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We lay down the formalism for the treatment of pionic atoms level widths and shifts using the
Kemmer-Duffin-Petiau equation. Interactions are introduced in a Lorentz invariant way. An
analytical transformation is shown that connects between different sets of interactions. The Kiss-
linger potential is obtained as a special case of a scalar-tensor optical potential. Results are shown in

the accompanying paper.

I. INTRODUCTION (3)

The study of relativistic effects in nucleon-nucleus reac-
tions' has proved to be a valuable tool in increasing our
understanding of the nucleus. The investigation of rela-
tivistic effects for meson nucleus reactions has recently
been approached using a first order relativistic equation
in close spirit to the Dirac equation, namely the
Kemmer-Duffin-Petiau equation (KDP). Impulse ap-
proximation calculations were found in the KDP equation
to be as good as or better than the relativistically correct-
ed Schrodinger equation results. The richness of possibili-
ties and the simplicity of the equation has prompted us to
undertake the investigation of low energy pionic-atom
widths and shifts using the KDP equation. We deal here
with various theoretical aspects essential for the
phenomenological treatment of the problem. We expect
the present approach to be different from the Klein-
Gordon (KG) approach on the following grounds: the
KG equation is a second order equation in which interac-
tions can be introduced either by minimal substitution, as
in the case of conserved currents or by scalar operators,
local or nonlocal; the KDP equation, on the other hand,
being a first order relativistic equation, has a clear
prescription as to how interactions are to be introduced by
observing their Lorentz character.

In Sec. II we develop the basic tools concerning the
KDP equation. Section III deals with parametrizations of
the optical potential for pionic atoms and transformations
among sets of interactions. Section IV connects to the
usual Kisslinger potential and provides us with a starting
point for the parameter search. Results are shown in the
accompanying paper.

where y" is a Dirac matrix in the space of particle 1 and
I2 is the identity operator in the space of particle 2. This
scheme of building first order equations using an algebra
generated by the direct sum of Dirac matrices in different
spaces can be generalized to higher spins. Equation (3)
implies that the irreducible representations of the P"s
have to describe particles of spin 0 and 1. Kemmer
found the irreducible representations to be of dimension 5
for spin 0 and 10 for spin 1. He also showed that the gen-
erators of the Poincare group can be constructed in close
analogy to the Dirac case.

By applying spatial rotations we find a spin operator

~ =&Jkl3J13k

obeying

(5)

Therefore, the eigenstates of Eq. (4) are particles of rest
frame spin 0 and 1. We can also build the boost operator
as in the Dirac case to be

= 1 —sinh(co)5. v+ [cosh(to) —1](5 v)

cosh(to) =E/m,
sinh(co) = —p/m .

v is a unit velocity vector and

II. THE KDP EQUATION

The free particle KDP equation is'

(iP't)„—m )/ =0,
where m is the meson mass. The matrices P' obey

To obtain the KG equation obeyed by g we multiply (1)
by i P"t)pP t)i and use Eq. (2), obtaining

m(CI+m )/=0,
as long as m&0 P obeys the KG equation. To include
the massless case we write a KDP equation in the form

[iP4t)„a(1—P)]$—=0, (10)

The commutation relations of Eq. (2) can be found from
the algebra generated by the matrices

where I' is the matrix which is a scalar operator upon
Lorentz transforlnation:
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IIJ =6i)6J ), 1 (l,J K 5 (12)

P = —,
' (P~—2)

and a is a parameter of mass dimension. In the five di-
mensional representation, it takes the form of a projection
operator onto the first component of P:

V& P——
& (vector),

V& I'——P& (vector),

T&„P„——P„+PQ& 1—(symmetric tensor),

T& P„——P„13+—„(antisymmetric tensor) .

(18c)

(18e)

(18f)

This component is easily identifiable with KG wave func-
tion; the other four components are, in the free case, the
four gradient. In the ten dimensional representation the
KDP wave function consists of a four vector (first four
components) and of a six-component antisymmetric ten-
sor. P projects onto the first four components in this
case:

p /J&51, 1(ij &4

0, 5+l,J +10. (13)

It is noteworthy that the KDP equation of Eq. (10) for the
spin 1 case is exactly Maxwell's source free set of equa-
tions and Eq. (1) becomes its massive counterpart. The
latter is, in the free case, Proca s equation, differing from
it even for the simple case of minimal substitution (work
in this direction is currently underway).

We can generate the Hamiltonian equation correspond-
ing to Eq. (1) in the following way: Multiply it by
iP"5+ and use Eq. (3) to obtain

m (i do i 13""dP')@—=0 .

(i Pq51' m —Uq—P' —U, )/=0 . (20)

First we can eliminate the spatial components of U„by
the following gauge transformation:

We can accordingly introduce interactions in the KDP
equation

(iP'5„m——U,S1
—U,'S, —U„V~1

—UqV~p —Uq, T")" Uq„—T~i")/=0 . (19) .

In the relativistic impulse approximation for meson-
nucleus scattering a scalar-vector combination was used
with considerable success. Tensors were avoided because
of noncausal propagation. Nevertheless, at the
phenomenological level these should not be excluded.
Moreover, for a certain potential set, a unitary transfor-
mation exists that takes it to a different one. We will
show an explicit example by transforming a scalar-vector
interaction into either a scalar-tensor or a vector-tensor
set.

We choose to start with only U, and U„different from
zero in Eq. (19), i.e.,

Multiplying Eq. (1) by P and adding to Eq. (14) we ob-
tain

(iBo+i5 V mP —)/=0,
where 5 is defined in Eq. (8). Equation (15) has to be sup-
plemented with a constraint equation independent of time
obtained from multiplying Eq. (1) by (1—Po)

g=e' P.
Inserting in Eq. (20) we get

e ' (i P'5„m —U—, —UqP' PV )Q =0,—
equating

(21)

(23)
(16)

and multiplying Eq. (21) by e
From Eq. (1) we can obtain the propagator of the theory

(P'p„+m ) +m '[(P~")' p"p„]-
Gp ——

(p„p"—m 1)

(iP"8„mU, —UoP )$—=0 . (24)

(17)

If we replace i31' in Eq. (17) with y" we get the Dirac
propagator because (y~")i=p„, but here the KDP alge-
bra is of the third order in P' [Eq. (3)] and therefore
(P~") does not reduce to any simpler expression. Equa-
tion (17) can be used together with a ineson-nucleon in-
teraction (pseudoscalar or pseudovector) to generate an
optical potential for the meson in the nuclear medium. A
field theory can be developed using the approach of
Akhiezer and Berestetskii. We nom proceed in a
phenomenological way and postpone this task for the fu-
ture.

(25)

where 8 is a KDP matrix and A, an unknown function of
coordinates.

One such choice that enables us to eliminate either the
vector or the scalar interaction is

We have managed to eliminate the spatial part of U„.
The spectrum of P is identical to the spectrum of f be-
cause the transformation is unitary.

We now proceed to mix between the different sets of
potentials. As in the Dirac case' we can do it with the
aid of operators of the form

III. INTERACTIONS IN THE KDP EQUATION
O(X)=e

We concentrate hereforth on the spin 0 five dimensional
representation. The operators generated by the i3i"s are where

=COS( c4 ) + 1 7Jo slii( A ),

S
&

I (scalar), ——

S2 P(scalar), ——
(18a) no= Too =2Po —1 .2

(18b)»troducing Eq. (26) into Eq. (24) for KDP states,

(27)
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{28) where Vc is the Coulomb potential. Equivalently,

where E can be taken as a complex quantity as usual for
metastable states, we obtain

e""(E—Up) =E . (30)

We usually choose to leave explicitly the Coulomb in-
teraction, i.e.,

e '"(E—Up)=E —Vc . (31)

Equation (31}implies two separate equations for the real
and imaginary parts of A. The equation is always solv-
able if we allow A to be complex. The new scalar poten-
tial becomes

U, =cos(2A )(m + U, ) —m

at the same time a tensor potential arises, namely

TppUr ——iripsin(2A)(m + U, ) .

Equation (30) then becomes

[(E—Vc)pp+ip V+(m+U, )

+P VA 2P VAP ——TppUT jiti=0. (34)

[ip V.+ripp VA +e pp{E —Up)

' (m+U, )j{t=0. (29)

Suppose now we want to eliminate the vector interaction
while leaving the same spectrum of states; we then
demand

[(E—VC)'+ [1—a(r)]V' —q (r) —Va(r) V I P« ——0 .

(40)

Introducing the Ericson-Ericson-Lorentz-Lorenz (EELL)6
effect we obtain

(E —Vc) + 1 — V2 —q(r)a(r)1+

—V V 1{«——0, (41)

3

Uq„———5qp5~Ur .

Equation (19) then becomes

(42)

[iP"8„PV—C (m +U,—) —U,'P+r}pUr]/=0 . (43)

We therefore get for the first component gi an equation

(E —Vc ) —(m + Ug —Ur )(m + U, —UT + U, )

+(m + U, —Ur)V V /=0 . (44)
1

m+U, +UT

Demanding U, = UT, we obtain

g being the EELL parameter.
In order to connect to E~. (41) we make the following

choices: U~=O, U„'=0, U~ =O, a

The term p VA can be further eliminated by a transfor-
mation

(35)

(E —Vc) —m —m U,'+ V
2U,

1+

. V i}'ji ——0. (45)

cos(2A )(m + U, ) =m, (36)

leaving only an extra term 2p VAP that cannot be elim-
inated. If instead we wish to eliminate the scalar interac-
tion, we demand

Identifying

2U, a(r)
1+(g/3 —1)a(r) (46)

and the new vector potential becomes

e '"(E—Up)=E —Up

and a new tensor potential arises,

TppUT i sin(2A)(m +——U, ) .

(37)

(38)

IV. THE KISSLINGER POTENTIAL

[(E—Vc}~+V —m —q{r}—V[a(r)V]]1{Ko=0,

(39)

The success of the Kisslinger potential in the
phenomenological treatment of pionic atom level shifts
and widths provides us with a starting basis for the
present approach. We will now show which choice
among the interactions in Eq. (19) yields a KG equation
with a Kisslinger potential. The Kisslinger potential gen-
erates a KG equation of the form

mU,'=q(r),

we recover Eq. (41).
We note that symmetric tensor interactions cannot arise

in a first order relativistic impulse approximation (RIA)
potential due to the absence of a symmetric tensor in the
Dirac space of the {target) nucleon to contract with the
meson tensor (like 7)p

——Tpp) in building a relativistically
invariant meson nucleon elementary amplitude. Tensor
interactions nevertheless do arise in higher order correc-
tions to the meson-nucleus optical potential. These in-
teractions appear also in the case where the meson is con-
sidered a composite object made of fermions (quarks) in-
teracting with the nucleon. '

We start our parameter search with Eq. (45) con-
strained by Eqs. (46) and (47); we then add vector poten-
tials Uz or U~. Using the transformation of Krell and
Ericson' we obtain
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(E M—)+ 1 — V —U Qi ——0, (48)(1+(a/3)

where

U = E(2Uy+2vc+ Uy) (—Uy+ Vc)(Uy+ Vc+ Uy)

2U,F=1+ =(1+pa/3)/[I+(g/3 —1)a] . (50)

In the accompanying paper we show the results for
pionic atoms widths and shifts. The best fits are obtained
when we chose Uy ——0 ( Uy&0). We therefore select and
display the results for that case only.

and

3 I"
+mU,'+— Pll Pl

2F rI'
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