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Level densities and primary E1 and M1 transition strengths recently obtained from extensive
studies in fifteen light and medium odd-odd nuclei {20&3&80) are analyzed. The level densities
are parametrized in terms of the constant temperature Fermi gas and the Bethe formulae; both
models provide equally good fits to the experimental results. Empirical relationships between their
parameters and simple expressions for the extension of level densities and y-ray strength functions
into the region of noncomplete level schemes are proposed. For nuclei with A & 46 the E 1 strengths
agree very well with the predictions of the electric giant dipole resonance model; for the lighter nu-

clei the E1 strengths are stronger than the giant dipole resonance prediction because of direct neu-
tron capture. The observed mass and energy dependence of M1 strengths seems to indicate some
influence of the magnetic giant dipole resonance; however, the M1 spectra are strongly structured
by nonstatistical effects, in particular in the sd shell.

I. INTRODUCTION

The y-radiation emitted after thermal neutron capture
has been extensively studied in the past decades
throughout the full Periodic Table. The motivations of
these experiments have been either to determine the struc-
ture of low-lying states via the measurement of level ener-
gies, spins and parities, and y-ray branching ratios, or to
investigate properties of the primary y-ray spectrum by
which the capture state(s) decay(s). In general, emphasis
has therefore been put either on the secondary, low energy
part of the (n,y) spectrum related to structure effects, or
to the primary high energy part. In heavy nuclei, the
enormous line density in the intermediate energy region,
i.e., at about half the neutron binding energy Ett, has re-
stricted the (n,y) studies to the first 1—2 MeV of excita-
tion. The high neutron flux and very efficient bent crystal
and pair spectrometer available at the Institut Laue-
Langevin (ILL) reactor, on the other hand, have allowed
workers to follow the decay cascades in much detail, at
least in light and medium nuclei.

Over the last five years, the Gottingen-Grenoble-
Munich collaboration has provided very detailed results
for the (n,y) reactions on ' F, Na, Al, Cl, K, and
'K targets' leading to final odd-odd nuclei with

20 & A &42. In each case, some 80—99% of the total y-
ray flux have been accommodated in the level scheme,
with tens of new levels identified and spins and parities
assigned. Similar studies in the mass range 32&3 &80
have been performed by the groups at Petten ( Sc, Co,

Cu, and Cu; Refs. 7—10), McMaster ( P, ' Mn, and
As; Refs. 11—13), and some other collaborations (e.g.,
Ga and Br; Refs. 14 and 15).
This effort has therefore provided an improved and

much more complete data set. It may serve as basis to
test statistical models and to elucidate in what way chaot-
ic motion in nuclei takes over for increasing excitation en-

ergy. The purpose of the present work is to analyze the
recently measured data in odd-odd nuclei in the mass
range 20& A & 80 on a common footing. Table I summa-
rizes the investigated nuclei with their binding energy Ez,
their number of levels, and their primary E1 and M1
transitions observed in the (n,y) process. In Sec. II the
density of levels will be parametrized with the Bethe for-
mulae and the constant temperature Fermi gas model. In
Sec. III the distribution function of the primary y-ray
spectrum will be analyzed, while in Sec. IV the strength of
primary transitions will be discussed in detail.

II. LEVEL DENSITIES

A. Level density formulae

or the constant temperature Fermi gas model (CTF),

pc(E„)=—exp (2)

Here, a denotes the single particle level density parameter,
T the nuclear temperature, E~ and Eo the energies of the
fictive ground states, and o. the spin-cutoff parameter.
Defining the nuclear temperature by the equation

T '= lnp(E„) .

One obtains for the Bethe formula the energy dependent
temperature Ttt (E„):

The statistical considerations are based on the analysis
of level densities. The level density p(E„) at excitation en-

ergies E„up to about 10 MeV usually is parametrized by
either 9 the Bethe formula (BF),

exp[2+a (E, E i)]-
12V 2tra ' (E E)—g(E, ) =
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TABLE I. Survey on odd-odd nuclei studied via the (n,y) process.

Nucleus a

Total number of
states observed

in (n,y)

Number of primary
transitions observed

Total El M I Ref.'

20F

28Al

32p

36cl
~K
42K

46S

6Mn

~co
64cu
66C

726ad

"As
80Br

1+
1+,2+
2+, 3+
0+ 1+
2+
1+,2+
1+,2+

3,4
2, 3
3,4

,2
1 2
1,2

1,2
1,2

6601.33{4)
6959.73(7)
7725.18(9)
7935.70{4)
8579.68(9)
7799.55(8)
7533.82(8)
8760.77(14)
7270.8(5)
7491.92(8)
7916.09(12)
7065.97(11)
6519(1)
7329(2)
7892.35{20)

26
45
50
32
75
63

134
133
81

144
110
100
84

120
72

20
41
44
28
67
50

122
124
80

117
82
91
84

120
77

6
15

8
11
26
23
24
16
28
30
22
20
9

14
15

11
18
31
12
26
10

5

18
11
12
3

10
13
3

1

2
3

11,16
4
5

6
717
12,18
8

9,19
10,20
14,21
13,22
15,23

'Spin and parity of capture state(s).
Neutron binding energy.
First reference refers to (n,y) work, the second to additional information on spins, parities, etc.
Intensities normalized by present authors.
Stlong 'trans1t1ons %1th Ey & 5 MeV taken as primary 1f unass1gned.

p( E„,J)=f (J)p(E„),
J2 (J+1)'f (J)=exp — —exp
20' 20'

(J+—,
' )'

20

(5a)

Consequently, the density p(E„,J, ,J2) of states in the spin
range J~ &J &J2 can be written as

J2

p(E„Ji,J2)= g f(J)p(E„)
J=J1

r

J2
= 'exp

20'

—exp
(Jp+1)

p(E„) .
20'

TB(E„)=
Qa (E„Ei) ——, —

Both formulae refer to the total level density of a nucleus;
however, only states within a certain spin window are
populated by the thermal (n,y) reaction. The partial level
density p(E„,J) of states with spin J and parity m =+ fol-
lows from the spin distribution, which is given in terms of
the spin-cutoff parameter:

Nc(E„,J],J2 ) = exp
J2

20'
—exp

(Jp+1)
20"

exp
Eo—exp T

for the CTF model. The corresponding N~(E„,Ji,Jz)
value of the BF model is obtained by numerical integra-
tion. The level density at very low excitation energies is
dominated by structure effects which are not included in
any of the above formulae. Consequently, discrepancies
between the experimental and fitted integrated number of
states may occur. These nonstatistical low energy effects
are compensated for by the parameter N introduced in
the following way:

cr =0 0888A. i Qa(E, —Ei) .

The dependence of o on the excitation energy E„ is weak

[o -(E„E&)'i ]; thus a—constant cr value may be used
for the CTF model.

The integrated number of states N(E„) below the exci-
tation energy E„ is often used to compare experimental
results to these parametrizations. By means of

N(E, )= f p(E')dE', (8)

one obtains

The spin-cutoff parameter o can be estimated in the
framework of the BF model by N'"~'(E„,Ji,J2 )=N (E,Ji,J2 ) +N (10)
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TABLE II. Level density parameters.

Nucleus
Spin window

(n,y)
Spin window

resonances

Resonance
spacing'

(keV)
Fit region

(MeV)
Bethe formula

a (MeV ') El (MeV)

CTF'
T (Mev) Eo {MeV)

20F

Na

32p

36Cl

42K

"Sc
Mn

~Co
64Cu

66C

Ga
"A.s
SDBr

(0—2)+-

(0—3)+-

(1—4)+-

(0—2)-
(1—3)+-

{0—3)-+

(0—3)+-

(2—5)+-

(1 4)+-

(2—5)+-

(0—3)+-

(0—3)+-

(0—3)-
(0—3)+-

(0—3)+-

0, 1,2
0,1,2, 3
1,2, 3,4

0,1,2, 3
0,1,2, 3
0,1,2, 3
3,4
2 3

3,4
1,2
1 2
1,2

1,2
1 2

32(5)
30(6)
24(3}

13(4)
4.3(5)
3.0(4)
1.1(2)
1.9(5)'
1.4(2)
0.62(7)
1.0(2)
0.37(5)'
0.087(10)'
0.06(3)'

0—3.0
0—4.0
0—4.0
0—3.0
0—3.0
1.5—3.5
0—2. 5

0.5—2.5

0.5—2.5

0—2.5
0—2.0
0.5—3.0
0—1.5
0—1.0
0—1.5

2.22(11)
2.85(8)
2.84(8)
2.8(3)
3.12(7)
4.52(10)
4.54(10)
6.44(15)
7.28(15)
6.77(20)
7.76{15)
8.62(20)
8.92(25)
9.92(25)

10.24(30)

—3.5(4)
—2.4(3)
—2.8(3)
—2.8(5)
—2.3(3)
—1.5{3)
—2.6(3)
—1.30(15)
—0.4(1)
—1.47(15)
—1.0(2)
—0.05(10)
—1.8(3)
—1.8(3)
—1.25(30)

3.1{3}
2.40(15)
2.40{12)
2.7(3)
2.26(10)
1.77(8)
1.78(8)
1.28(5)
1.12(4}
1.22(6}
1.12(4}
0.98(4)
1.03(4)
0.98(6)
0.92(6)

—6.7(6)
—4.5(5)
—4.4(5)
—5.4(10)
—3.6(5)
—3.6(5)
—4.6(5)
—2.8{3)
—1.7(4)
—2.9(4}
—2.5{5)
—1.3{4)
—3.6{5)
—3.8(5)
—3.0(4)

' Reference 32, unless otherwise stated.
ba and E~ defined in Eq. (1).
'T and Eo defined in Eq. (2}.

Reference 32; corrected for missing resonances.
' Reference 28.

B. Fit of level density parameters

In the present study the density of states accessible by
primary dipole transitions from the capture state was used
to fit the level density parameters. In this spin window
the level schemes are essentially complete up to a certain
excitation energy called the "limit of completeness" (see
below). The experimental density was obtained by count-
ing the states within proper energy bins, 1 MeU wide for
the lightest nuclei and 0.5 MeV wide for the others. As
usual, the density of these states at the neutron binding
energy E~ was extrapolated from the level spacing of s

(p) -neutron resonances using [Eqs. (5)]. The values of cr

given in Ref. 26 were used for this transformation. Note
that it depends only weakly on o because the spin win-

dows are similar. '

A least squares fit including the density of states below
the limit of completeness and at the neutron binding ener-

gy was used to adjust the parameters 1 being defined as

C. Discussion of results

The experimental level densities and N(E„) values of
the isotopes Cl and Mn are compared to the CTF and
BF fits in Fig. 1. Obviously, the neutron resonance densi-
ty and the density of states below a critical energy ( =5.5
MeV for Cl, =3 MeV for Mn) are reproduced very
well by the fits. We conclude that up to this energy the
level schemes are rather complete, whereas above this en-

ergy more and more states escape detection (for a detailed
discussion, see Sec. III B). The agreement between the ex-
perimental values and fitted curves does not favor any of
the level density formulae. The average X values of the
CTF (Xc——1.35+0.20) and BF fits (+ii=1.42+0.30)
agree very well. We thus conclude that both models are
appropriate up to the neutron binding energy, with the
understanding that the parameters are properly adjusted.

When comparing the parameters obtained for the two
level density formulae a simple relationship emerges:

[p(Ea»i »z) pa ]' " [p(E—Ji»z) —p )'
X:= i +

(~p~)' =. (~p )'

E) —Eo ——1.67+0.11 MeV,
2

, (1.00+0.01),
[&( 3Ea Ei)f'"—2—

(12a)

(12b)

Here, pii+bpii denotes the density from resonance spac-
ings, F.; the center of the ith bin, p; the respective level

density, and n &i &k the intervals defined in Table II.
The weights (+;) were taken as proportional to p; '.

A11 essential input values to the fitting procedure and
the deduced level density parameters are summarized in
Table II.

i.e., the positions of the fictive ground states differ only
by a constant value and the temperature T of the CTF
model equals the temperature obtained from the BF
model at —, the neutron binding energy Ez.

The level density parameters a and E& are displayed in
Fig. 2 as a function of the mass number A. The rather
smooth mass dependence allows one to estimate their
values for other odd-odd nuclei in this mass region. The
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FIG. 1. Level density p(E,J~,J2) and integrated number of levels N(E„,J&,J~) in the isotopes ' Cl and ' Mn determined in the
(n,y) process. Histograms, experimental values; solid lines, CTF fits; dashed lines, Bethe formula.
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often used semiempirical calculations of Holmes et al.
are given for comparison. The overall trend is well repro-
duced; however, the "step" of the parameter a around the
A =40 shell closure is much more pronounced for the fit-
tmi values. As discussed by Rohr, 34 these steps are due to
successive collisions in the compound process because the
level density increases as more nucleons are excited. The
A =40 step corresponds to the appearance of 3p2h states;
the second one around A =70 to 4p3h states. Since the
investigated nuclei are odd-odd ones, no pairing energy
contribution to the ground state shifts is expected. The
negative values of the fictive ground states Eo and E& re-
Aect the fact that in this mass region both the BF and
CTF models have to be further "backshifted. "

The discussion of the primary y-ray spectrum presented
in the following sections is based on the CTF parametri-
zation of the level density because its mathematical sim-

plicity yields analytical solutions for most integrations in-
volved.

III. DISTRIBUTION OF PRIMARY TRANSITIONS

30 ~O 50 60
Mggg Number A

7Q
A. Energy dependence and fluctuations

FIG. 2. Fitted level density parameters a and E, vs the mass
number A. The lines indicate the semiempirical values of
Holmes et al. (Ref. 33).

In this section we discuss the spectrum of primary di-
pole transitions. At this stage we do not divide it into E1
and M1 components. Since the y-ray flux connected with
transitions of higher multipolarities is negligible in most
nuclei, we are talking about the total primary spectrum.
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From a statistical point of view, the shape of this spec-
trum depends on the density of final states, the energy
scaling of the average intensity, and the fluctuations with
respect to this average. All y-transition intensities are
given in "photons per 100 captured neutrons" ("%")
throughout this paper.

The integrated intensity of primary transitions

(13}

is best suited to determine the average energy dependence.
In the statistical model the quantity I'(E, ) is given by

&(E„)= f p(E', J),Ji )b (E~ E')dE—', (l4)

where the average intensity b (Er ) of primary dipole tran-
sitions is normalized as to make I'(Ea)=100%, and the
spin window of states accessible by these transitions is de-
fined by J, Ji &J &Ji. The level densities from (n,y) ex-
periments at higher excitation energies are strongly un-
derestimated due to detection probability effects, but the
level schemes are essentially complete in the low energy
region. Thus nonstatistical effects influencing
p(E„,J),Ji}may be included by using experimental level
densities at low excitation energies; on the other hand, the
CTF parametrization is used in the noncomplete high en-

ergy region.
The single particle approach~ yields a b(Er)-Er scal-

ing for both El and Ml transitions. On the other hand,
taking into account the giant dipole resonance (GDR), a
different energy dependence is expected. Simplifie global
estimates36 37 propose b(E&)-Esr for high energy El and
Ml transitions dominated by the GDR. This behavior is
indeed experimentally found for El transitions in heavy
nuclei. The situation is less clear in hght nuclei and for
Ml transitions. In heavy nuclei the primary spectrum is
dominated by El transitions, whereas for light nuclei the
influence of the GDR decreases. Nevertheless, an Er

b(Er)=r(„)E"„with n =3 or 5 . (15)

The relative average strengths r(„), n =3,5, may be ob-
tained either by averaging,

r(„)—(IrEr "), (16)

or from the normalization condition F(Ea) =100%.
the first case only primary transitions populating states in
the "complete" region may be included. As especj.ally in
the heavier nuclei detection probability effects cut the pri-
mary spectrum at relative low excitation energies, the
second method is much more reliable.

The most suitable exponents of the energy scaling and
the corresponding r~„] values determined by both methods
are given in Table III. The experimental and theoretical
curves of F(E„)with n =3 or 5 for the nuclei ~ Al, K,
and Cu are sampled in Fig. 3. The results suggest the
following division of the investigated nuclei into three
groups.

(i} The isotopes with 20&A &32: The experimental
spectra do not agree with the statistical assumptions either
assuming Er or E'„scaling; the discrepancies are most
significant for F and decrease with increasing mass
number A.

(ii) The isotopes with 36&A &42: The spectra are best
reproduced by the Er energy scaling.

(iii) The isotopes with 46 &A (80: the suitable energy
dependence is given by E&.

These three classes therefore represent a transition from
nonstatistical behavior to the Esr-scaling law typical for
primary spectra dominated by the GDR. However, this

scaling was reported for the nucleus Sc even though a
considerable fraction of the primary flux was assigned to
M1 transitions.

%'ith this in mind, ere compared the experimental in-
tegrated intensities F(E, ) obtained from Eq. (13) to the
statistical prediction [Eq. (14)] using

TABLE III. Energy scaling and parameters of Thomas-Porter fluctuations.

Nucleus
Exponent r(„) (MeV ") Number of degrees

of freedom v

'4Na

32p

"Cl

42K

Sc
56Mn

~Co
64C

~Cu
Ga

76As

38

3'
38

38

3
3
3
5
5
5
5'
5
5
5
5

5.6 x10-z
4.7 x10-'
2.2 x10-'
2.4 X 10-'
1.4 x10-z
1.7 x10-'
0.84x 10-'
7.7 x10-4
3.6 x10-4
1.8 x10 4

1.2 x10-'
3.8 x10-4
1.2 x 10-4
0.34x 10
0.18x 10-4

7.1 x 10-'
4.4 x 10-'
2.3 x10-'
2.6 x10 '
1.5 x10-'
1.2 X10-z
0.71x 10-'
6.3 x10-4
3.5 x10-4
1.6 x10-'
1.1 x10-'
4.0 x10-4
1.2 x10-4
0.31X10-'
0.23 x 10-4

2.9{13)
1.0(3)
1.1(3)
0.7(3)
1.8{4)
2.9(7)
1.9(4)
2.0(4)
1.8(4)
1.7(3)
1.3(3)
1.2(2)
1.6(3)
2.0(3)
1.8(5)

'Strong nonstatistical effects.
b Calculated according to Eq. (16}.' Calculated from Y'(E~)= 100.
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global inspection does not allow us to determine the phys-
ical reasons behind this, such as level density effects (e.g.,
different distributions of positive and negative parity
states), changes in the energy dependence of El and/or
Ml strengths, changes in the relative fractions of El and
Ml transitions, and nonstatistical effects. The detailed
discussion of El and Ml strengths in Sec. IV will shed
light on this question.

Once the appropriate energy scaling is established, it is
possible to investigate the fluctuations of the individual

energy reduced intensities r; =I;E; " around their average

r~„~, where E; denotes the y-ray energy of the ith primary
transition and I; the intensity, respectively. The Porter-
Thomas (PT) assumption of locally normally distributed
matrix elements yields the weH-known distribution law

P„(r)dr =pI'(p) '
p

r~„~

p —1

r
exp —p c&,

(n)

(17)

where I (p) is the gamma function and v=2p the number
of degrees of freedom. As to the (n,y) reaction, this dis-

80
0

X
LU

90

LA

C

6
L
U

C
)a

i

0
0

120 10

«O

X
LU

8

C

U

C
lw

E

E„(Mev)
0

«00

X
L0

%la

/r

12
I

t

9

j

t
C

lI
Q 2 p 0 2

(Mev) /f(r)
FIG. 3. (a) Integrated yield F(E„)and (b) intensity fluctuations of primary transitions in Al, K, and Cu. (a) Solid lines, ex-

perimental intensities T(E„);dashed lines, statistical model predictions for n =3 and 5. (b) Experimental and fitted Porter-Thomas
distributions.
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tribution function was mainly used to analyze the decay
of an ensemble of resonances to the same final state.
However, some authors (e.g., Ref. 39) successfully applied
it to the inverse situation and in the random matrix theory
(see, e.g., Ref. 40) the large scope of this concept is point-
ed out. Furthermore, shell-model calculations for some
sd-shell nuclei have shown that, taking into account a
proper secular behavior, the matrix elements of elec-
tromagnetic transition operators are locally normally dis-
tributed. "'

In the most simp1e case the neutron capture proceeds
via a single resonance (with defined spin and parity) and
only one type of radiation (e.g., El transitions}, in this
case v=1, is expected. In the more general case of an
odd-A target nucleus, resonances with spin J=Jr+ —, ( Jr
being the ground state spin of the target nucleus) and/or
E1 and M1 transitions may contribute, giving v=1—3.
The best value of v was calculated from the measured en-

ergy reduced intensities r; by the maximum likelihodd
method as a solution of the equations'

tll

0=—g ln
Pl

r;
+F(mp) —F(p)+ln 1—

r(n)

I'" (p) =(d/dp) inl (p) —lap, and I' is the gamma function,
which accounts for finite sample size effects. Again, only
transitions to final states in the "complete" region were
included. The v values are listed in Table III. They vary
indeed in the range v=1—3.

The experimental distributions were calculated by
counting r;r t„j in bins of 0.2 width. They are compared
in Fig. 3 for some nuclei to the PT distribution with the
fitted number of degrees of freedom. Obviously, the ex-
perirnental distributions agree very well with the PT dis-
tribution. This is true even for the light nuclei, although
their primary spectra agree very poorly with the Ey scal-
ing used to calculate the energy reduced intensities. The
discrepancies between experimental and theoretical curves
of Y(E, ) are mainly caused by local correlations of the
transition strengths which cancel as transition over a large
energy range are included. It is mainly this effect which
allows one to describe the strength of El transitions over
a large energy range and for many nuclei by a simple dis-
tribution function based on the GDR formalism and PT
fluctuations. Consequently, the investigation of
structural effects is only possible if the transition strength
is treated as a function of energy and/or mass number.
These functions are strongly influenced by detection prob-
ability effects, which will be studied in the next section.

Finally, we would like to mention that, on the basis of
these simple assumptions on level densities, level spacing
distributions, average energy scaling, and PT fluctua-
tions, the complete y-ray spectrum (also including sec-
ondary transitions) can be reproduced almost perfectly by
a Monte Carlo simulation. '

(ii) r,„p,(E,)=&(E„)i(E„),

(iii) Y,„~,(E„)= U(E„) Y(E„),d d

X X

(iv) Y,„~,(E, )= f U(E'), Y(E')dE',

(19a}

one finds

W(E )= Jl P„(r)e(r(Es E„)",E„)dr—,
U(E, )=r(„I J P„(r)s(r(Es E„)",E, )dr,—

V(E„}= U(E„)W(E„)

(19b)

Here the experimental quantities are labeled by expt.
Note that U(E„) and W(E„) approach zero for high ex-
citation energies. The response function e(I&,E„) was
parametrized in the following way (see Fig. 4):

(20a)

mainly by the smaller intensities of primary transitions
due to the reduced phase space. Primary transitions of a
few MeV either fall in a region of many strong secondary
transitions or even below the detection limit. Since the in-
dividual intensities fluctuate around the average, no sharp
limit exists; however, the lower the y-ray energy the less
the parent distribution is represented by the measured
transitions. In the range between completeness (typical
3—5 MeV excitation) and the neutron binding energy, we
propose the following correction for the quantities p(E„),
r(E )=(I&E„"),and Y(E„}.

The correction is based on the following assumptions.
(i} The average energy dependence is given by

b(Eq)=F(„)Ey .

(ii) The fluctuation can be described by the PT distri-
bution P„(r)dr.

(iii) The probability of detecting a primary transition
with energy Er and intensity Ir (and, respectively, the en-

ergy reduced intensity r } is given by

e(rEr, E„)=e(I~,E„), E„=Es E~ . —

It is more suitable to parametrize e as function of E,
rather than E„. This simplifies the comparison of dif-
ferent isotopes.

Defining the correction functions by

(i) p,„~,(E„)=~(E„)p(E,),

S. Extension to noncomplete region

The level schemes extracted from the (n,y) spectra are
incomplete at higher excitation energies. This is caused

b, (E„)= E„E„E„EI— —
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E„ & EL TABLE IV. Parameters of detection correction and "limit of
completeness" defined in Eqs. (19).

c II, ,E„I

b, IE, )

E„)EL

Nucleus

20F

24Na

32p

Cl
40K

42K

~Sc
56Mn

~Co
64C

66Cu

"Ga
"As
Sogr

0.10
0.02
0.05
0.07
0.01
0.20
0.05
0.13
0.06
0.03
0.06
0.06
0.07
0.04
0.04

b,
(%)

0.25
0.30
0.35
0.35
0.08
1.40
0.35
0.40
0.70
0.65
1.10
0.65
1.00
0.80
1.15

(MeV}'

2.0
2.0
2.0
2.0
4.0
3.5
2.5
2.5
2.5
2.0
1.5
2.5
1.0
0.5
1.3

E„(90%)
(MeV)

3.1

4. 1

3.8
3.9
5.3
3.0
3.0
1.8
2.6
2.3
1.8
2.7
1.1

0.5
0.5

E„(10%)
(MeV)'

5.4
5.8
6.1

6.2
7.3
5.2
5.4
4.5
4.2
4.2
3.8
4.1

2.7
2.5
2.6

FIG. 4. Response function e(I~,E„)defined in the text.

This ansatz reflects the following considerations.
(i) The experimental detection limit b accounts for the

spectrometer efficiency, neutron fiux, amount of target
material, cross section, and measuring time. It is estimat-
ed by the intensity of the weakest primary transitions
detected in the experiment. High energy transitions are
thus detected if their intensity exceeds the critical value
b

(ii) The situation is more complicated for low energy
primary transitions. This part of the (n,y} spectra is very
complex and may contain unresolved doublets involving
weak primary and strong secondary transitions. Further-
more, the low energy primary transitions are identified
among the numerous secondary transitions by application
of the Ritz combinatorial principle. A detailed discussion
of these effects is given in Ref. 31. An energy dependent
intensity limit b, (E„)is introduced so that primary transi-
tions with b, (E„)&Ir are definitely detected, while those
with I„&b are definitely not detected. For primary
transitions with branching ratios b &Ir & b, (E„) the
detection probability is linearly interpolated, as shown in
Fig. 4. The function b, (E„) equals b below the energy
EI and is taken as a linear function of E, above EL [see
Eq. (20b)]. The parameters b, EL, and b, (E„)used for
the detection correction are summarized in Table IV. Ad-
ditionally, the excitation energies for which W(E„)=0.90
and 0.10 are given. The first of these energies essentially
defines the "limit of completeness" of each level scheme.
In most nuclei studied the intensity of the weakest detect-
able primary transition is b =0.05%. However, since
the level density of the heavier nuclei is much higher than
for the lighter ones, the number of transitions below this
limit increases considerably with mass number. Conse-
quently, the limit of completeness decreases from about 4
MeV in the light nuclei to only 0.5 MeV for As and
"Br.

In Fig. 5 the correction functions of p(E, ),
(d/dE„)1'(E„), F(E, ), and r(E„) are displayed for the

'Intensity of weakest detectable primary transition per 100 neu-
trons.

Intensity of weakest primary transition definitely detectable at
E„=E„=5MeV.
' Excitation energy below which b =b, (E„).
90% detection limit of levels.

'10% detection limit of levels.

isotopes ~K and As. The experimental values of p(E„),
(d/dE„) 1'(E„),and F(E„)are compared to the statistical
model predictions without and with detection probability
effects included. The experimental and corrected experi-
mental values of r(E„) are plotted in comparison with the
constants r~3~ and r~5~ for K and As, respectively. Ob-
viously, the detection correction brings about excellent
agreement between experiment and theory.

Once the suitable response function is defined by the
parameters listed in Table IV, the correction easily can be
extended to average El and Ml strengths, etc. in the fol-
lowing way: As a first step the experimental curves of
F(E, ), restricted to El and Ml transitions, respectively,
are compared to the statistical predictions derived from
different energy scalings n =3 or 5. This comparison is
infiuenced very little by detection effects. Once the aver-

age energy dependence is established, the correction fac-
tors are calculated from Eqs. (19). These corrections were
applied to all transition strengths discussed in the follow-
ing section.

IV. DIPOLE RADIATIVE STRENGTHS

A. Theoretical discussion and data analysis

In this section we discuss, individually, the average ra-
diative width of primary E1 and M1 transitions. Follow-

ing the notation of Bartholomew, I „if(X1)denotes the
average width of y radiation with multipolarity X1 and
energy E& depopulating a resonance with spin J and pari-
ty m to a final state Ef. Blatt and Weisskopf established
the mell known single particle estimate assuming an equal
distribution of single particle configurations on highly ex-
cited states:
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I ykf(E1) (ev) =1.(E1)(ev) =—6.8X 10-8Ey (MCV3)A2/3DR (ev) D01(Mev-l),

I y~f(M 1) (eV) =I (M 1)(eV)=2.1&(10 Ey (MeV')D~ (eV) Do
' (MeV '), (21)

Here, 1"& denotes the total radiative width and I &~; the
partial width of a primary Xl transition with intensity I„.

Since the strengths of high energy El transitions in
heavy nuclei are strongly influenced by the GDR,
their energy and mass dependence differ from the single
particle estimate. Under the assumption that the same
GIM is built on the ground state and each excited state,
I ygf can be expressed in terms of the average total photo-
absorption cross section cr, (E» ):

1 1

, Eyo, (E» )Dg, (23)
3m (Pic)

I yu (E 1)= I'oDa(E 1)=

which yields the GDR prediction for the El strength,

I oDa(E1)
SoDa(E 1)DO

In the present study the experimental E1 strengths are
compared with several GDR approximations based on a
Lorentzian shape of o, :

o 6 I"GEy
o, (E )=

(EG Ey) +I"GE»— (25)

Here, EG, I ~, and o 6 denote the GDR energy, the width,
and the peak cross section.

(i) Using I G ——5 MeV, EG ——803 '~ MeV, and
oG ——132 I G' mb, Axel obtained, for 6—8 MeV y rays,

I y~; ——6. 1X 10 ' Ey (MeV )A D~ (eV) . (26)

(ii) The second approximation proposed by Schumacher
et al. uses the GrDR parameters

1 6 ——4.5 MeV,

E,=31.2W -'"+2O.6~ -'" MeV,

—,mo.G I G ——72 (MeV mb)XZA

(iii) As the investigated odd-odd isotopes are unstable,
no experimental results on photoabsorption cross sections
are available. However, the GDR parameter varies only
smoothly with mass number, and thus another set of

where D~ is the average spacing of J" resonances at ener-

gy E~, and Do is the single particle spacing. Throughout
this paper the strengths of dipole transitions are expressed
in Weisskopf units (W.u. ) per MeV:

I yu
S~&(I y~;)Do '(W. u. MeV ') =

I ~(X 1 Do MeV

Iy(%)I y

100I ~(X 1)DO (MeV)

Lorentzian parameters was obtained from the measured
photoabsorption of the neighboring stable isotopes (see
Table V).

It should be noted that for the light isotopes the Lorentzi-
an shape of a, is a crude estimate.

For the Ml strengths a global expression in the frame
of the GDR model is not yet available, although some re-
sults on the mass and energy dependence have been report-
ed. ' ' We therefore compare the Ml strengths to the
semiempirical estimate proposed by Kopecky:

I ygf(M 1 ) =9X 10 ' Ey (MeV)A D~ (eV) (28)

TABLE V. Total radiative width and GDR parameters.

Nucleus I ~ (eV)'

GDR parameters
IG

(MeV){MeV)
06

(mb)

20F

4Na

32p

"Cl
40K

"K
46Sc

"Mn
~Co
64cu
66C

72~a
"As
80Br

4.3{26)
0.7(4)
2.2(13)
3.1(19)
0.56{5)
2.0(12)
1.75(100)
0.84(46)
0.75(15)
0.56(10)
0.50{10)
0.40(8)
0.24(7)
0.30(4}
0.29(6)

24.0
24.0
21.8
21.0
21.2
21.0
21.0
20.3
18.0
18.0
17.5
17.0
16.8
16.3
16.5

10.0
12.0
8.0
9.0

10.5
7.0
7.0

10.2
7.0
7.0
5.5
7.0
6.5
7.4
6.5

13
12
15
20
27
25
25
40
65
75

77
110
95

135

'Average radiative width of s-wave neutron resonances (Ref.
32).

Lorentzian parameters obtained from neighboring isotopes
(Ref. 37).

The experimental E1 and Ml strengths were calculated
from Eq. (22) by averaging over proper energy bins. The
resonance spacing Dq was calculated from the CTF pa-
rametrization of the level density. Since, in general,
thermal neutron capture does not proceed via a single res-
onance, we approximated the total radiative width I ~ by
the average radiation width of s-wave resonances in the
energy region of the capture state (see Table V). It should
be noted that the uncertainties hereby introduced to the
absolute transition strengths do not affect the energy
dependence of El and Ml strengths or the El/Ml ratio
discussed subsequently.

The assignment of primary dipole transitions to either
El or Ml was done in the following way: For nuclei with
3 &42 only the transitions to states with known parity



34 DIPOLE TRANSITION STRENGTHS AND LEVEL DENSITIES. . . 2113

A
~ ~0» P

V

(d) Il
~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 'I ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 'I 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 41 I )I' ~ ~ ~ ~

It ~~~ /

/

/
/

m/.

(b)

)

70
)

30
l

60
I

80
10

20 l,0 50

Mass Number A

FIG. 6. E1 strengths averaged over all primary transitions to states in the region of completeness. The curves (a)—(c) are the GDR
estimates (Axel's approximation, average, and individual Lorentzian parameters, respectively) calculated for a fixed energy E„=5.5
MeV. The constant value (d) refers to 0.02 %'.u. MeV

(see Table I) were included. For heavier nuclei parities are
available only for few low lying states. Therefore, keeping
in mind the higher relative intensities of El transitions in
these nuclei, all primary transitions to states with un-
known parity were given an El assignment. All El and
Ml strengths discussed below were corrected for dettx:tion
probability effects as outlined in Sec. IV.

of each bin, i.e., for Ez ——7, 5, and 3 MeV. It is evident
that the experimental values of (Sst)Do ' behave very
differently in the three energy bins: While they are well
described by the GDR model in the 6—8 MeV bin, the
strengths in the 4—6 MeV bin resemble Fig. 6 with con-
stant strengths. Finally, in the 2—4 MeV bin a strong

8. Primary E1 strengths

The average El strengths (SE7)Do ' of primary transi-
tions to states in the complete regions (see Table IV) are
displayed in Fig. 6 and compared with the three GDR es-
timates discussed in Sec. IV A and labeled (a)—(c). These
predictions were evaluated from Eqs. (23)—(27) for the
fixed energy E„=5.5 MeV, which is near the centers of
the energy regions involved. Even though the average
GDR parameters [Eqs. (27)] differ considerably from
those obtained from measured individual photoabsorption
cross sections, both GDR estimates give similar results
and fit the data better than Axel's approximation. How-
ever, the agreement of the experiment in the A & 46 nuclei
with the CiDR parametrization is poor and the experimen-
tal E1 strengths are systematically higher than the GDR
prediction. Obviously, the El strengths are best described
by the constant value (Sz7 )Do '=0.02 W.u. MeV ', cor-
responding to a retardation of a factor of 100 with respect
to the Weisskopf estimate, with the single particle spacing
D0 ——O. 5 MeV.

The E1 strengths averaged over 2 MeV wide energy
bins are displayed in Fig. 7. Again, the average GDR es-
timates are given for comparison, calculated for the center

)0-7

)0-2 „

I
I

I
l

l
l

1

7

/
/

/"
/

I/

I /
, I /
jl /

/
/

SMeV & E~ ~ SMeV LMeV & Ey & 6MeV 2MeV & Ey & 4 MeV

t t t t I t I I I I I I I i I t I t I

20 40 60 80 20 40 60 80 20 40 60 80

Mass Number A

FIG. 7. E1 strength averaged over 2 MeV bins. The solid
lines are the GDR predictions from Eq. (27); the dashed lines
give the Axel estimate [Eq. (26)]. Theoretical values are calcu-
lated at the energy centers of each bin, i.e., at E„=7,5, and 3
MeV.
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TABLE VI. Capture cross sections and distribution of spectroscopic factors.

Nucleus o,h (b)' os (b)
g &dp(I, = & ) (%)'

6&E~ & 8 MeV 4&E~ &6 MeV 2 & E~ &4 MeV

20F d

Na
Al

32p

36Cl e

42K

0.0096
0.53
0.231
0.172

43.6
2. 1

1.46

0.0047
0.0057
0.108
0.110

0.753
1.32

0.1

7

0
57
71
70

'Thermal neutron capture cross sections (in barns) (Ref. 32).
Direct capture cross sections at neutron energy E„=25.3 meV (in barns) (Ref. 32).

'Sum of /„=1 (I„=neutron orbital angular momentum) spectroscopic factors to final states corre-
sponding to the given energies of primary transitions (see text) (Refs. 48—52).

All (d,p) I„=1 strength to states corresponding to E~ & 2 MeV.
'Spectroscopic factors known only for E~ p 6 MeV transitions.

peak occurs around A =30, which exceeds the GDR esti-
mate by an order of magnitude. This peak can be under-
stood if one takes into account the direct capture pro-
cess. The GDR formalism does not apply to this type
of reaction and the strong El hindrance typical for the
coupling to the GDR disappears. In Table VI the

thermal neutron cross sections tr, h of the light odd-A tar-
gets are compared to the total direct capture cross sections
crD for 25.3 meV neutrons; for all other nuclei direct
capture is negligible. The typical feature of the direct
capture mechanism is that the partiaI capture cross sec-
tions are proportional to the spectroscopic factors
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FIG. 8. Primary E1 strengths in Cl, K, Sc, and Cu as function of the excitation energy E„offinal states. The histograrns

refer to the experimental values; for 45c the uncorrected experimental values are also given (dashed-dotted histogram). The solid

lines are the GDR predictions with average Lorentzian parameters, while the dashed hnes refer to the individual GDR parameters

given in Table V. For K the (d,p) I„=1 spectroscopic factors averaged over 0.5 MeV bins are indicated (dashed histogram) to

demonstrate the influence of direct capture.
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Sz~(1„=1)of p-wave neutron transfer via the (d,p) reac-
tion. Table VI summarizes the sum of (d,p) 1„=1spec-
troscopic factors to states in each energy bin of Fig. 7.
The values are normalized to give QSd~(l„=l)=100,
where the sum includes all states up to E~. Comparison
of Table VI and Fig. 7 shows that in almost all cases
where direct capture is negligible, either because eD ~&0.th
(i.e., in Cl and all isotopes with A & 46) or no final states
with appreciable p-wave components are available, the ex-
perimental values of (S~i)Dc ' are in good agreement
with the GDR prediction. On the other hand, significant
contributions of direct capture always result in an
enhancement proportional to this contribution.

Some selected examples for the energy dependence of
El strengths given in Fig. 8 may illustrate this point. For

Sc and Cu the agreement between the experimental
values of (S@i)Dc ' and their GDR prediction is good,
those with individual Lorentzian parameters fitting better
than those with average GDR parameters. Agreement is
also found for all other isotopes with A & 46 [with the ex-
ception of ~Cu (Refs. 9 and 39}]. On the other hand, the
nucleus 2K is a typical example for direct capture, the ex-
perimental strengths exceeding the GDR calculations by

up to a factor of 20. No simple energy dependence ap-
pears (in average Er rather than Er },but the strength is

strongly structured and resembles the variation of (d,p)
spectroscopic factors. The correlation between El
strengths and spectroscopic Sd~(/„= 1}factors is less than
0.02% by chance.

Finally, the isotope Cl belongs to neither of the two
groups. Even though part of the strength is roughly
reproduced by the GDR estimate, no clear energy depen-
dence is visible and in some regions the El transitions
seem to be strongly hindered. The reason is that thermal
neutron capture in 3 Cl proceeds almost entirely via a sin-

gle 2+ bound state resonance which gives rise to very
specific features.
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FIG. 9. M1 strength averaged over 2 MeV bins. The dashed
curve refers to the semiempirical GDR estimate [Eq. (28)]. The
dotted line corresponds to 0.2 %.u. MeV

C. Primary M1 strengths

The average Ml strengths (SM i)Dc ' are displayed in
Fig. 9 in the same way as the El strengths in Fig. 7. The
2—4 MeV energy bin was omitted because sufficient data
are not available in that region. If one attempts to repro-
duce the data with a constant strength, one finds 0.2
W.u. MeV ', i.e., a much weaker hindrance than in the
E1 case. However, the single particle model does not ac-
count for the observed A dependence of the average Ml
strengths, which is better reproduced by the semiempirical
GDR estimate, Eq. (28). At present, it is not possible to
analyze the M1 strength in the heavier nuclei over a large
enough energy range to differentiate between the single
particle and GDR models because only a few Ml transi-
tions have been identified so far. Consequently, one can-
not verify the predicted energy dependence, as in the case
of El transitions (Fig. 8).

The Ml strengths in the sd shell nuclei are displayed in
Fig. 10 as a function of the excitation energy of the final
states. The GIM estimate reproduces these results within
the correct order of magnitude but does not account for
the structured energy dependence of (S~i)D& '. These

~ 10'

)Q 2

1Q

7 v

v'
7

2 L 6 2 4 6
eV}

2&62&6
E„(M

r
frf,
&r~

FIG. 10. Ml strength in sd-shell nuclei averaged over 1 MeV
bins.
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structure effects appear in a rather similar way in dif-
ferent nuclei, e.g., in Al, P, and Cl. In these cases the
capture process proceeds via different channels: only a
J =2+ bound state resonance for the reaction

Cl(n, y) Cl, direct capture and a J=0 bound state reso-
nance for P, and direct capture and positive energy reso-
nances for Al. Thus these regularities are thought to re-
flect properties of the final states involved. Some of these
features can be explained by simple shell model argu-
ments, e.g., the strong change in the shape of the Ml
spectra between P, Cl, and K. For these nuclei the
states accessible by primary M1 transitions must have
positive parity (see Table I). Most of the low lying posi-
tive parity states in P and Cl have configurations in
the sd shell. On the other hand, low-lying lplh states in

K have n(s d) .'v(f7&2)' negative parity configurations
and the low-lying positive parity states in this nucleus in-
volve seniority v=4 2p2h configurations. However, for a
detailed understanding of these Ml distributions more
elaborate shell model calculations are required.

D. E1/M1 ratio

A ~0-&

X

V
A

V

(o)
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40 60 80 20 4G 60 80 20

Mass Number A
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~00
6MeV & Ey & SMeV I MeV & E~ & 6MeV 2MeV& E~ & 4, MeV

The ratio of average El and Ml strengths can be de-
duced from the measured y-ray intensities with much
higher accuracy than the El and Ml strengths them-
selves, since the uncertainties of the radiation width 1 r
and resonance spacing Di cancel and the uncertainty of
the detection correction is reduced. On the other hand,
this ratio is available only for a few combinations of y en-

ergies and isotopes. The energy range is limited to high
energies in the heavier isotopes since only few low energy
Ml transitions are identified. In the sd shell nuclei, the
positive and negative parity states are not equally distri-
buted due to shell structure effects. For instance, in Na,

Al, and P, no negative parity states are available below
3 MeV. As the capture states have positive parity, no pri-
mary high energy El transitions exist for these isotopes.
Figure 11 illustrates the integrated intensities of El and
M1 transitions in Al vs E„. It is mainly this level densi-

ty effect which brings about the disagreement between the
dipole spectra of the sd shell nuclei and the statistical pre-
diction (see Sec. III A, Fig. 3).

&00
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~ Zo—

FIG. 11. Integrated intensity of primary E1 and Ml transi-
tions in the Al(n, y) Al reaction.

FIG. 12. Ratio of average E1 and M1 strengths as function
of the mass number A, at the y-ray energies given. Curve (a)
refers to Ax el's estimate of E1 strengths [Eq. (26)] and

Kopecky's Ml GDR strength [Eq. (28)]. Curve (b) refers to a
constant M1 strength of 0.2 W.u. MeV

The ratio of average El and Ml strengths for three dif-
ferent energy bins is displayed in Fig. 12 versus the mass
number. The theoretical curves given are based on the as-
sumptions that the E1 strengths are described by the
GDR model, while for the Ml strengths either the GDR
[curve (a)] or single particle estimate [Do ——5 MeV, curve
(b)] is valid. Comparison to the data again favors the
GDR estimate for the Ml strengths. The strong devia-
tions for some light nuclei can be attributed to the
enhancement of the El component by direct capture.

V. CONCLUSIONS

The present work represents a comprehensive analysis
of the primary spectra in odd-odd nuclei in the mass
range 20&3 &80 following thermal neutron capture. In
agreement with the results of Ref. 29, which are based on
a larger sample of (n,y) data, we find that the level densi-

ty in these nuclei up to several MeV of excitation can be
well described by either the constant temperature Fermi
gas model or the Bethe formula. For the fitting parame-
ters of both representations, we propose simple empirical
relationships. The temperature parameter T of the CTF
model sho~s a steplike mass dependence near the A =40
shell closure, similar to the single particle density parame-
ter a in the Bethe formula. The deduced level schemes
are essentially complete up to 1—5 MeV excitation energy.

Once the level densities are known, the average energy
dependence and the fluctuations of the intensities of the
primary spectra can be determined. Although the pri-
mary strengths follow Porter-Thomas distributions in all
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investigated nuclei, the different energy scalings ccE&
(n =3,5) pomt to distinct physical reasons dominating
the spectra. These effects were analyzed on the basis of
absolute transition strengths and the energy and mass
dependence of El and Ml strengths. By properly correct-
ing the y-ray intensities for detection efficiency effects,
dipole strengths were made available in energy regions up
to several MeV in each nucleus.

The El strengths of nuclei with A &46 are in good
agreement with the predictions of the giant dipole reso-
nance model calculated from the photoabsorption cross
sections. The energy and mass dependence of the El
strength are indeed very well reproduced and the absolute
El strengths are in satisfactory agreement, without the
need of adjusting any parameter. The El strengths of the
sd-shell isotopes, on the other hand, are enhanced with
respect to the GDR predictions and show pronounced
structures. Both effects are explained by direct neutron
capture. We would like to emphasize, however, that even
for these light nuclei the GDR model predicts reasonable
results as long as the direct capture cross section is negli-
gible. %e thus conclude that the El spectra are essential-
ly composed of a smoothly varying GDR component and
a direct capture component which depends greatly on the
level energy and mass number.

Concerning the primary M1 strengths, evidence is
found for a slight mass dependence of its average strength
and reasonable agreement with the em.pirical estimate by
Kopecky. However, in contrast to the E1 strengths, the

present data do not allow one to verify the Er dependence
of the intensities predicted by the GDR ansatz, since only
a few high energy Ml transitions could be identified in
medium nuclei and strong nonstatistical effects were ob-
served in the sd-shell nuclei which mainly reflect shell
model structure effects of the final states.

In conclusion, the careful analysis of primary (n,y)
spectra provided information on the tails of the GDR in
light nuclei as well as on shell model effects visible as
direct neutron capture and/or the structure of final states.
We would like to point out that although only primary
transitions were included in the analysis, very detailed lev-
el schemes were required in order to identify primary
transitions over a wide energy region, so as to test the en-

ergy dependence of strength functions. The major draw-
back in the analysis still arises from the insufficient
knowledge of the parities of final states. The properties of
the secondary spectrum of the (n,y) process will be dis-
cussed, on the basis of Monte Carlo simulations, in a
forthcoming paper.
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