single component,
(d5n) -(sitz) estimate. The experimental value of Q is
significantly larger than the predicted value. It is also sig-
nificantly larger than the "dynamic inoment" estimated
from the measured 8(E2) of the 0+1~2+1 transition
(Q = —15.4+1.1 e fm ). This alternate experimental
value only slightly exceeds the predicted value. In sum,
the present shell-model wave function (and all previous
ones) underestimate the quoted experimental value of the
quadrupole moment of Ne, but the significance of the
underestimation is uncertain.

The predicted value of Q( —.. . 'Ne) is in close agree-
ment with the experimental value. This is to be contrast-
ed with the just-noted z Ne result. The model wave func-
tion of this state is heavily configuration mixed, the com-
ponent with the largest magnitude (19%) having the
(dsiz} configuration. The neutron and proton matrix
elements of this 4;(NJT) are zero, so that the entire cal-
culated value of Q is built up from "secondary" and
"off-diagonal" contributions. The values of the neutron
and proton matrix elements from configuration-mixed
wave functions are nearly equal, so that the predicted
value of Q for the 'Na mirror state is only slightly larger
than the 'Ne value.

The predicted value of Q(2+1, Ne) is similar to that of
Q (21, Ne). The quantitative differences are small
enough that the various assumptions about the single-
particle radial wave functions are an important issue.
With the No. 2 calculations, in which the anomalously
large r,& of Ne is manifest, the 10% decrease in going
from Ne to Ne can be apportioned 5% to the dec~ease
in r,i, and 5% to less coherent amplification of the proton
matrix element from configuration mixing. Underlying
the latter aspect is the fact that the configuration of the
leading (19%) component of the model state, (diaz), has
proton and neutron matrix elements of equal magnitude
and opposite signs (a zero isoscalar value). The experi-
mental value for Ne, which is 20% smaller than that for
zoNC, is still significantly larger than the predictions.
Also, as was the case in Ne, the analogous dynamic mo-
ment is smaller than the static inoment, and close to the
theoretical value. The combination of z Ne and Ne re-
sults thus can be viewed in alternative contexts. In terms
of the relative magnitudes, the experimental
Q( Ne)/Q( Ne) value of 0.83+0.09 is consistent with
the theoretical range of values which runs from 0.91 to
0.97. From another point of view, experiment and theory
for Ne are essentially consistent, within the experimental
uncertainty, as opposed to the case of Ne.

The experimental value of Q( —,', , Na), measured with
muonic atom techniques, has an uncertainty (0.20 e fm,
2%) at least five times smaller than any of the preceding
cases discussed except ' O. The theoretical values No. 1,
No. 2, and No. 3 are 3—6% (2—3 standard deviations)
larger than experiment. In terms of the absolute and rela-
tive differences between predictions and measurement, the
dlselcpaileics ai'c quite small. As ln tllc ease of thc ailalo-

gous wave functions for 'Ne, the model wave function
for Na is strongly configuration mixed, with the leading
component (16%) being (d5iz) . Also as in the case of
'Ne, this component has neutron and proton matrix ele-

ments which are zero, so that all contributions to the net
value of the configuration-mixed matrix element involve
the smaller components of the wave function. Finally,
again in parallel with A =21, the configuration-mixed
proton and neutron matrix elements for this wave func-
tion are very nearly equal, that is, the "isovector" matrix
element is nearly zero.

The model wave function for Mg(2+1) has for its larg-
est (14%} component the (dsiz) configuration. This
component yields neutron and proton E2 matrix elements
whose values are smaller than those of the (dsiz) -(siiz)'
component which is the leading term in the Ne(2+1)
model wave function. The coherent amplification from
configuration mixing is 20% greater than was obtained in

Ne and yields a factor of 4 enhancement of Q over the
jj-limit, ( d Siz ), value. The theoretical values of
Q(21, Mg) are 1—2 e fm (5—10%) smaller than the ex-
perimental value, but lie within its ettimated uncertainty.

The experimental value of Q( —,', ,z Mg) has also been
obtained with the muonic-atom technique and has an
uncertainty of 1.5% (0.3 e fm ). Again, this is an order
of magnitude better than the typical uncertainties in ex-
perimental values which we must deal with. In this case,
the predictions (No. 1, No. 2, and No. 3) are 3—7% (2—3
standard deviations) smaller than the experimental value,
rather than larger as in the case of Na. Again, the
discrepancies are, in context, both absolutely and relative-
ly small.

The largest
component (21%) in the model wave func-

tion for Mg( —,', ) is (dsiz) . The configuration-mixed
value of Q is enhanced by a factor of 2.8 over the value of
this pure-jj component. Unlike the case of 'Ne and Na,
the configuration-mixed proton matrix element A(E2)&
for Mg is larger than the neutron matrix element
A (E2)„. Hence, the value of Q( —', 1, Al) is predicted to
be smaller than that of the mirror Mg state, in spite of

Al having one additional proton. This effect can be un-
derstood from the point of view of the effective number of
holes in the 85~2 orbit and their ability to participate in
configuration mixing. With a single dsiz neutron hole,
but two d5&z proton holes, Mg accommodates more
coherent amplification from mixing among proton config-
urations than from among neutron configurations, this
situation reversing in the mirror system.

The leading component (17%) of the model wave func-
tion for Mg(21 } is (dsiz)' . This term is the proton-hole
analog of the (d»z) neutron component of the ' 0 wave
function. %ith the jj-limit wave function, Mg would
have a quadrupole moment of the same magnitude (except
for scaling for the radial wave function size), but opposite
in sign, to that of ' Ne, the mirror state of ' O. The con-
figuration mixing predicted for Mg is, however, com-
pletely different from that calculated for ' 0—' Ne. The
predicted value of Q is enhanced by a factor of 2.4 over
the (15iz) estimate by the effects of configuration mix-
ing. As in the case of Mg- Al, the predicted magnitude
of Q(2+, ,z6Mg) is predicted to be larger than that of
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Q(2+, , Si). The theoretical values for Mg agree with

experiment comfortably within the experimental uncer-
tainties. The observed decrease in the experimental mo-
ment of Mg relative to that of Mg is accurately repro-
duced by the model results.

The model wave function for z Al( —,', ) is dominated

(26%%uo) by the "single hole" (d5/z)" configuration, with
"three-hole —two-particle" ( d 5/z ) -(s i/z ) configurations
accounting for another 15%. Configuration mixing
enhances the proton matrix element ( AE2)~ by a factor of
1.5 and creates a significant neutron matrix element

(AE2)„as well. The overall enhancement of the value of
Q over the jj-limit estimate is 1.7. This nucleus is the
third and last in the sd shell for which a muonic-atom ex-

periment has been carried out. The experimental uncer-
tainty in this case is appreciably larger than for Na or

Mg, but the new measurement still represents a signifi-
cant improvement over the previous situation. The pre-
dictions No. 2 and No. 3 agree with the experimental
value to well within the uncertainty, while prediction No.
1 is one standard deviation larger.

The model wave function for Si(2+, ) is dominated
(12%) by the one-hole —one-particle (d5/z)"-(si/z)' con-
figuration, followed by a variety of three-hole —three-
particle components. All of these components yield signs
for the value of the one-body densities and the E2 matrix
elements which are opposite to those obtained for Ne,

Ne, Mg, and Mg. In the language of the collective
rotational model, the model wave function for Si has
emerged with an oblate deformation rather than the pro-
late shapes which characterized the lighter even-even sys-
tems. The enhancement of the configuration-mixed value
of Q over the jj-limit, (d&/z)"-(si/z)', value is a factor of
3.8. The three predictions No. 1, No. 2, and No. 3 are all
essentially equal, and are slightly larger than the experi-
mental estimate, although well within its uncertainty.

The model wave function for Si(2i ) is significantly
different from the wave functions for smaller A values.
The configuration of the leading (25%%uo) component,
(d5/z)' -(si/z)'-(dz/z)', reflects the "shell effects" of both
the approximate "filling" of the d5/z subshell at 2 =28
and the impossibility of forming a J=2 state within the
confines of the next, j= —,', subshell. The next most im-

portant components ha"e (ds/z) (si/z) (9%) (ds/z)
(si/z)'-(dz/z) ('7%), etc. , configurations. Configuration
mixing results in a competition between the "particle"
(neutron) nature of the leading component and the "hole"
nature of the admixed components.

The dominant neutron one-body density is the
%JTT

D '(2, —, , —, ) term, whose positive (corresponding to
"prolate" shape) value comes from the leading com-
ponent, overcoming smaller canceling contributions from
admixed terms. The net neutron matrix element /I (E2)„
is reduced by a factor of 0.44 from this jj-limit, (d, /z)-
(si/z)', estimate by configuration mixing. The proton
matrix element of the leading (13/z) (si/z)', component
of Si(2+, ) is zero. Nonetheless, configuration mixing
generates a net proton matrix element A (E2)~ which is
larger than the neutron matrix element A(E2)„. More-
over, the neutron and proton contributions have opposite
signs. When weighted by the values of the effective neu-

tron and proton charges, the net value for Q is small and
positive, + 3 e fm, refiecting the slight dominance of
proton configuration mixing over the contribution of the
simple, two-neutron component.

The single experimental value is sma11 and negative, —5

e fm, with an uncertainty of 6 e fm . Hence, there is not
a significant contradiction of the present predication by
experiment in spite of the opposite signs. The shell-model
result is obviously extremely sensitive to the specific indi-
vidual details of configuration mixing, both as this affects
the attenuation of the neutron matrix element and as it af-
fects the cancellation between neutron and proton contri-
butions.

The model wave function for S(2i ) has for its leading
components the (d»z)' -(si/z) -(d&/z)' (21%) and
(ds/z)' -(s, /z)'-(d&/z) (15%) configurations. Configura-
tions with d&/z-hole structure have individual probabili-
ties of 5% or less. This dominant "particle-like" struc-
ture is refiected in the positive values of the one-body-
transition densities, the largest terms of which are
D '(2, z, —, ) and D '(2, z, —,). The predicted value

of Q(2i, S) is definitely prolate and is enhanced by a
factor of 2.6 over the value of the jj-limit configuration
(s)/z) -(d3/z)'.

The present wave functions for S and MSi exhibit
somewhat more configuration mixing from the d5/z to
the si/z d3/z subspace than the first truncated-space re-
sults for these nuclei, but less than the full-space CWH
wave functions used in Ref. 4. Hence the present values
of Q are less negative than those of Ref. 2 and more nega-
tive than those of Ref. 4, remembering that the leading
s, /z-dz/z components of both systems yield a negative
value of Q while the components featuring d5/z holes typ-
ically yield positive values. The history of the experimen-
tal value of Q(2+i, S) is somewhat confused by the oc-
currence at an intermediate point in time of an
anomalously small value. Earlier and later work suggests
a negative value which is somewhat larger than the
present predictions. The predicted values are only about
half those found for the lighter nuclei Ne, Ne, Mg,

nd 28Sj

The dominant (42%) component in the model wave
function for S is (d3/z)'. The next most important con-
figurations have 2p-2h structure relative to this leading
term and hence do not connect with it via one-body opera-
tors. The net neutron matrix element A(E2)„hence is
only slightly (15%) enhanced by configuration mixing.
The value of A (E2)p, on the other hand, is boosted from
zero to a value 50%%uo as large as A (E2)„by configuration
mixing. Hence, when weighted by effective charges, the
predicted value of Q has a larger "proton" than "neutron"
contribution. The predicted values are comfortably
within the quoted uncertainty of the experiinental value.

The leading component (25%) in the model wave func-
tion for ' S(2+, ) is (d, /z)' -(s, /z) -(d3/z), which via the
selection rule noted earlier has a zero quadrupole matrix
element. The next most important wave function com-
ponents have the (si/z} -(d~/z) configuration, one (1.%)
corresponding to the T = —, coupling of (d3/z) and the
other (11%) to the T= —,

'
coupling. The T= —,

'
coupling

for S corresponds to a positive, neutron-only contribu-
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tion to the E2 matrix element, while the T= —, coupling
yields significant negative contributions in both the neu-
tron and proton channels. The most important one-
body-transition density is the off-diagonal D '(2, —,', —,

'
}

term. Its contribution to the net neutron matrix element
NJTT8 (E2)„ is reinforced by the other D '(2,p,p') terms,

so that the resultant value is almost comparable to the
typical "large" neutron terms in other systems. The net
proton matrix element A(E2}~, however, is quite small,
the consequence of an almost complete cancellation be-
tween the diagonal p-p'= —,'- —,

'
contribution from the

(d3/3) ' =' component in the wave function and "back-
ground" contributions of the opposite sign. The predicted
value of Q(2i, S}thus is more than normally dependent
upon the neutron component of the wave function. The
small positive predicted values lie well within the uncer-
tainties of the experimental value.

The model wave functions of "Cl(—', , } and S(—', , )

are dominated, respectively, by the (d3/3) ' =' (54%)
and (d3/2) ' = / (78%) configurations. Configuration
mixing enhances the jj -limit estimates of the values of Q
by a factor of 1.4 for sCl and a factor of 2.4 for 3S. The
principal effect of inixing for 'Cl is to enhance the neu-
tron matrix element more than the proton and thus make
the net value of Q more "isoscalar" (neutron and proton
matrix elements almost equal).

The leading component (88%) in the model wave func-
tion of S(2& ) is (si/3) -(d3/2)'. The neutron com-
ponents are identically zero since, with the assumption of
a ds/3 si/3 d3/2 basis space, N =20 corresponds to total-
ly filled, and therefore inert, neutron shells. The model
wave function for the 2+ ground state of 3 Cl has as its
leading component (84%%uo) the (d3/2) configuration, with
the (ds/3)'0-(si/3) -(13/2) configuration as the second
largest contribution, comprising about 4%%uo of the com-
plete wave function. In the pure jj'-limit (d 3/2) configu-
ration, the value of the quadrupole moment is identically
zero due to the selection rule mentioned earlier. It is
therefore unsurprising that the configuration-mixed wave
function dominated (84%) by the (d3/3) configuration
should lead to a small vlaue of the E2 matrix element or
quadrupole moment and that the calculated value is very
sensitive to the details of the Hamiltonian. The experi-
mental value of Q(2+i,'36C1), at —1.8 e fm, is one of the
smallest measured in the sd-shell region. The calculated
value of Q(2i, Cl} is smaller in magnitude than the ex-
perimental result by a factor of 5 and, moreover, has the
opposite sign. The previously studied Hamiltonians '

yield values of —0.9 and —2.7 e fm, respectively.
The leading component (34%) in the model wave func-

tion of Ar(2+, ) is (d3/2), with the second largest com-
ponent being (si/3) -(d3/2) ' =' (20%). The (d3/2)
configuration yields a zero E2 matrix element. The off-
diagonal contributions between these two leading terms
have the same sign as the diagonal contribution from the
( s i/2 ) -( d3p ) eoiilpoileilt. The resllltailt vallles pl'edlcted
for Q(2+, , Ar) are positive, agreeing in sign and magni-
tude with the only existing experimental value.

As was the case for S, only proton configura(ious are
active in the model wave functions for Cl( —,

'
i ). The

leading component is (d3/2), with a 93%%uo probability.
The extreme simplicity of this wave function relative to
,almost aB of the others we have discussed highlights two
general features. One is the sensitivity of the results to
configuration mixing, the other is the difficulty of distin-
guishing "neutron" from "proton" contributions unambi-
guously in typical cases.

As is evident from the A(E2) entries in Table I, the
model wave functions predict a dominant "isoscalar"
character for most of the states considered, namely, the
values of the "neutron" and "proton" matrix elements
A (E2)„/~ are comparable in size. This, in turn, makes it
essentially impossible to use theoretical-experimental com-
parisons within this data set to estabhsh an empirically
optimum "isoveetor" (e~ —e„) effective charge If .both
matrix elements are equal, than the net moment values are
essentially invariant to any choice of e~ and e„, which
leaves the e~+e„sum invariant. Only for the oxygen iso-
topes and the N =20 isotones do we have the opportunity
to view (in the model context) only neutrons or only pro-
tons. The issue for neutrons is clouded by uncertainties
about the correct radial wave functions for ' 0 and the
small value for the ' 0 moment, which entails both model
and experimental uncertainties.

These problems should not exist for Cl. The ap-
propriate value for the radius is known and the wave
function is simple in the model context. A comparison of
theory with experiment should yield unambiguous infor-
mation about the optiinum value of e~. Inspection of the
3 Cl entries in Table III reveals a clear difference between
the hartnonic-oscil1ator, e~ = l.35e,e„=0.35e results and
the Saxon-Woods, e~ = 1.15e,e„=0.45e results. The
e&-1.15e,e„=0.45e results are in better agreement with
experiment. This is not a radial wave function effect
since, as was noted earlier, the radii of the active orbits for
this region of the shell are almost identical in each
prescription. I.ikewise, since the Cl and Cl data are
measured together, the ratio of the two values is very ac-
curately known, since the Sternheimer corrections should
be nearly identical for the two isotopes.

We conclude that this Cl datum is significant addi-
tional evidence for the empirical determination of the op-
timum combination of radial wave functions and effective
charges with which to treat isovector E2 phenomena.
However, it is appropriate to add a cautionary note, apro-
pos the sensitivity of the value of Q to configuration mix-
ing effects even in this apparently simple case. As was
noted earlier, the predictions of Ref. 2 for
Q( Cl)/Q( Cl) were similar to the present results No. 1

and No. 2, while the predictions of Ref. 3, which are also
analogous to the present results No. 1 and No. 2 in so far
as radial wave functions (harmonic oscillator) and effec-
tive charges e~=1.35e,e„=0.35e are concerned, show a
ratio Q( Cl)/Q( Cl) which is in agreement with the ex-
perimental decrease, hence inconsistent with the present
No. 1 and No. 2 predictions.

Inspection of the one-body-density matrix elements in
Table I of Ref. 3 and in Table I of the present work shows
that the difference in the values of Q for Cl( —,', ) results
from a different magnitude and sign of the

HJTT
D '(2, —,, —,} element. (Equation 14 of Ref. 12 gives
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the relationship between the proton-neutron representa-
tion for the one-body-transition densities presented in
Table I of this work and the isoscalar-isovector represen-
tation presented for the one-body-transition densities in
Table I of Ref. 3.) The s]/2-d3/2 one-body-transition den-
sity term is small and positive in Table I here while con-
siderably smaller still in magnitude, and negative, in Ref.
3. The three Hamiltonians used to obtain the Cl quad-
rupole moments in Ref. 2, Ref. 3, and the present work
give probabilities for the dominant (d3/2} configuration
in the wave function of Cl( —,', ) which are 91%, 92%,
and 93%, respectively. The second most heavily weighted
configuration in each of these wave functions is
(d5/2) -(d3/2) ', with probabilities of 3.5%, 4.2%, and
1.7%, respectively. This configuration does not connect
with the dominant configuration through a one-body
operator, so it makes a negligible contribution to the
quadrupole moment.

The operative configuration in explaining the difference
between the results of Ref. 3 on one hand and of Ref. 2
and the present calculation on the other is (s]/2)
( d3/2 ) . It has probabilities of 0.9%, 0.07%, and
1.25%, respectively, in the wave functions of Ref. 2, Ref.
3, and Ref. 6. The key to the different results for Q, how-
ever, is that this configuration and the dominant (d3/2)
configuration have amplitudes with the same relative sign
in the wave function of Ref. 3 and with opposite signs in
the wave function of Refs. 2 and 6. Hence, the chaqge of
20% in the predicted quadrupole moment of Cl( —, , ) be-
tween Ref. 3 and the No. 2 prediction of the present work
results from the change of relative sign in a 1% com-
ponent in the wave function.

Confirming evidence for the correctness of the
ep= 1.15e,e„=0.45e choice comes from the case of K.
In the present model this quadrupole moment is strictly a
measure of the radial wave function and proton effective
charge. Again, the choice of radial wave functions is not
a sigmficant factor in differentiating between the various
net results. The experimental value clearly favors
ep=1. 15e. The quadrupole moment of the remaining
N =20 isotone, Ar, is unmeasured. Its predicted value
again illustrates the great sensitivity of Q which can occur
from small admixtures in the model wave function.

The present wave function for Ar(2+]) is dominated
(93%) by (d3/2) . Due to the selection rule previously
mentioned, this configuration has a zero E2 matrix ele-
ment which explains the small value for the

NJ
D '(2, —,, —,} one-body density in Table I. Because of
the dominance of the (d3/2) component, the only paths
to generating appreciable one-body-density values are the
connections of the ( d 5/2 ) '-( d 3/2 ) and ( s ]/2 )

( d3/2 ) ' components to the ( d3/2 ) component. The
contributions mill be essentially proportional to the ampli-
tudes of these two small components. In the present cal-
culation the (s»2) '-(d3/2) ' component has a 5% prob-
ability and the remaining components each less than 1%.
In the Ar(2] ) wave function of Ref. 2, the probability of
(13/2) is 94% and that of (s]/2) '-(d3/2) ' is 2% and
the value of Q is only half that of the present prediction.
In the CWH wave function, the (d3/2) component
probability is 98.5%, and the (s]/2) '-(d3/2) ' probabili-

ty is 0.24% and has a sign relative to the (d3/2) com-
ponent which is opposite to that found in the other two
wave functions. Its effect is thus aligned with that of the
(d5/2) (d3/2) ' contribution and a very small negative
value of Q emerges for Ar in Ref. 4.

The difference between the present and past calcula-
tions for the Cl, Cl, and Ar moments appears to be
traceable to the
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FIG. 2. (a) Comparison of measured and predicted (calcula-
tion No. 3) electric quadrupole moments of sd-shell states which
have positive values. The octagons correspond to the electronic-
atom measurements, the g's correspond to the quadrupole mo-
ments of the 2& excited states, the boxes correspond to the quad-
rupole moments of the fluorine isotopes and the plain vertical
bars correspond to the muonic-atom measurements. (b) Com-
parison of measured and predicted (calculation No. 3} electric
quadrupole moments of sd-shell states which have negative
values. The notation is as in (a).
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two-body matrix elements of the effective Hamiltonian.
These off-diagonal matrix elements are very poorly deter-
mined in the context of eigenvalue-level energy compar-
isons, and the present type of study offers perhaps the best
path towards determining their correct values.

V. SUMMARY AND CONCLUSIONS

A systematic shell-model formulation of static electric
quadrupole moments of sd-shell states [summarized in
Figs. 2(a} and 2(b}] has been shown here to yield a
comprehensive accounting of experimental values. The
formulation incorporates the configuration-mixed wave
functions from a complete and unified shell-model calcu-
lation for sd-shell nuclei, radial wave functions alterna-
tively of the harmonic-oscillator and Saxon-Woods forms,
each with radial scales set to reproduce measured rms ra-
dii, and mass-independent, state-independent effective
charges for the protons and neutrons active in the model
wave functions, the values of the charges being matched
to the two types of radial wave functions. The results
from different radial wave function —effective charge
prescriptions typically were insignificantly different from
each other. From the cases for which there were signif-
ican differences (principally for model states with either
pure proton or pure neutron wave functions) there
emerged evidence that the Saxon-Woods prescription,
more particularly, the e~=1.15e,e„=0.45e values of the
effective charges associated with it, are to be preferred.
This choice is necessary in particular to account for the
Q( Cl)/Q( Cl) ratio and the value of the i K moment.

The calculated values of electric quadrupole moments
are sensitive functions of configuration mixing in the
shell-model wave functions. The larger-magnitude calcu-
lated moments correspond to factors of 2 to 4 enhance-
ments over the values predicted from simple, one-
component, jj-coupling wave functions. In the cases of
some small-magnitude moments, the calculated values
from the configuration-mixed wave functions even differ
in sign from the simple estimates. The overall trends of
the quadrupole moment data, which are distributed over
values from —20 to + 20 e fm as a complex function of
X and Z, are well reproduced by the one-body densities
from the configuration-mixed wave functions in conjunc-
tion with constant effective charge models. The single-
particle values of ' 0, ' F, ' F, and ' K connect smoothly
with the many-particle values, both large and small,
which are generated out of the mixing in wave functions
with hundreds or even thousands of components.

Systematic features to note include the progression of
moment ratios for the fluorine isotopes,

Q(' F)/Q(' F)= + 1.33+0.08 (experiment) vs + 1.26
(No. 3), Q(' F)/Q(' F) = + 1.24+0.06 (experiment) vs

+ 1.13 (No. 3), and Q( F)/Q(' F)= —0.70+0.02 (ex-
periment} vs —0.71 (No. 3), and the chlorine isotopes
Q( Cl)/Q( Cl)= + 0.79 (experiment) vs + 0.78 (No.
3). Another noteworthy point is the excellent agreement
between theory and the three values determined in
muonic-atom measurements ( Na, Mg, Al). The pre-
dictions for the "true" single d5/i proton state in ' F and
the "quasi"-single d5/z proton hole state in Al differ by
a factor of 2, in rough agreement with experiment. The
predictions for the quasi-single 13/i neutron state in S
agree with experiment and are likewise about twice as
large in magnitude as predicted for the "true" single d3/p
neutron hole state in Ca.

The detailed features of the observed region of strong
prolate deformation extending from i Ne through 'Ne,

Ne, Na, Mg, Mg, to Mg are well reproduced
theoretically with the exception of the magnitudes of the

Ne and, to a lesser degree, iNe moments. The large ex-
perimental values for these two states may reflect prob-
lems in the reorientation-effect experiments. The sharp
transition to oblate deformation at Si is unambiguously
predicted by these shell-model wave functions, as is the
rapid transition back to prolate at S, passing through the
small value of the Si moment. The sigh of the Si mo-
ment is incorrectly predicted. The experimental value has
a large uncertainty and the shell-model prediction is very
sensitive to small details in the configuration mixing. The
magnitudes of the predicted moment S are also quite
sensitive to configuration mixing details. The present
value is appreciably smaller than the experimental value
quoted here, although in agreement with the value quoted
in Ref. 29. Finally, the predicted change from a "large"
negative moment to a "small" positive moment in going
from S to S is in agreement with the available experi-
mental evidence.

%e would conclude that more precise and more exten-
sive measurements of static quadrupole moments are
necessary to extend the tests of theory, either of the con-
figuration mixing from shell-model Hamiltonians or the
details of the renormalizations of the E2 operator, beyond
the stage reached in this study.
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