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%'e present a formalism for calculating three effects of nuclear dissipation on neutron emission

prior to fission: (1) Kramers s modification of the Bohr-Wheeler statistical-model result for the fis-
sion width; (2) the transient time required to build up the quasistationary probability flow over the

barrier; and (3) the mean time required for the system to descend from the saddle point to scission.
Each of these effects increases the average multiplicity of neutrons emitted prior to fission relative

to that calculated with a standard statistical model. The multiplicity calculation includes the depen-

dence of the ratio af /a„oflevel-density parameters for fission and neutron emission upon dissipa-

tion that is imposed by the low-energy fission probability. We use this formalism to analyze recent
experimental results of Gavron et al. for the reaction '60+ ' Nd~' Er at 207 MeV, where

2.7+0.4 neutrons are emitted prior to fission compared to 1.6 neutrons calculated with a standard
statistical model. This determines the limit P (5)& 10 ' s ' for the reduced nuclear dissipation coef-
ficient P defined as the ratio of the dissipation coefficient to the inertia.

I. INTRODUCTION

Nuclear physicists have been struggling for years to
determine the magnitude of nuclear dissipation in large-
amplitude collective motion —to learn whether in fission
and heavy-ion reactions nuclei are underdamped like wa-
ter or overdamped hke honey. Despite numerous experi-
mental clues, the answer has thus far proved elusive be-
cause of the difficulty of distinguishing dissipative effects
from analogous effects caused by collective degrees of
freedom.

We have developed a new approach to this question in
terms of a formalism that determines the magnitude of
nuclear dissipation from the average number of neutrons
emitted prior to fission. These neutrons are affected by
dissipation in three significant ways. First, as shown by
Kramers, dissipation increases the fission lifetime rela-
tive to that calculated with the standard Bohr-Wheeler
statistical model, which arises because fission is a quasi-
stationary diffusion process over the barrier. Second, ad-
ditional time is available for neutron emission during the
transient time needed for the system to build up the
quasistationary probability flow over the barrier, which is
affected by dissipation. Third, still more neutrons can
be emitted during the time required for the system to de-
scend from the saddle point to scission, which is increased
by dissipation.

In several experiments at high excitation energies, '

significant enhancements have been detected in the num-
ber of neutrons emitted prior to fission relative to the
number calculated with a standard statistical model. Pre-
vious suggestions for these enhancements have included

neutron emission both during the descent from saddle to
scission' '" and during the acceleration of the fission frag-
ments.

In the most recent of these experiments, ' the energies
and angular distributions of the neutrons emitted in coin-
cidence with fission fragments and evaporation residues
were measured for four reactions and were analyzed to
yield the number of neutrons emitted prior to fission and
the number of neutrons emitted from the fission frag-
ments. We have selected for detailed analysis the reaction
' 0+ ' Nd~' Er at 207 MeV, where 2.7+0.4 neutrons
are emitted prior to fission compared to 1.6 neutrons cal-
culated with a standard statistical model. Since this reac-
tion has the highest excitation energy and highest en-
hancement in the number of neutrons emitted prior to fis-
sion, its analysis permits us to determine an upper limit of
nuclear dissipation with greater precision than for the oth-
er reactions that were considered.

We present in Sec. II a general discussion of three ef-
fects of nuclear dissipation on neutron emission prior to
fission. This is followed in Sec. III by a calculation of the
average neutron multiplicity prior to fission, as well as a
comparison with experiment. Our conclusions are
presented in See. IV.

II. THREE PHYSICAL EFFECTS

A. Kramers's modification of the Bohr-Wheeler
statistical-model result

Bohr and Wheeler based their derivation of the fission
width I"f on phase-space arguments. framers was the
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first author to recognize that the value of I f is influenced
by nuclear dissipation. We denote by P the nuclear dissi-
pation coefficient divided by the inertia and refer to p as
the reduced dissipation coefficient; it has the unit of in-
verse time.

Describing nuclear fission as a diffusion process over
the fission barrier and using the quasistationary solution
of the Fokker-Planck equation, Kramers showed that the
dependence of I f on P is given by

ff=I f( I 1+[8/(2nio)]'l '"—p/(2nio)»

where coo is the frequency of the inverse harmonic-
oscillator potential that osculates the fission barrier at the
saddle point. Equation (1) is valid for all but very small
values of p/(2coo); in the limit p~0, the width I f should
approach 0 instead of I f. Since we are not concerned
here with such small values of p, we use Eq. (1) without
further qualification. In Kramers's derivation, the con-
stant I"f differs slightly from the expression derived b~
Bohr and Wheeler. In the present paper, we identify I I
with the Bohr-%heeler expression.

The dependence of I f on P/(2coo) is displayed in Fig.
1. For the value p/(2eoo) =1, which corresponds to criti-
cal damping in the inverted oscillator turned upright, the
reduction in the fission width is by over a factor of 2.
Since it is difficult to determine reliably either the tem-
perature dependence of the fission barrier or the nuclear
level density at the saddle point, both of which sensitively
influence the value of I f, it has not been possible to mea-
sure this reduction factor and thereby p.

B. Transient time required to build up
the quasistationary probability flow

The study of transients in the fission process offers the
hope of overcoming this difficulty and of deducing a
value of p from measured neutron multiplicities prior to
fission. This would be of considerable interest since data
on P are presently available only for heavy-ion collisions,
for which the overlap of the colHding nuclei is small and
the velocity of relative motion is high, and from the
analysis of the fission process during the descent from
saddle to scission. In contradistinction, an analysis of
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FIG. 1. Dependence of the fission width I f upon the reduced
dissipation coefficient P, calculated fmm Eq. (1}.

neutron multiplicities should yield more information on
the value of p deep in the nuclear interior.

This hope is based on the following idea. ' Following
Kramers's idea, we describe the fission process in terms of
a diffusive probability current over the fission barrier,
which is calculated by solving a Fokker-Planck equation.
At time r =0, defined by the onset of a nuclear reaction
inducing fission, the fission degree of freedom is in its
ground state and thus located near the minimum of the
fission potential. If the nucleonic degrees of freedom that
are excited by the reaction equilibrate quickly in compar-
ison with the characteristic time scales of the fission pro-
cess, we may view the fission degree of freedom as being
in contact with a heat bath of temperature T =(E'/a)'~,
where E' is the nuclear excitation energy and a is the
level-density parameter. The strength of the coupling is
determined by p.

The solution of the Fokker-Planck equation describes
the gradual spreading of the original probability distribu-
tion, with the probability current over the barrier rising
smoothly from 0 at time t =0 to the quasistationary value
calculated by Kramers. We denote by r the time required
for the current to reach 90% of its quasistationary value,
and refer to r as the transient time. The quantity r shows
a characteristic dependence on P/(2nii), where cubi is the
frequency of the harmonic-oscillator potential that oscu-
lates the fission potential at its ground-state minimum. '

For p/(2nii) (1, corresponding to underdamped classical
motion near the minimum, r is inversely proportional to
p/(2eo~). For p/(2oii) &&1, the transient time r increases
linearly with p/(2eoi). This is a consequence of the over-
damping of the motion, since the probability current be-
comes more and more viscous with increasing P.

During the time interval r needed for the probability
current over the fission barrier to attain its quasistation-
ary value, neutron emission is possible. If r is comparable
to the average lifetime r„=A'/I'„for neutron emission,
where I

„

is the neutron width, we expect to find of the or-
der of one more neutron emitted prior to fission than is
calculated with a statistical model. In this way, a rnea-
surement of the neutron multiplicity prior to fission may
yield information on r and thereby on p.

Whereas the transient time r depends very smoothly on
the excitation energy E', the neutron width I „rises
steeply with E'. According to Ref. 4, r„becomes com-
parable to r for reasonable values of p at excitation ener-
gies around 50 MeV for A =226. It is for such and
higher energies that a measurement of neutron multiplici-
ties is promising in the present context. Similar con-
clusions are drawn in Refs. 15 and 16.

Our above assumption that fission and neutron eva-
poration start from a prescribed equilibrium distribution
centered at the rotating ground-state minimum is valid
only when the equilibrium time ~~ is short compared to
both the neutron-emission time v.„and the transient time

Although these conditions are often satisfied for light-
particle-induced fission, they could be much less well sat-
isfied for the heavy-ion-induced reaction ' 0+ ' Nd

Er at 207 MeV considered here. In particular, neu-
trons could be emitted during the time required for the
system to evolve from the initial configuration of two
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touching spheres to the rotating ground state minimum.
Furthermore, especially for the higher partial waves,
where the potential pocket at the rotating ground state al-
most disappears, the system may never even reach this
shape but instead may fission immediately. Because of
the diffusive reaction dynamics, a given partial wave may
sometimes lead to a compound nucleus, while at other
times may lead directly to fission. It is therefore not pos-
sible to rigorously associate a certain type of reaction
mechanism with a given partial wave.

The above issues could be addressed by solving a mul-
tidimensional Fokker-Planck equation for the time evolu-
tion of the distribution function in phase space of collec-
tive coordinates and momenta, starting from an initial
configuration of two touching spheres. For this purpose,
the techniques used recently to solve a two-dimensional
Fokker-Planck equation' could perhaps be successfully
generalized. Such an approach represents an outstanding
problem for the future and will probably be required to
systematically reproduce the experimental results for all
the fissioning systems that have been considered. 'e ' We
hope that the results from the present analysis based on a
number of ideaHzations will stimulate the execution of
this ambitious program.

For our present reaction and the approximations made
here, the primary contributions to fission come from an-
gular momenta lying in the range 65k'& J &76A', with the
exact values depending on the viscosity coefficient and
transient time. For three angular momenta in this range,
we show in Fig. 2 fission barriers calculated with a mac-
roscopic model that includes repulsive Coulomb and cen-
trifugal energies and an attractive Yukawa-plus-expo-
nential potential. ' With the zero of potential energy tak-
en as the energy of the nonrotating spherical nucleus, the
barriers are plotted as functions of a fission coordinate r
defined as the distance between the centers of mass of the
two halves of the dividing nucleus. The nuclear shapes
are spix:ified by means of an axially asymmetric generali-
zation of the parameterization of Trentalange et al. ,

'

where the square of the perpendicular distance from the
symmetry axis z to the nuclear surface is expanded in a
series of even Legendre polynomials Pi„(z/zo), with zo
equal to one-half the distance between the two ends of the
shape. The shapes between the ground state and the sad-
dle point for a given angular momentum are taken to be
the equilibrium configurations for larger values of angular
momentum. The shapes beyond the saddle points are gen-
erated by following the dynamical evolution of nondissi-
pative ' Er nuclei constrained to remain axially sym-
metric about an axis that is rotating in space. ' ' The ter-
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FIG. 2. Fission barriers for '"Er corresponding to three
values of angular momentum J. The quantity Ro ——1.16 fm
(158)'» =6.27 fm.

minations of the fission barriers in the lower right-hand
corner of Fig. 2 correspond to scission configurations with
zero neck radius.

The resulting values of the fission-barrier height Ef are
shown in the second column of Table I. The third column
gives the values of the barrier frequency coo that were used
in the calculation of the transient time r. These were ob-
tained by performing normal-coordinate transformations
at saddle-point shapes constrained to axial symmetry,
with nuclear inertias calculated for nearly irrotational
flow by means of the Werner-Wheeler approximation.
For the calculation of the mean saddle-to-scission time r
to be discussed in subsection C, it is more appropriate to
use values of the barrier frequency coo that reproduce for
parabolic barriers with constant inertia the actual saddle-
to-scission times for nondissipative descents calculated by
numerically solving the classical dynamical equations of
motion for a unified macroscopic model. ' ' The corre-
sponding values obtained in this way are shown in the
fourth column of Table I. The fifth column gives the
values of the ground-state frequency cot that were used in
the calculation of the transient time r These were .ob-
tained by approximating the barriers by portions of in-
verted and upright parabolas that join smoothly, with
constant nuclear inertias.

In the subsequent calculations of the transient time ~

TABLE I. Parameters characterizing the '58Er fission barriers and inertias, used for the calculation of the transient time ~ and the
mean saddle-to-scission time t.

Angular
momentum J

(W)

Barrier
height Ef

(MeV)

6.10
4.05
2.51

Barrier frequency coo

for transient calculation
(]021 s

—1)

1.1S
1.03
0.91

Barrier frequency coo

for saddle-to-scission calculation
( 1021 s

—1)

1.82
1.67
1.54

Ground-state
frequency col

21 s —1)

0.88
0.75
0.61
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and the mean saddle-to-scission time t, both the nuclear
inertia and the dissipation are assumed to be independent
of deformation. Because of this, we are able to address
directly only the magnitude of nuclear dissipation and not
its mechanism. The latter must then be inferred indirectly

by relating the magnitude deduced here to the magnitude
corresponding to a given dissipation mechanism, suitably
averaged over deformation.

To enable the reader to form an idea of the competition
between the transition time r and the average lifetime for
the emission of the first neutron, we present in Fig. 3 our
calculated dependence of the transient time ~ upon the re-
duced dissipation coefficient P for angular momentum
J=65IIl. We see that for small values of p the transient
time has the nearly hyperbolic behavior referred to above,
although the underdamping of the motion for this range
of P gives rise to slight oscillations. This is followed by a
fairly flat plateau, which eventually turns into a linear in-
crease as P is increased further. We also note that r is
larger than the lifetime r„for the emission of the first
neutron. This strongly suggests that transients will in-
crease the theoretical multiplicity of neutrons prior to fis-
sion as compared to the result calculated with a statistical
model.

In order to quantify the influence of the time delay ~ in
the fission process on the neutron multiplicity, two steps
must be taken. First, it is necessary to have available an
analytical form for the time dependence of the fission
rate. Second, the time-dependent cascade-type coupled
equations for multiple neutron emission must be solved
using the analytical form for the fission rate obtained in
the first step. We break up the problem in this way since
the direct approach to the desired answer —a simultaneous
numerical solution of the Fokker-Planck equation for fis-
sion and the coupled equations for neutron emission —is
computationally difficult, despite recent progress in this

A/(t) = ——in[11(xo,t)] .
t

(2)

The rate AJ(t) vanishes at time t =0, whereas for large t
it attains the quasistationary value I'//Iri derived by Kra-
mers, with I / given by Eq. (1).

In Ref. 4, a parametrization for A/(t} was obtained
from analytical arguments. This parametrization was
found to be in reasonable agreement with numerical solu-
tions of the Fokker-Planck equation generated in the same
paper, at least as long as the classical motion near the
ground state is not overdamped, corresponding to P(2coi.
In recent work by Bhatt, Grange, and Hiller, this pa-
rametrization was extended to the overdamped case. %C
use a similar parametrization in the present paper, but
with a slight modification required by the condition that
for tab oo, the width A/(t) should approach the constant
I J defined in Eq. (1).

Let Ay (t) denote the quantity defined by the right-
hand side of Eq. (3.17) of Ref. 24 for the underdamped
case and of Eq. (3.26) of Ref. 24 for the overdamped case.
Since for large t the rate A/ (t) does not approach the
value I //R, we instead use here the rate

direction. In the remainder of this subsection, we
describe the parametrization of the fission rate that we
have used. The coupled equations for neutron emission
are introduced in Sec. III.

Let f(x,u;t} denote the normalized time-dependent
solution of the Fokker-Planck equation, with x the posi-
tion and u the velocity of the fission degree of freedom.
The quantity

rn~„r)=f '
ax f S.px;;r)

gives the probability for finding the system to the left of
the saddle point xII. The time-dependent fission rate,
evaluated at the saddle point, is then

A/(t) =A/~ (t)(I I '/fi)(2m/oui)exp(EJ /T), (3)

l2
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FIG. 3. Dependence of the transient time v upon the reduced
dissipation coefficient P, for angular momentum J=65k'. The
constant dashed curve gives the corresponding lifetime ~„for the
emission of the first neutron; this lifetime increases substantially
for the emission of subsequent neutrons.

which fulfills the conditions just mentioned. Here E& is
the height of the fission barrier and T is the nuclear tem-
perature measured in energy units.

The rate Ay (t) depends on the initial distribution

f(x,u;0), on the values of the four quantities coo Cui Ef,
and T, and on the reduced mass IM of the system in the fis-
sion degree of freedom. The variances and correlation
functions present in Eqs. (3.17) and (3.26} of Ref. 24 are
taken simply as those of a harmonic oscillator of frequen-
cy rui. For the temperature and barrier height envisaged
here this is a reasonably good approximation to the more
elaborate scheme proposed in Ref. 24. For f(x,u;0} we
use a Gaussian distribution centered at the minimum of
the fission barrier, with a width corresponding to an
equilibrium distribution at temperature T=0.3 MCV.
This distribution is supposed to mimic the distribution in
position and velocity variables ln thc nuclear ground state.
For p we use the reduced mass corresponding to sym-
metric fission of the appropriate nucleus along the decay
chain.

To calculate the nuclear temperature T, we determine
the internal excitation energy E' by subtracting from the



34 EFFECT OF NUCLEAR DISSIPATION ON NEUTRON e ~ ~ 213

total nuclear excitation energy the energy of the mtating
ground-state minimum, which is shown in Fig. 2 for three
values of angular momentum. For the level-density pa-
rameter a, we use two different values, corresponding to
neutron emission and fission. When calculating neutron
widths, as will be described in Sec. III, we use
a„=158/(7.5 MeV). When calculating the temperature
in the Bohr-Wheeler formula and in A/(t), we use slightly
larger values of a/ for reasons that will be described later.
As discussed earlier, values of the frequencies roo and cot

that enter our calculation are listed in Table I, together
with values of the barrier height E~ corresponding to the
first step of the chain.

For a typical example corresponding to angular
momentum J=65til and reduced dissipation coefficient
p=O. 5 X 10 ' s ', we show the behavior of A/(t) obtained
in this way in Fig. 4, where we plot the width irtA f(t) vs
time. The steep rise of the curve is superposed by slight
wiggles which are due to the underdamped character of
the motion for this value of P. The transient time v is ap-
proximately 6X 10 ' s, as can also be seen in Fig. 3. The
analogous behavior of A/(t) for dissipation that is 10
times as large is shown in Fig. 5.

As pointed out above, the quantity AJ(t) is the fission
rate evaluated at the saddle point. However, for a realistic
description it is necessary to evaluate the fission rate at
the scissian point. Because of the finite time needed by
the system to traverse the distance from the saddle point
to the scission paint, it is necessary to modify Al(t) as
given by Eq. (3). We use the simple argument that the
probability current that passes the saddle point at time t
arrives at the scission point at time t+t, where the mean
saddle-to-scission time t is determined below. We accord-
ingly calculate the fission rate A~(t) at the scission point
by putting

with A, (t) given by Eq. (3). The appraximate validity off
this procedure has been demonstrated in Ref. 24.

J=65&

O.OI 2 —————————————————

0.006—

OOOO
4 8 l2 l6 20

Time (IO s)

FIG. 5. Time dependence of the fission width AA~(t) at the
saddle point for angular momentum J =65% and reduced dissi-
pation coefficient p= 5.0X 10'' s

C. Mean saddle-to-scission time

The mean time t needed for the system to traverse the
distance from the saddle point to the scissian point was
calculated by use of the result 7—9,24

t= (I 1+[P/(2n)o)] I'~ +P/(2rgo))R [(b, V/T)'~ ],
where

R(z)= I exp(y')dy f exp( —x )dx
0

is a readily computed function studied and tabulated by
Rosser 5 and hV is the difference in potential energy be-
tween the saddle and scission points. This analytical ex-
pression is derived from Kramers's stationary solution of
the Fokker-Planck equation for an inverted oscillator.
The dependence of the mean saddle-to-scission time t
upon the reduced dissipation coefficient P is shown in Fig.
6 far three values of angular momentum.
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FIG. 4. Time dependence of the fission width AA~(t} at the
saddle point for angular momentum J=6SA and reduced dissi-
pation coefficient P=0.5 X 10 ' s

FIG. 6. Dependence of the mean saddle-to-scission time T.'

upon the reduced dissipation coefficient p, for three values of
angular momentum J.
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III. AVERAGE NEUTRON MULTIPLICITY
PRIOR TO FISSION

E,'=Eg' i —Bn,~ —i 2' i
——&R(s—,s —1} . (5c)

In Eq. (Sb), dd, is the angular momentum carried away
by the neutron ai the appropriate step. Phase-space argu-
ments show that this is accompanied by a redttction of
J, i. In Eq. (Sc), 8», is the neutron separation energy
of the nucleus with mass number A, i, and T, i is the
temperature of this nucleus. The energy difference
b,E(s,s —1) is due to the change of the energy of the yrast
line (the rotating ground-state minimum) connected with
the step s —1 ~s, corresponding to the change in angular
momentum given by Eq. (5b). If not terminated previous-
ly by fission, the process of neutron emission terminates

I

In this section, we present the calculations of and the
results for neutron multiplicities prior to the fission saddle
point or scission, using the parametrizations (3) or (4),
respectively, for the time dependence of the fission rate.
We calculate the neutron multiplicities by following in
time the competition between multiple particle emission
and fission.

Let the index s, with s =1,2, . . . , label the nucleus
reached after emission of s —1 neutrons prior to fission.
In the case of '5sEr, this nucleus corresponds to s =1 and
the nuclei reached by neutron decay are ' Er for s & l.
In the general case, the mass numbers A„values of angu-
lar momentum J„andaverage excitation energies E,' are
given by

(Sa)

at the latest when neutron emission becomes energetically
impossible. We denote this step by so, so that so —1 is the
maximum number of prescission neutrons.

Let P, (t) be the occupation probability in time of the
nucleus with mass number A, . We describe the processes
of neutron emission and fission by the set of coupled
equations

(6)

Equations (6) have the general form of master equations,
containing a gain term describing the feeding of P, by the
neutron decay of the previous nucleus, with associated
probability P, ,(t), and a loss term accounting for both
neutron decay and fission. The symbol A,,(t) stands for ei-
ther the rate Af, (t) at the fission saddle point or the rate
A,~,(t) at the scission point, as the case may be.

In evaluating the dependence of A,,(t) on A„we take
into account the dependence of the temperature T on the
excitation energy E,', which is given by Eq. (Sc). We also
take into account the small dependences of the frequencies
coo and cubi on the index s. This is done by interpolating
and extrapolating as functions of angular momentum J
the values of coo and coi given in Table I. In Eqs. (6), the
partial width I „'o—=0 at the beginning of the chain and
the width I„,=0 at the end of the chain. The difference

between the neutron widths I„,appearing in the loss
terms that describe the decay of the nucleus A, and the
partial neutron widths I „',appearing in the gain term is
described below. Equations (6} are solved numerically for
the appropriate initial values of angular inomentum, sub-
ject to the initial condition P, (0)=5, ,

The neutron decay widths are calculated by use of the
standard expression

2 J+l F. —Eo(I)—8„
I „(E,J)= y y f '

dE Tt(e)p [E—Ep(I) —8 —E,I] .
277p E~J

Here E is the total excitation energy including the energy
of the yrast level, Eo(I) is the energy of the yrast level of
total angular momentum I, and Tt is the neutron
transmission coefficient for a neutron with angular
momentum /. The level density p„ofthe residual nucleus
following neutron emission is given by

p„(E',J)= i (E') '~"exp[2(a„E'}'~],
with o denoting the spin-cutoff parameter. The level den-
sity p of the decaying nucleus is calculated in an analo-
gous fashion. The transmission coefficients Tt are calcu-
lated both by use of the optical-model program of Ref. 26
and that contained in the statistical-model GRoaI 2 pro-
gram. We find that both calculations yield identical re-
sults to within the required accuracy.

The partial neutron widths I „',appearing in the gain
term of Eq. (6) differ from the widths I„,defined by Eq.
(7) because in the gain term only those neutron decays
contribute after which fission is still competitive with

neutron decay. In calculating the partial widths I „'„we
therefore use Eq. (7) in a modified form. In the sum over
I we take into account only terms for which I&I;„,
where I;„is defined by the condition that the fission-
barrier height and neutron separation energy are equal,
namely Ef(A,I;„)=8„.

Equations (6) were solved numerically from tiine t =0
until time t =t,„,where t,

„

is twice the largest tran-
sient time r deduced from the parametrization of all rates
A, (t) enterin, g into these equations. For t & t,„,all the
rates A, (t) were , replaced by their asymptotic values I f.
Equations (6) can then be solved analytically, with the
solutions expressed in terms of the new initial conditions
P,(t,„),which are given numerically. In this way, the
solutions P, (t) were obtained for all time t & 0.

The definitions of P, (t) and A,,(t) imply that the proba-
bility of emitting s —1 neutrons prior to fission is given
by
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where J denotes the initial value of angular momentum

for which the calculation was done. The average neutron

multiplicity prior to fission therefore has the value

So So

Qf +
~n

ln 1+ +
2QPO

2[a„(E Ef)]'/—

v( J)= g (s —1)p,(J) g p, (J) . (10)
s=1 S=l

Equation (10) is evaluated for angular momenta in the
range 65fi&J &768. The average neutron multiphcity
(v) to be compared with the experimental data is then
obtained from the expression

(v) = g v(J)tr, b,(J) g tr,b,(J) . (11}
J J

For the absorption cross section o,b,(J) we use a rounded
triangular distribution, although it turns out that (v) is
quite insensitive to the precise form used.

Figure 7 shows the solutions P, (t) of Eqs. (6}, for
P=0.5&(10 t s ' and J=65k. The dashed curves are ob-
tained by replacing the rates A,,(t) appearing in Eqs. (6}by
the Bohr-Wheeler values I f/))t, whereas the solid curves
correspond to the choice A,,(t}=Af, (t). We see clearly the
enhancements of P, (t) in the full curves relative to the
dashed curves, which lead to an increase in the neutron
multiplicity.

The requirement that we must simultaneously repro-
duce the fission probability at low excitation energies im-

poses a relationship between af/a„and P, where af and
a„arethe level-density parameters for fission and neutron
emission, respectively. In the quasistationary limit, this
relationship can be obtained approximately from the con-
stancy of Eq. (1) for the fission width. When the pre-
exponential factors are neglected, the quantity I / that ap-
pears in Eq. (1}is proportional to expI 2[af(E Ef )]'
With af /a„=1 for P=O, it then follows that

2 1/2

Alternatively, for a given value of P the ratio af/a„can
be adjusted to reproduce the low-energy fission probability
over a range of excitation energy E', which is the pro-
cedure followed here. Our result is.shown by the dashed
curve in Fig. 8.

The above quasistationary approximation is excellent
for intermediate values of dissipation, where the transient
time v is relatively small. However, the long transient
times that occur for both small and large dissipation no-

ticably affect the low-energy fission probability, and hence
the dependence of af/a„on P that is required to repro-
duce it. As shown by the solid curve in Fig. 8, when tran-
sients are included in the calculation of the low-energy fis-
sion probability, the values of af/a„ for both small and
large dissipation are increased somewhat relative to those
calculated in the quasistationary approximation. %e use
these results with transients included in the self-consistent
calculations that follow.

Figure 9 shows the dependence of the average neutron
multiplicity (v) on the reduced dissipation coefficient P
for three cases. The short-dashed line marked SM at
(v) =1.6 refers to the statistical model (SM) and corre-
sponds to the predictions of the dissipation-independent
Bohr-Wheeler formula, with af /a„=1.0. The long-
dashed curve labeled T refers to transients and is obtained

by putting A,,(t)=Af, (t) in Eqs. (6}; it does not include
the influence of the mean saddle-to-scission time. As P
increases, this curve initially decreases to a minimum
value, then rises to a plateau, and finally decreases slowly.
This results from the dependence of the transient time on

P shown in Fig. 3 and the dependence of af/a„on P
shown in Fig. 8. The solid curve labeled SST refers to
saddle-to-scission time and is obtained by putting
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FIG. 7. Time dependence of the solutions P, (t) of Eqs. (6),

for angular momentum J=65fi and reduced dissipation coeffi-
cient P=0.5&&10 ' s '. The transient time r is included in the
solid curves, whereas the dashed curves refer to the Bohr-
Wheeler value for the fission width.

FIG. 8. Dependence of the ratio af/a„of level-density pa-
rameters for fission and neutron emission upon the ratio
P/(2t00) of the reduced dissipation coefficient to twice the bar-
rier frequency, determined from the low-energy fission probabil-
ity. The dashed curve gives the result when Eq. (1) alone is tak-
en into account, and the solid curve gives the result when the
transient time is also included.
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the solid curve lies somewhat below the experimental band
for intermediate values of dissipation, we do not feel that
the comparison suggests two separate regions of allowed
dissipation because of the sensitivity of the results to the
input value of the fusion cross section and other details of
the calculations.

IV. CONCLUSION

0
0 2 4 6

Reduced Dissipation Coefficient p (10n s'}

FIG. 9. Average neutron multiplicity ( v) vs the reduced dis-

sipation coefficient P. The curves labeled SM, T, and SST refer
to the statistical model, the inclusion of transients, and the in-

clusion of both transients and the mean saddle-to-scission time,
respectively. The experimental result (Ref. 14) is given by the
shaded band, whose upper intersection with the solid curve
determines the upper limit of P indicated by the vertical dashed
line.

A,,(t)=A, ,(t) in Eqs. (6). It includes both the transient
time r needed to build up the full current over the saddle
point and the mean saddle-to-scission time t displayed in
Fig. 6. The solid curve lies above the long-dashed curve
by an amount that increases monotonically with increas-
ing dissipation, but it is qualitatively similar and still con-
tains a minimum.

For the reaction ' 0+' Nd~' Er at 207 MeV that
we have been considering, Gavron et al. ' find that the
average number of neutrons emitted prior to fission is
2.7+0.4. This result is shown by the shaded band in Fig.
9. The inclusion of transients and the mean saddle-to-
scission time therefore provides an interpretation of the
enhanced neutron emission prior to fission. Also, by com-
paring the upper limit of our experimental result with the
solid curve in Fig. 9, we obtain the hmit P(5)&10 ' s
for the reduced nuclear dissipation coefficient. Although

We have presented a formalism for taking into account
the effects of transients and the mean saddle-to-scission
time on neutron emission prior to fission. In terms of this
formalism, we have provided an interpretation of the
enhanced neutron emission prior to fission that is ob-
served in the reaction ' 0+' Nd~' Er at 207 MeV.
This analysis has also determined the limit P(5&(10''
s ' for the reduced nuclear dissipation coefficient.

The particular reaction that we have analyzed was
chosen because its high excitation energy leads to a high
enhancement in the number of neutrons emitted prior to
fission, which permits the determination of a useful upper
limit of nuclear dissipation. Similar enhancements have
also been observed experimentally in several other nuclear
reactions. In future work, these reactions should be sys-
tematically analyzed by use of either the formalism
presented here or—better still —by solving a multidimen-
sional Fokker-Planck equation for the time evolution of
the distribution function, starting from an initial configu-
ration of two touching spheres. Such a study should not
only set more stringent limits on nuclear dissipation, but
also provide more accurate values of af/a„ than have
been available in the past.
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