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The electromagnetic field representation of the nuclear electromagnetic interaction is developed,

by extending previous work on the nuclear current (one-photon amplitude) to the nuclear Compton
amplitude. The resulting form of the Compton amplitude is gauge invariant and, in transverse

gauge, manifests the low-energy theorems for the 0+~0+ case, which is discussed in detail. Deute-
ron forward photodisintegration is also studied numerically, and it is shown that the generalized
Siegert form of the retarded electric dipole interaction efficiently incorporates pion-exchange
currents implicitly, while large explicit forms of these currents are needed in the standard represen-
tation of the interaction. Gauge invariance and Reiss s strong-field momentum-translation approxi-
mation are also discussed.

I. INTRODUCTION

The history of electromagnetic nuclear physics is large-
ly a story of the use of perturbation theory, if one ex-
cludes those cases where the Schrodinger, Dirac, or
K.lein-Gordon equations are solved with a static Coulomb
potential included. One obvious exception to this general
rule is the fie1d of radiative corrections' to electron-
nucleus scattering or nuclear P decays. Not only is per-
turbation theory the rule, but the preponderance of appli-
cations employ first-order perturbation theory in e, the
(positive) fundamental charge. To a much lesser extent,
applications involving second-order perturbation theory
(two photons) are considered.

The two-photon (nuclear Compton) amplitude is a
basic building block for a number of nuclear physics ap-
plications. Virtual excitation of the nucleus during elec-
tron scattering (dispersion corrections) ' involves a
minimum of two electromagnetic interactions, as do the
analogous polarization corrections in atoms. The elec-
tromagnetic energy shift in a nucleus is calculated in
lowest order using the Compton amplitude, and certain
sum rules are best discussed by considering the properties
of that amplitude.

Recently, nuclear Compton (elastic photon) scattering
has become a more viable experimental tool; high intensi-
ty cw beams of electrons can produce experimentally use-
ful beams of "tagged" photons, eliminating the necessity
of using broad-spectrum bremsstrahlung beams. Al-

though few nuclear Compton scattering experiments have
been performed, there is a real hope that in the near future
such experiments will be much more common. Recent ex-
periments have provided exciting new data that have
resisted theoretical interpretation. In addition, a recent
0+ —+0+ two-photon decay experiment' has found evi-
dence of strong M 1-M 1 competition with the dominant
E1-E1 decay mode in Zr and Ca, an entirely unex-
pected result. The latter experiment is theoretically indis-
tinguishable from nuclear Raman scattering (inelastic
photon scattering). In the more distant future the
development of a gamma-ray laser" or a very intense
XUV free-electron laser' could lead to multiphoton ab-
sorption and excitation of low-lying nuclear states, which
would be a new experimental technique for electromagnet-
ic nuclear physics.

Until this decade, interest in multiphoton (nr &2) nu-
clear processes was virtually nonexistent. The recent con-
troversial proposal by Reiss' that very-high-intensity
long-wavelength electromagnetic waves could alter P-
decay rates has modified the situation. Calculations of
these processes must allow for the possibility of emitting
or absorbing many orders of magnitude of (very low ener-

gy) photons. Clearly, formalisms which are nonperturba-
tive must be used. The interaction of the outgoing elec-
tron with the wave is treated by using Volkov's wave func-
tion, ' an exact solution of the Schrodinger, Dirac, or
Klein-Gordon equations in the field of a classical travel-
ing wave. Considerations of gauge invariance require a
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commensurate treatment of those nuclear processes in-

volving multiphoton interactions. This has been done by
Reiss the nuclear wave function which results is called
the momentum-translation approximation (to the exact
solution) or, simply, the MTA solution. Its genesis will be
considered in Sec. VI. In view of the recent experimental
and theoretical work which involves multiphoton process-
es and prospects of much more in the future, it is timely
to consider electromagnetic nuclear processes from a uni-
fied perspective and this motivates the current work. Be-
cause many approaches are possible and because the histo-
ry of these approaches is tangled and virtually unknown
to nuclear physics, we outline the latter below in order to
clarify our approach herein. Moreover, we treat a number
of diverse topics, superficially unconnected, which are
nonetheless intimately related, as we show below.

II. MOTIVATION

Although atomic and nuclear physics share a common
origin, and to a large extent a common methodology for
treating theoretical problems, there are qualitative differ-
ences, particularly for electromagnetic interactions.
Atomic binding is achieved via the exchange of neutral
quanta (i.e., photons), while roughly half of the nuclear
binding is mediated by the exchange of charged constitu-
ents (e.g., mesons), which must be reflected in a sizable
component of the electromagnetic current, J(x). These
nonrelativistic meson-exchange, or potential-dependent,
currents J,„(x), modify the ordinary nonrelativistic con-
vection and spin-magnetization currents common to
atomic and nuclear physics: Jo(x).

The electromagnetic current operator, J(x), and charge
operator, p(x), must satisfy differential current conserva-
tion, in order that charge be 1ocally conserved:

V J(x)= —i[H,p(x)]= —p(x),
where H is the strong interaction Hamiltonian. Writing
J=Jo+ J,„, and H = T + V, one finds that Jo on the left-
hand side of the equation is conserved if one matches it
with the kinetic energy, T, on the right-hand side, while
the existence of J,„corresponds to the lack of commuta-
tivity with p by those parts of the potential, V, corre-
sponding to charged-meson exchange.

These considerations have led to considerable theoreti-
cal concern about a consistent methodology for treating
photonuclear reactions, in the absence of a detailed physi-
cal understanding of the origins of the nuclear potential,
V. Such a methodology was initiated by Siegert, ' who
demonstrated that the long-wavelength form of the elec-
tric dipole current operator is completely determined by
the electric dipole moment, calculated from the charge
operator. Defining [with f d x p(x)=Z]

J(q)= f d x e'q'*J(x) (2a)

p(q)= f d x e'q'*p(x),

J(q=0)= f d'x J(x)= —f d'x x V.J(x)

=i [H,D] icof, Df, , (3)

and evaluating the commutator; repeating the process gen-
erates the fourth form. Because repeated cornmutators in-
volve derivatives of the potential, the latter two forms are
probably not very useful in nuclear physics These. forms
will„however, play a role in our subsequent discussion.
Although there is no need, in principle, to rely on current
conservation to ensure that atomic electric dipole matrix
elements are correctly calculated, in practice it can be use-
ful in two cases: (1) approximate wave functions in
many-body systems (either atomic' or nuclear' ) will not
satisfy Eq. (3), and (2) including relativistic corrections to
order (U/c) introduces a plethora of messy components
to the atomic Hamiltonian and electromagnetic current
operators, while the charge operator remains quite sim-
ple 21

In nuclear physics, the restriction of Siegert's theorem
to long wavelengths is acceptable provided that photon
energies are not too high. Writing the photon wavelength

A (fm) =2~(Pic )/Er ——1240/Er (MeV ),
we see that energies approaching 100 MeV are needed be-
fore there is substantial retardation. (Recognizing that
irrc=1973 eV A illustrates why retardation effects are
much less important in most atomic applications, where
sizes are typically 1 A.) Nevertheless, at a very early date
Sachs and Austern provided a generalization of Siegert's

where D= f d x xp(x), and the last form results from
taking matrix elements. Siegert also demonstrated that
the nonrelativistic form of the charge operator should be
dominant, and therefore D is given by the classical ex-
pression, g,".

i e;x,', where e; is the charge of the ith nu-

cleon in units of e, and x,' is the coordinate of that nu-
cleon relative to the nuclear center of mass. These two
elements comprise what is known as Siegert's theorem,
which forms the backbone of photonuclear physics be-
cause it affords a simple interpretation of electric (normal
parity) transitions and obviates the need for explicit forms
of the exchange currents, whose short-range behavior is
not known.

Atomic physics has the advantage over nuclear physics
in knowing the form and origin of the binding potential.
Consequently, there is less need to work with general prin-
ciples, such as current conservation, because the models
which are used should satisfy those general principles au-
tomaticaiiy. Consequently, more diverse forms of the
electromagnetic interaction are used' (or at least defined).
In the long-wavelength regime, these forms are (1) dipole
velocity, (2) dipole length, (3) dipole acceleration, and (4)
dipole rate of change of acceleration. The ordinary con-
vection current, J, = ep/mc= ev/c, forms the basis of the
(standard) dipole-velocity form. The dipole-length form is
just the Siegert current, Eq. (3). The third form is gen-
erated by formally writing

1fiJc/fi= [Hill ~

Q)fl
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y(x) = —,
' xXJ(x), (4)

the magnetization density operator. Thus, the residue of
the current which is not determined by current continuity
is given by the magnetization density. This approach was
later extended to all orders in the retardation for each of
the electric multipoles, and provided a generalization of
Siegert's theorem, or the dipole-length formula.

Subsequently, we provided a detailed exposition of
these results with several new features. A "trick" was
found which allowed a de:omposition of the current into
the p(x) and )u, (x) parts without making a multipole
decomposition, requiring only that there be no singularity
in J(q) as a function of q. The uniqueness aspect of the
decomposition is obscured, however, in the simplicity of
that rearrangement. If was also found that the effective
(one-photon) Hamiltonian could be changed from

+em —e xJx Ax+e xPx x (sa)

to

H,'I = —e J d x E(x).d(x) —e f d x B(x) m(x),

where

d(x)=x J di, p(x/A, )/A, "

m(x)=2 I di, p(x/A. )/A, (5d)

and E and B are the electric and magnetic fields. The
electromagnetic potentials A and P do not explicitly ap-
pear in Eq. (5b).

Additionally, the asymptotic forms of the operators d
and m (large

~ q (, or small
~

x
~

) were found to be dif-

work by requiring that gauge invariance hold for the nu-

clear Hamiltonian. The resulting expressions for the elec-
tromagnetic interaction were written in a form which was
inconvenient to use and difficult to interpret. Conse-
quently, this highly novel work has been mainly used as a
"justificatio" of Siegert's theorem.

Our own work on this problem began with a demon-
stration that Siegert's theorem, suitably modified to ac-
count for relativistic corrections, was a simple way to
treat the transition strengths of intercombination lines in
He-like atoms. ' These lines correspond to I'& ~'So
spin-flip (i.e., forbidden) electric dipole transitions. Be-
cause the ordinary nonrelativistic electric dipole operator
cannot flip spin, these lines are weak, and relativistic
corrections to operators compete with spin-dependent re-
tardation corrections (to the long-wavelength limit). It
was found that the leading-order retardation corrections
could be grouped into two categories by using a symmetry
criterion; after expanding the electric dipole transition
operator as a power series in the photon's momentum
operator, q, the terms were rearranged according to per-
mutation symmetry in the (vector) indices on the various
q's. All of the purely symmetric terms were found to be
proportional to V J, which could be replaced by p accord-
ing to Eq. (1), while the remaining terms were shown to be
proportional to

ferent from the corresponding p and J, and this pointed
out a possible serious problem at short (photon) wave-
lengths. A numerical calculation by Haxton' with one of
us demonstrated that, for nuclear models which are not
inherently current conserving, removing defective small-q
behavior according to the generalized Siegert prescription
introduces a serious high-q problem. Our new electric
multipole fields should not be used for the large momen-
tum transfers associated with high-energy electron scatter-
ing for such models; we will show by means of an explicit
calculation in Sec. IV that these fields work exceptionally
well at modest momentuin transfers corresponding to
high-energy photon absorption, where retardation is im-
portant, but does not completely dominate.

%Rile completing the work discussed above, we
discovered that Sach's and Austern's expressions for the
Fourier transform of the current could be manipulated
into our forms. In retrospect this is perhaps not terribly
surprising in view of Eq. (5b), which is manifestly gauge
invariant, although we have already enumerated a number
of alternative forms for the electromagnetic interaction,
and the form (5b) above is only one of them. We were
subsequently informed that Foldy had also completed
the Sachs and Austern derivation using a (different) trick
of his own. All of the one-photon work discussed hereto-
fore treated the Fourier transform of the internal parts of
the current; the convection current of the entire (compos-
ite) nucleus was separated and ignored. The latter van-
ishes in transverse gauge for all q-congruent frames,
where the average nuclear velocity, V, is parallel to q or
null:

V=(Pf+P;)/2m, ,

expressed in terms of the initial (P;) and final (Pf) nu-
cleus momenta and the total nuclear mass, m, =Am.

In view of the overlap of different approaches separated
in time by decades, it is not surprising that similar work
has also been performed in other fields of physics. Com-
petely unaware of the nuclear physics approach (and
vice versa), Power and Zienau (PZ) developed Eqs. (5) as
a power series by means of a canonical transformation,
keeping only the first few terms. This atomic physics
work was motivated by a question which arose in the orig-
inal Lamb shift experiment: In calculations which are
only perturbative, which form of the electric dipole in-
teraction, velocity or length, works better? Their con-
clusion that the dipole-length form (i.e., the Siegert form
of the current) is better in most cases is supplemented by
many delightful examples in Power's book. Independent-
ly, Fiutak developed the electric field part of Eq. (5) in
closed form (i.e., a summed series) using a canonical
transformation. Later, in the context of mo1ecular phys-
ics, closed form versions ' of PZ were developed, and
the long-wavelength dipole-acceleration variant of the
electric dipole operator was generalized to the "space-
translation" form of the electromagnetic interaction. The
latter explicitly involves derivatives of the binding poten-
tial, and for this reason is probably not very useful in nu-
clear physics.

Amplitudes for processes such as Compton scattering,
which involve more than one photon, necessarily contain
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energy denominators if a perturbative expansion is per-
formed. Moreover, recoil (center-of-mass) motion (a
consequence of translation invariance) is traditionally an
important consideration in nuclear physics and is ignored
in atomic physics. In developing the low-energy (long-
wavelength) theorems for Compton scattering which are a
consequence of gauge invariance, the standard methodolo-

gy is to find those combinations of terms which contain
factors that exactly cancel energy denominators. If these
denominators contain recoil energies, the nuclear convec-
tion current, which played an insignificant role in one-
photon processes, must be consistently treated also. In
Sec. III we develop a form of this current, consistent with
Eqs. (5b) and (6), which is necessary for a treatment of the
Compton amplitude. In Sec. IV we demonstrate the effi-
cacy of our one-photon formalism in the context of deute-
ron photodisintegration. In Sec. V the two-photon am-
plitudes are developed which are gauge invariant and
manifest the low-energy theorems. In Sec. VI we present
a discussion of gauge invariance3 which clarifies the
origin of our expressions for the electromagnetic interac-
tion, and allows a consistent treatment of other processes,
such as P decay in the presence of an external electromag-
netic field. ' In Sec. VII we apply our formalism to
0+~0+ two-photon emission. In Sec. VIII the
momentum-translation approximation is derived and its
role as a complex gauge, or seagull, term is explicated. Fi-
nally, we present our conclusions in Sec. IX.

III. ONE-PHOTON OPERATORS

A detailed derivation of the internal (i.e., no c.m. part)
one-photon operators has been given elsewhere. The pri-
mary result is that the internal electromagnetic current
can be rearranged into the form

J; i(q) =i [Hp, d(q)] —iq&&mp(q),

or

R. Clearly, the total nuclear energy corresponding to H
is E„+ER. We previously defined the average velocity,
V, corresponding to the matrix element of any operator,
0.

mPI ' nP; =V IPy 0 nP;
~

~
IP 0I

2m,
(10)

V d(x) = —p(x)+Z5 (x), (12a)

or

q d(q)= —i(p(q) —Z) . (12b)

The c-number terms proportional to Z commute with Hp,
and were not included in Ref. 24. Thus, Eqs. (7) are a for-
mal rearrangement of J(q), which isolates those terms
determined by V J(x), and then uses current continuity to
produce a final current which satisfies current continuity,
which is equivalent to gauge invariance for one-photon
amplitudes. The rearrangement process dealt only with
internal nuclear coordinates, the nuclear recoil or convec-
tion current

P
Jgogy(x) y p(x)

2m,

having been ignored.
In order to include the recoil current, we must first ex-

amine the consequences of translation invariance in the
matrix elements of any operator, O(x):

In addition to V, one defines the momentum transfer:
q=Pg —P;.

We note that Eqs. (7) correspond to a conserved
current, which follows from Eq. (1) or

q J.«q)=i[Hp q d(q)]=[Hp p(q)]

because one can show that "

J;„,(x)= i [Hp, d(x)]+ V„Xmp(x), (7b) (fPf i
o(x) iiPf) =e ' (fPf i

o(0) iiP[),
where Eq. (7a) is the Fourier transform of Eq. (7b) and
the subscript "0" refers to the internal part only. More-
over,

and for its Fourier transform

(14a)

II=Ho+a
Hp i

n) =E„
i n),

(Sa)

(Sb)

f d'xe'q "(fbi O(x) iiP, &

=(2n) 5 (PI —P; —q)(fP~ i
O(0) iiP;) . (14b)

P
i
nPp& =Pp

i nPp),

inPp)=e ' in&,

Hg i nPp) =Eg
i
nPp) .

(9c)

(9d)

with ER ——P+2m, and m, =Am for a nucleus composed
of Z protons and N neutrons with a common nucleon
mass, m. %e have assumed translation invariance, label-
ing states with the momentum of the composite nucleus,
which couples to the nuclear center-of-mass coordinate,

where Hz is that part of 8 corresponding to center-of-
mass motion,

Hg ——P /2m, ,

Equations (14) apply to each matrix element in perturba-
tion theory, and lead to overall momentum conservation;
they work without difficulty for nuclear operators such as
the nonrelativistic charge and current operators which
contain locality-preserving 5 functions:

p(x)= ge;6 (x—x;) . (15)

Separating the coordinate of the ith nucleon, x;, into the
center-of-mass coordinate, R, and a part, x,', relative to
the center of mass, and using Eq. (9c), immediately pro-
duces the results of Eqs. (14).

If one tries the same procedures for the operator d(x)
defined in Eqs. (5), one finds the unsatisfactory result
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(fPI (d(x)((P;)=x I ~
e

J„„„(q,V) =ZV i q X [d(q) XV]+ironed(q), (21a)

X(fPf ~p(0) ~iP;), (16)

whose origin lies in the superposition of 6 functions impli-
cit in Eqs. (5c) and (15). In fact, d(0) is infinite; as shown
explicitly in Ref. 19, the singular part is

d, (x)- dzz p(z) .
0

(17)

q.J „„=q.Vp(q) =re~ p(q), (20)

and ~z ——(Pf —P;)/2m, is the recoil energy. If we use the
same technique to rearrange J„„„that we employed in
Sec. II of Ref. 24, and treat V as independent of q, we ob-
tain

This implies that

V d, (x)-Z5 (x),
which is the singular part of Eq. (12a) and is the origin of
the unphysical behavior at large momentum transfers (i.e.,
small x) discussed in Sec. II. An identical singular term is
also present in mo(x) and cancellation occurs if and only
if current continuity holds. In electrically neutral systems
the singularity is not present. Thus, the rearrangement
separates the new form of the current into two terms
which separately violate translation invariance, while to-
gether they satisfy that condition, provided that current
continuity holds for the original (i.e., dipole velocity) form
of the current. For our purposes this is completely unsa-

tisfactory, because our motivation was to produce a con-
served current from one which is not necessarily con-
served.

Precisely the same problein has arisen before in a dif-
ferent guise. Occasionally one encounters in the literature
the "translation noninvariant" magnetic moment opera-
tor. This spurious term arises from Eq. (4) for the mag-
netization density operator. Using

p= —,
' f d x xXJ(x),

one finds that p, has a component proportional to R in
addition to the usual magnetic moment operator which
depends only on relative coordinates. Matrix elements of
p, (x) do not satisfy translation invariance, Eqs. (14),
whereas the original current did. Indeed, the R term can
be shown to arise from expanding the plane wave factors
in Eq. (14a).

The obvious solution to the problem is to take matrix
elements of the current and extract all momentum con-
serving 5 functions before rearranging from the "stan-
dard" representation (H, ) to the "electromagnetic field"
(EMF) representation (H,' ). This procedure leads to a
proper magnetic moment operator which depends only on
internal coordinates, and to the results of Ref. 24. Matrix
elements of J, „„canalso be calculated in the same way.

J„„„(q,V) = f d x e'q*(Pf
~
J„„„(x)

~
P;)~Vp(q),

(19)
where

J„„„(x,V)=ZV5 (x)+V„X[d(x)XV]—V V„d(x),

(21b)

where

=ZV+i [H,d(q)] —iq X m(q, V), (22a)

q J(q, V)=[H,p(q)] (22b)

m(q, V) =mo(q)+ d(q) X V .

Rearranging Eq. (12b) leads to

p(q) =Z+iq d(q),

(22c)

(22d)

and, therefore, by combining Eqs. (22) the four-vector
current can be written as

J~(q, V) =(p(q), J(q, V) )=J~ (q, V)+ EJI'+J'i',

J~p, (q, V) =(Z,ZV),

5J"=i (0, [H,d(q)] —qod(q) ),
J" i'(q=d(q) qod(q) —qXm(q V))

(23a)

(23b)

(23c)

(23d)

where we have added and subtracted a term, iqod, propor-
tional to the frequency, qo, of the electromagnetic wave.
Note that q&J'"=0, without enforcing energy conserva-
tion, and holds for both real and virtual photons.

It is possible to obtain other forms of J„„„,but none
that mirror Eqs. (7). We have also paid a price for the
rearrangement; what was originally a single term has be-
come three, one of which is a point-particle current, J~„
which cannot excite the nucleus. We reiterate that in a
q-congruent frame and transverse gauge J„„„vanishes, as
does J~,. In Eq. (22a) this is accommodated by the mutu-
al cancellation of the last two terms.

IV. APPLICATION TO DEUTERON
PHOTODISINTEGRATION

Deuteron forward photodisintegration offers a perfect
testing ground for exploring the efficacy of our technique.
This process is very sensitive to spin-dependent operators,
and the dominant part of the meson-exchange currents
(pion exchange) are spin dependent. We stated earlier that
it is pointless to treat this process using any method
which does not incorporate Siegert's theorem in the long
wavelength limit. A traditional form of the electric mul-
tipoles (e.g. , as summarized in Refs. 23 and 24) does this,
but differs from our form. Keeping only (transverse) elec-

where it is understood that all center-of-mass coordinates
have been removed from the problem. For example, we
would replace x; by x,' in Eq. (15). A simple rearrange-
ment of Eq. (21a) demonstrates that it is equivalent to Eq.
(19). Moreover, it has precisely the form we exhibited in
Eqs. (7), if we replace Ho by H and define

J(q, V) =J;„,(q)+ J„„„(q,V)
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tric dipole terms up to order q, these forms are

2

J,ig-i[HO, (D—q 0/5)]+ N, ig,

and from Eqs. (7),

J„,„=i[HO,(D—q 0/30)]+ N„,„, (24b)

where

Ig ~ixi+i

N„,„=f d x xXp, (x),

N, lz
—— xxx J x

In addition, the N terms can be decomposed into orbital
(N, ), pion-exchange (N ), and spin magnetization (Ns)
components. Because the latter is solenoidal, it is the
same in both representations. Explicit forms of all com-
ponents of N„,„were presented in Ref. 33. We have sup-
plemented that work by also calculating the pion-
exchange parts of N, iq, so that a direct comparison of all
components of the retarded electric dipole operator could
be made.

The various retardation terms are plotted in Fig. 1

versus photon energy, which depicts the percentage
change in the forward photodisintegration cross section
resulting from adding the retardation terms (-q ) to the
unretarded (i.e., q =0) electric dipole operator in Eqs.
(24). The Reid soft core two-body potential was used.
The largest correction arises from the spin-magnetization
term, Ns, while the 0 term is 6 times larger in the old

representation than in the new. The two versions of the
orbital part of N are comparable, though generally small-
er in the new form. The pion-exchange currents contri-
bute much less in the new representation. If the entire
meson-exchange contribution was included in such a way
as to guarantee a conserved current, the sum of all terms
would be the same. This will not he exactly true for the
pion-exchange currents, which are only the longest-range
part of the meson-exchange currents, but is nonetheless
approximately true.

Table I lists the percentage corrections to the unretard-
ed (i.e., q =0) E 1 cross section for the impulse approxi-
mation and for the pion-exchange current contributions
(included in the operators N) at a photon energy of 120
MeV. The latter are further decomposed into the isobar
current (which is solenoidal}, E~, the seagull current,
%so, and the true-exchange current, N,„,and are plotted
in Fig. 2. The solenoidal terms, Nq and N~, must be the
same in both representations. The remaining contribu-
tions are highly formalism dependent. Moreover, the
latter terms are much larger in the "old" form than the
"new, " and strongly tend to cancel. This is particularly
true for the sum of impulse and exchange currents (la-
beled "total" in Table I}. They are not precisely the sum
of the entries (they enter nonlinearly), but differ by less
than 10%. This small difference in the total illustrates
the primacy of the pion-exchange currents for the deute-
ron case. A related observation was made several years
ago by Arenhovel. The smallness and lack of cancella-
tion among the nonsolenoidal terms demonstrates the su-
periority of the "new" forms.

We stated earlier that the new forms can be inferior to
the old ones for very large momentum transfers, and we
have demonstrated here that they are superior for small
(or modest) momentum transfers. Where is the break-
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TABLE I. Percentage contributions of the retarded to unre-
tarded E1 deuteron forward photodisintegration cross sections
at ~~=120 MeV using the "old" and "new" forms given by
Eqs. {24a) and (24b}, respectively. Each of these forms is broken
down into impulse approximation and meson-exchange-current
contributions, and their total. The MEC contributions are sub-
divided into isobar, seagull, and true-exchange contributions, la-
beled 5,, SG, and ex, respectively. The designations 0 and S
refer to the convection and spin-magnetization parts of the im-
pulse approximation current. Columns do not add precisely to
the totals, because cross sections are quadratic in the ampli-
tudes.

FIG. 1. Various retarded E1 contributions to the deuteron
forward photodisintegration cross section, as a percentage of the
unretarded contribution, plotted vs photon energy. The designa-
tions old and new refer to Eqs. (24a) and {24b), respectively,
while 5 labels the spin-magnetization contribution to X from
the impulse approximation, 0 labels the convection current con-
tribution, and m labels the pion exchange-current contributions.

Imp

MEC

Tot

—1.7
—0.2
—0.1

—1.7
12.6

—5.9

0.6
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vertex function satisfies the symmetry condition

Bso(x,y)=Bso(y, x). As we stated earlier, gauge invari-
ance for H~ implies that the charge and current opera-
tors satisfy current conservation. If I,' ' is included, the
additional requirement is

[J (x),p(y)]=iV„Bso(»y)

or, in momentum space,

9'2
[&.«qi»p(q2)f = — p(qi)p(qt)

x,„(Ne~)
"ex (Oe} +q 2BSG ('ql q2) '

k km (26b)

-10
0

I s i g i I a s i i l i i s s l a i s i l i i t i l

20 40 60 80 100 120

(MeY)
140

even point? While we have no precise answer to this ques-
tion, we note that one important scale is provided by the
analytic structure inherent in many problems: the loca-
tion of branch points in the complex parameter lane,
which determine the convergence of power series. For
electromagnetic interactions the appropriate parameter is
q. For the elastic form factor the "edge" of the nucleus
introduces a branch point at q =+is, where Ir =+2MEa,
and Ea is the binding energy of the least bound wave
function component. For photonuclear reactions, the ana-
lytic structure is more complicated because there is an ex-
tra variable, p, the momentum of the outgoing nucleon
(either one in the deuteron case). For fixed p the branch-
ing ratios are located a distance ~ above and below the
real axis, which again sets the scale. Typically, this value
is 100 MeV/c. A reasonable guess is that the efficacy of
the "new" form of the electric multipoles extends to twice
that value (q =1 fm '}.

FIG. 2. Various retarded El pion-exchange-current contri-
butions to X of Fig. 1„as a percentage of the unretarded con-
tribution, plotted vs photon energy. The labels b, SG, and ex
refer to the isobar, seagull, and true-exchange parts of the pion-
exchange current, while old and new refer to Eqs. (24a) and
(24b), respectively.

An equivalent statement can be obtained from crossing
(m~n, x~y). Notei the ro:oil term (-1/m, ) in Eq.
(26b).

The two-photon amplitudes have the graphical form
depicted in Figs. 3(a)—3(c), with all photons taken as in-
coming. The substitution rule gives the corresponding
two-photon emission, two-photon absorption, and photon
scattering amplitudes. For the latter process, E' =f defines
the (elastic) nuclear Compton case, while i =ground
statey-"f is the nuclear (Stokes} Raman (i.e., excitation)
case and i&f=ground state is the (anti-Stokes) Raman
(i.e., deexcitation) case. The intermediate state n is any of
the states (8b}. The three processes depicted in Figs.
3(a)—3(c) are the "direct, " "crossed, " and "seagull" pro-
cesses. The corresponding S-matrix element is

Sf; — l'e NiN2(2n) 5 (Pf P q' q2)'
&[T""(qi q»«q»e"(qi)l (27}

0 0'91+V2 ~0+R

where

0 0
co0——Ef—E; .

The amplitude T""has the form

(28a)

(28b)

where N;=((n);/2';)'~ is the normalization factor for
photon i (with occupation number (n );, usually taken to
be 1) and ei'(q} is the polarization four vector of a photon
with momentum q. Conservation of energy requires that

V. T%'0-PHOTON AMPLITUDE

The standard representation for the nuclear electromag-
netic interaction has the form

H, =e dx px x —Jx-Ax
2

+ f ti x f 1 y Bso(x,y)A (x)A "(y)+. . .

h

I f

f/VSSE/Zjg/Z/
h

(25)

where we have included the seagull (A ) terms explicitly
and indicate with the ellipsis that there will, in general, be
higher-order (in A) terms arising from meson currents.
To the best of our knowledge none of these higher-order
terms have ever been calculated, although the pionic con-
tributions to 8~~ were calculated long ago. ' The seagull

FIG. 3. The direct, crossed, and seagull components of the
nuclear Compton amplitude are depicted in (a), (b), and (c),
vrhile (d) illustrates schematically the 2y decay of a 0+ excited
state to a 0+ ground state via an intermediate (virtual) giant di-
pole state.
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&f I~"(q2 VL) In&&n I~(qi»a) li & &f I J(qi»1) ln &&n
I
I"(q2»ii) Ii &

E; E—„+qi —co, +ie n Ei +n+'q2 ~b+ie

+ &f I &so(qi qz) I
i & = T8—"(~I)+&f I

JJ~so
I
i &,

VL, = (2Pf —q2)/2m, ,

Vit ——(2P;+qi)/2m, ,

VL,
——(2Pf —qi )/2m, ,

Vit ——(2P; +q2) /2m, ,

ponents can be grouped with the seagull amplitudes from
B~&G. The point-nucleus current, Jp„cannot lead to nu-
clear transitions, while J'" is conserved; it leads to Comp-
ton amplitude components which are manifestly gauge in-
variant. We first define

1

a(z)= f dl, e"~ (30a)
0

and

a q1 +R
p(z)=2 f dA, Ae (30b)

COb ——q2 Vg .b so that our previously defined quantities can be expressed
as

The three terms in (29) correspond to the first three dia-
grams of Fig 3, re. spectively, and together satisfy the
gauge invariance * conditions, q~zr&„——q1T„„—:0, which
lead to Eqs. (26). We have explicitly separated the recoil
energies (co) from binding energies in the energy denomi-
nators of the dispersive terms (labeled "D")and have indi-
cated the dependence on the nuclear recoil velocities, V.

Our goal is to rewrite Eq. (29) (expressed in terms of J
and p) in terms of d(q) and m(q). This is accomplished
by using Eqs. (23). We note that the matrix elements of
hJ" are proportional to the energy denominators, which
are thereby cancelled. The resulting amplitude com-

and

d(q) = f d x p(x)a(q x)x,

mo(q) = f d x p(x)P(q x),
and new operators are defined:

a(q) = f d x p(x)a(q x),

b(q) = f d x p(x)P(q x)x .

This allows us to write

(3 la)

(31b)

(32a)

(32b)

«'"T"'=«"['U'(J'+Jp~ I'+Jrt)+ &f I iso li &]+&f I
1

I
i & (33a)

q] 'qp l
1 = — e'.d(qi)e. d(qz) — [e q~(qi)e' d(qi)+e 'qzp(qz)e d(q2)]

m, m,

—i [e J;„,(q, ), e'.d(qi)] —i [e' J;„,(q, ), e d(q, )]—[[H,, e d(q, )], e' d(q, )], (33b)

and e'"—:e"(qi) and ei':—6'(q2). Using Eqs. (26) one can obtain the following variants of our basic gauge invariance con-
dition:

i [J;„,(q2), d "(qi )]=— 1

[ii(qi)p(qi)]+ V,",q', f di(. asok(Xq„q, ) (34a)

[[~o" 'q2 ] d"'qi)]=~, ~", '(qi)~(q2) q2qi f d~ f d~'Bso(Aqi, A'q2
t

(34b)

With some foresight and the structure of Eqs. (33) in mind, we define

1 1
k k~so=&so+~&,~&,qzqi f d~ f d~&so(~qi, ~q2) —&~,qi f, d&8so(&q»q, ) —V', ,q, f d)(.'B,o(q„k,'q, ),

from which a tedious calculation leads to
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e E'"8 so(qi, qz) = —
4 (e Xqz)'(e'Xqi)V' "e' f d'x P(qz x)x' f d'y P(qi. y)y Bso(x,y)

—= (~Xqz)'(e' Xq i )"XD(qi, qz)

1 1

[(e)&qz)xV», ] [(e'Xqi)XV» ]"f d~ f d~'Bso(~q, ,zq, ) (36)

Equations (33)—(36) can now be combined. The commutators in Eqs. (33) are eliminated in terms of Bso and recoil
terms. The Bso terms all combine to form the single B so term. Using the Cartesian tensor identity (53}of Ref. 2 and
the identity

a(q) —p(q) = ——q b(q)
2

(37)

allows the recoil terms to be grouped conveniently. The final result for T is now labeled with a prime, T, to indicate the
massive rearrangement:

T'""(e»ez)= [TS'(J',J')+ &f I [Bso(qi qz)+B]i"(qi,qz)+BPqi qz)] I
i &1+&flRP +R i +Rz' (38)

where Tg"(J',J') are the two dispersive terms in Eq. (29) calculated with J' in Eq. (23d) replacing J, Bso is defined in

Eq. (35), the recoil correction to the diamagnetic susceptibility is given by

e e'"BPY"(q,,qz) = (e Xqz»(~'Xq, )"[d (q, )d "(q,) —b (q, )b "(q,)/4 —0 "(d(q, ).d(q, ) —b(q, ) b(q, )/4}], (39)
Ptt

and the generalized Thomson amplitude is given by
I

e e'"BP"(q,,qz) = Z(p(q, )+p(q, ) —Z) .
~t

In addition, we have

Jp«qz»L, )Jpi(qi»ii } Jpi(qi»L. )Jpi(qz»ii }

g )
—COa g 2

—COb

[~ qie' &f I d(qi) I
i &+e' qze &f I d(qz)

I

i &]
mt

Jp(qz~: ) &f I
J "(qi,~:}

I
i »p(q, .~L)&f I

J'(q„~!)
I

i &

tg ]
—COP —COa 92 —0 —b

0a g 2
—COb

(40}

(41)

(42)

(43)

The terms in Eqs. (41) and (43) involve the intermediate
states n =i or n =f.

These results look exceptionally complex, but, in fact,
are not. In transverse gauge, (e qz=e' 'qi=0), Rp van-
ishes in the lab frame as do the last two terms in Rz. For
0+~0+ transitions the R~ term and the remaining R2
terms cancel, leaving only the curly-bracketed terms in

Eq. (38). The complete amplitude T'"" is gauge invariant,
as are Tg"(J',J'), Bg, Bg", and R~q". The non-gauge-
invariant terms Rg" and R"," together with the constant
and p terms of B}r" are, respectively, gauge invariant.
Each of the curly-bracketed terms in Eq. (38) leads to one
or more terms in the usual low-energy theorem expansion
for long photon wavelengths, which we describe in Sec.
VI. Parts of these results have been obtained before. ' '

2( 2)(0+
I
p(q)

I

0+):F(q ) —=Z 5f; ——
6

(44)

which leads trivially to

(45)

In the long-wavelength limit, d~D and b~D, and we
obtain

I

case exclusively here. %e will also restrict ourselves to
transverse gauge in the lab frame: 6'q 62'qi—=0. These
restrictions eliminate all of the ugly terms, which exhibit
elastic (i.e., purely recoil) denominators for f =i We ex-.
pand the remaining terms to order q . We also define

VI. 0+—+0+ TRANSITIONS

(eXqz). (e'X qi)
(46)

The 0+~0+ transitions form the single most impor-
tant case for the Compton amplitude, and we treat this

The seagull term BsG contains contributions from
both the impulse approximation and nonrelativistic
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e e'"Bso=(~xqi)'(e'Xqi)'XD, (47a)

where +D" is the unretarded diamagnetic susceptibility
tensor,

meson-exchange currents, ' unlike the terms above which
are determined solely by p(q) and hence by the impulse
approximation in the nonrelativistic limit. The general
long-wavelength limit of Bso is given trivially by Eq. (36)
with P(0)= 1:

cated energy denominator, h.F-„. For elastic scattering one
can simply ignore the q; factors in the denominators. For
0+~0+ two-photon decays, shown in Fig. 3(d), one can
approximate q; by coo/2 and then expand about this
point. Defining Eo =(Ef+E& )/2 and ignoring recoil, one
finds

(Eo E )AE„'=
0

lEo E.—+(q i neo/—2)]lEo E.—+(qi iso/—2)]

XD= — f d x f d yx y Bso(x,y)~XD5 =—(E„—Eo) '(1+5„), (51a)

and the last form applies to 0+~0+:

XD ————,', f d x f d y[x yBso(x, y) —x"y Bsei(x,y)] .

The impulse approximation to BsG has the form

B; "~(x,y)=5 "5'(x—y)

from which we obtain, with the aid of Eq. (39), the stan-
dard result

X~™=—2 (r') .
6m

(48b)

Practical forms of B; ~ are given in the Appendix.
The remaining term is TD(J',J'). In the long-

wavelength limit mo~p„d~D, and the recoil part of
m(q, V) can be neglected because it is of order q and
generates terms of higher order than q in the low-energy
expansion. Assuming the nuclear states have good parity,
one finds, for 0+~0+ transitions,

&f ID. In &&n ID* I i &

TD —Ei E2 2
n~O ~En

where

5„=(qi coo/2—) l(E„—Eo) (51b)

where

The maximum value of (qi —coo/2) is coo/4. Conse-
quently, a good estimate of the maximum value of the
correction, 5„, is obtained by replacing (E„Eo)w—ith the
giant dipole resonance energy, coGit. Six 0+~0+ (E�-
lE) transitions are listed in Table II; the percentage
corrections are very simply estimated and range from
small to tiny.

Performing the sum over intermediate states for two-
step processes such as Compton scattering or double P de-

cay is usually quite difficult unless one is certain that only
a few states saturate the sum. A better way to proceed is
to use Podolsky's method, ' which relies on the formal
properties of perturbation theory. One evaluates

&f ID. In) &n ID. Ii)
QE =2 (52a)

n~f, i

by writing

(52b)

where

f
i 2

n~o AE„

= —~i ~z&E —ai Bz&~ (49)

(52c)

is subject to the conditions (f i
h% ) = (i

i
b,%) =0, which

are trivially satisfied for 0+~1 ~0+ two-step processes
because of parity conservation. In such cases very dif-
ferent approximation techniques may be used in the
many-body problem for the intermediate states n, and for

Ei ='(hei —qiei) ~

0 0

&s =&qr &&~ ~

2~E„'=(EO E„'—+q', )-'+(E —E.'+q', )-—
(50b)

(50c)

TABLE II. First-excited (0+) state (~Q) and giant dipole reso-
nance (co~R) energies for six nuclei which manifest 0+~0+ 2y
decays. The maximum-estimated percentage corrections for the
static (E 1 E1) denominator approxima-tion is given by 8„.

Gbviously, TD is gauge invariant, and depends only on the
(frequency-dependent) electric polarizability, aE, and
paramagnetic susceptibility, Xp. Each term in our rear-
ranged Compton amplitude generates an important term
in the low-energy theorem.

Most of the terms in the low-energy theorem are rela-
tively easy to calculate, even in a many-body system. The
primary problem lies with TD, which involves a compli-

160

Ca
720e
90zr
"Zr
98~

Q

coQ (Mev)

6.05
3.35
0.69
1.76
1.59
0.74

23.0
20.0
16.4
16.8
16.0
15.8

8. (%)

1.7
0.7
0.04
0.27
0.24
0.05
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the states i and f. Iff =i, only a single term is subtract-
ed on the right-hand side of (52c). We note that the same
technique can be used for each of the complex energy
denominators in Eq. (50c) (or for TD itself), but this re-

quires solving Eq. (52c) with EO~E; + q; or E; +qz for
each value of q;.

VII. GAUGE INVARIANCE

The structure of the current in Eq. (23}suggests that we
can rearrange the standard form of the electromagnetic
Harniltonian, H,'", using the identities (22a) and (12) for
p(x) and for J(x):

e f d x[p(x)((}(x)—J(x) A(x)]=eZ[$(0)—V A(0)]

—e f d'x[E(x).d(x)+m(x). B(x)]—e f 1'xId(x} A(x, t)+i[H, d(x) A(x)]] . (53)

(55a)

Explicit time dependence of the fields is ignored, except where required for clarity. Matrix elements of the last term
clearly vanish if we enforce energy conservation (i.e., an on-shell one-photon process), but not otherwise. The last term in
Eq. (53) looks like a first-order (in e) unitary transformation on the Schrodinger equation, using a Hermitian operator A:

A=e f d x d(x) A(x, t), (54)

a, =a+8,'"+0,"',
H,"'=H"' A i—[H,—A] .

Performing the indicated unitary transformation of H„we find

(55b)

H,'= e '" H, i —e—' =H+H,"'+i [HA]+A

+He~ i [A,—A]/2 i[A,H—,'~] —,
' [A, [—A, H]]+ . =H+H,'~ (56a)

(56b)

This defines H,' as

H.'~ =H.'~" +H.'m'+ =He'm'+(Hem —&[A A]/2 —&'[A»em] —
2 [A [A»]])+ ' ' ' (56c)

We also note that, in the impulse approximation, H', ~ is a
functional of p, as is A (in general); because

[p(x),p(y)] =0 (57)

for nonrelativistic charge operators, and because repeated
commutators of J or H with p also will vanish, the series
in Eqs. (56} will terminate at order e . Moreover, it is
easy to show that the definition of H,' ' corresponds to
Eq. (36):

H,'"=——,
' f d'x f d'yXD"(x, y)B (x)B"(y), (58)

,(1}
which is manifestly gauge invariant, as is H,'~. The fact
that H,' has this property is a significant result.

The unitary transformation function A also plays an
important role in gauge transformations. The function A
can be reexpressed in terms of nuclear coordinates by us-
ing Eq. (15):

A=e f dA, f d yy A(k, y)p(y)
A 1

=e g e;x;.f dA, A(Ax;) (59a)
i=1

=e pe; f ds A(s) . (59b)
i=1

The last form expresses the ith term in the sum as a line
integral over the path c;, which is a straight line pa-th
from s =0 to s =x;. Such paths produce the minimal
coupling scheme '3 in the familiar [(p—e A/c ) /
2m + V] nonrelativistic Schrodinger Hamiltonian.
Indeed, a formal solution, 4, for that Hamiltonian can
sometimes be developed ' from the solution, 4o, of the
field-free case, %0 by writing

r
%=exp ie ds. A(s)+ . Vo=e' %0, (60)

qy i(A(r) —A(0) )14J (62)

as shown by Foldy. The result (60) is largely useless, ex-
cept for a few special cases, because the integral is path
dependent, as is its gradient with respect to r. The path

where the ellipsis indicates further contributions which
depend only on the electromagnetic fields, rather than the
potentials Under . a gauge transformation, A(s)~A(s) + VA(s), the exponential of 4 develops the neces-
sary additional phase

e f ds VA{s)=e[A(r)—A(0)], (61)

which is independent of the path c, by Stokes's theorem.
Thus, we obtain the familiar
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dependence can be expressed solely in terms of the mag-
netic field, B(r), using Stokes's theorem. Nevertheless, it
is easy to show that

Q/f//JJrlr/Ag(

(b)

e-'~ p e'~- p +S terms,
( —eA)

2&i 2P7l
(63) aarrurWX~XXXQ mxruxxrxxQ

or, more succinctly, the transformation e' "undoes" the
minimal coupling, at the cost of introducing additional
magnetic-field-dependent terms. This is the essence of
Power's transformation and why it "miraculously" pro-
duces a manifestly gauge-invariant Hamiltonian.

We have previously shown that the electromagnetic
field representation (dipole-length form) of the elec-
tromagnetic interaction is very effective for treating
deuteron photodisintegration, but can work poorly for
electron scattering at large momentum transfers. Thus,
the enforcement of gauge invariance does not resolve all
problems. If one begins with a standard representation
model Hamiltonian which is gauge invariant, is there a
gauge which is best'? If one believes that all observables in
a consistent calculation using a gauge-invariant Hamil-
tonian must be independent of gauge, then the question is,
in principle, moot. In practice, this is not the case, be-

cause the choice of gauge can make a calculation easy or
complicated. A good example is the microwave-induced
Lamb shift amplitude discussed so nicely in the appendix
of Power and Zienau. That calculation is relatively sim-
ple using the dipole-length form, but very cumbersome in
dipole-velocity form, although both should give the same
answer if performed to (2ll orders in e.

FIG. 4. Graphic representation of the nuclear wave function
in the presence of an external electromagnetic interaction. The
unperturbed state is shown in (a), awhile (b), (c), and (d) represent
the one-photon, sequential two-photon, and two-photon seagull
components. The one-photon and two-photon gauge terms of
the MTA are illustrated in (e) and (f).

where

d2
qy(0)+ gyI(2)+. . . id@i

2
(65a)

d =eD A(0) . (65b)

electromagnetic interactions. Equation (23) can be used to
rewrite J in terms of J' and b,J'. The analogous calcula-
tion of q( using J' we label with a prime: 4". A tedious
rearrangement of Eqs. (64) then leads to

qp qy(0)+ gg(1)+ qy{2)+. . .

ql(0) +(d qy(0) + (I(~(( ) +(d )Il~( i I

VIII. THE MTA APPROXIMATION

The momentum-translation approximation (MTA) of
Reiss' treats a situation not often encountered in nuclear
physics: nuclei interacting with very intense classical elec-
tromagnetic waves that have a very long wavelength.
This application illustrates nicely the power and utility of
the techniques developed previously. That is, the wave-
length is so large compared to the nuclear radius that any
matrix element of eE D is negligible. In this context
what role does the electromagnetic potential play?

We neglect center-of-mass motion and suppose, accord-
ing to the argument above, that (,I,' } is very small. The
processes in Figs. 4(a)—4(c), which depict the effect on the
wave function ~II of the electromagnetic interaction, are
tiny when calculated with H,' . We can, however, calcu-
late with H, instead. These processes are not negligible.
Using schematic forms which label wave function com-
ponents according to the powers of e they contain, we ob-
tain

H(1) @(0}
E —&0+qo

™
and

+(2) l ~(1) l +(1)+(0}
E —~0+2qo ' E —Ho+qo

+ l H (2) qy(0)
E —Ho+ 2qo

where 4' ' is the nuclear ground state in the absence of

If we exploit the excellent approximation (p'=4'0 in the
long-wavelength limit, we find

+=+MT~=e' +0 (65c)

T s e
—jcfTe jd (66)

We note that Eq. (65a) is nothing more than the long-
wavelength limit of Eq. (56b), which follows immediately
from the canonical transformation.

The MTA has been criticized as unreliable in a variety
of contexts, and this is hardly surprising; no approxima-

which is Reiss s momentum-translation approximation to
the complete wave function. Representative d terms in
Eq. (65c) are represented graphically by Fig. 4(f).

Because H,' is gauge invariant and the operator d is
not, we see that this rearrangement has isolated the gauge
or seagull terms which are necessary when the nuclear
wave function is used to calculate a decay, for example.
The form of %MTA is probability conserving and in most
nuclear charge-conserving reactions d ~ould commute
with the transition operator, T, and therefore not contri-
bute at all. In contradistinction, the P-decay process
changes Z, and D will fail to commute with the transition
operator. Nonrelativistic radiative Gamow- Teller transi-
tions require no gauge terms when calculated using the
standard representation of the electroinagnetic interaction.
When one transforms to the electromagnetic field repre-
sentation, one finds that gauge terms are needed, because
of Eqs. (65):
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tion w orks well in all problems. It has also been
dismissed as simply a gauge transformation. In view of
the intimate connection in gauge theories between gauge
and canonical transformations, this is superficially true,
but greatly understates the MTA's utility in the nuclear
context where charge-changing reactions are common,
and where gauge or seagull terms play a vital role. Our
derivation has made no choice of gauge other than the
usual Lorentz condition. In addition, for didactic reasons,
the wave function ql has been defined as "noninteract-
ing,

" and the MTA dismissed as trivial. This combina-
tion is clearly an oxymoron in the nuclear physics context,
because the MTA provides the gauge terms for elec-
tromagnetically modified P-decay processes. Such terms
are not understood to be "noninteracting" in the nuclear
physics context.

Thus we see that the MTA is an approximation, valid
for long wavelengths, which gives the form of the elec-
tromagnetically "dressed" nuclear wave function. It sums
(approximately) a series of virtual nuclear transitions cal-
culated with the standard (J A) form of the electromag-
netic interaction, and is also obtainable most easily via a
(time-dependent) unitary transformation. No specific
choice of gauge is needed.

IX. CONCLUSIONS

In Sec. II we reviewed alternative formulations of the
electromagnetic interaction, and the necessity in the nu-
clear physics context for those formulations which mani-
fest the constraints of currents conservation in the long-
wavelength limit (i.e., Siegert's theorem). ' In Sec. III we
extended the work of Refs. 23 and 24 to include the nu-

clear recoil current. The "standard" and "electromagnetic
field" representations of the electromagnetic interaction
were contrasted and compared in Sec. IV in the context of
deuteron forward photodisintegration. For that process,
the model current was the sum of impulse approximation
and pion-exchange-current operators. The effects of this
current are nearly the same in both forms, indicating that
for low-energy photonuclear reactions in the deuteron the
pion-range exchange currents dominate the shorter-range
meson currents. In the standard representation large mu-

tually canceling terms lead to a small result; in the EMF
representation all contributions are small.

In Sec. V the Compton amplitude, including recoil, was
calculated in the EMF representation. This amplitude is
gauge invariant, and in transverse gauge the individual
terms in the amplitude correspond to terms in the low-
energy theorem expansion. Important amplitude com-
ponents are manifestly gauge invariant. In Sec. VI, the
low energy expansion is carried out for 0+~0+ transi-
tions and the low-energy theorem verified. The efficacy
of Podolsky's method for calculating the "disper-
sive" terms (i.e., the generalized polarizability and suscep-
tibility amplitudes) was also explored for six nuclear iso-
topes whose ground and first excited states have J =0+.

Gauge invariance was extensively discussed in Sec. VII,
in the context of the PZ canonical transformation and
the "minimal" substitution. Reiss's momentum-
translation approximation' was derived in Sec. VIII by

the canonical transformation method and, alternatively,
by summing a series of Feynman diagrams. Its impor-
tance in the context of high-field nuclear reactions was
emphasized.

Finally, this work was motivated by the expectation
that multiphoton (n& & 1) processes will become increas-
ingly important in nuclear physics. Tagged photon facili-
ties at cw electron machines should encourage Compton
and Raman scattering experiments. Should lasers of suf-
ficient power and energy become available, "' other mul-
tiphoton reactions will become a part of electromagnetic
nuclear physics. The nuclear Compton amplitude is also
important theoretically, where it is a basic building block
for such processes as dispersion corrections ' in electron
scattering, which may have been seen in a recent experi-
ment, and in the analogous polarization corrections in
atoms. ' We expect that interest in all these processes
will continue to grow.
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APPENDIX

using

1 1

x f d~ f d~p(~q, +~'q, ), (A 1)

1

zP(q z)=2 f dA, Ae'q' z
1= —2i Vq

e'q'

= —2iV~a(q z} .

Moreover, we can explicitly calculate a(z):
elz

a(z) = (A3)

For the important 0+~0+ case, the double integral in
(Al) becomes

1 1

Pqi qz) = J, d& f, «'p(
I
&qi+&'q~

~
} (A4)

If we perform a partial wave expansion of a(q z), we ob-
tain

a(q z}=g (21 +1)i'Pi(q z)Hi(qz)

where the auxiliary function Hl is defined by
1

Hi(x}= f, dpi(~) .

The impulse approximation to Bs& is given by Eq.
(48a), and can be combined with Eq. (36) to generate the
impulse approximation XD,

ZD(q, ,q, )= — e "e""f d'xx'x p(x)P(qi x)P(q2 x)
4m

1 +rmn&nstq&

m q& q&



J. L. FRIAR AND S. FALLIEROS 34

These functions can be calculated recursively from

iHt, (z) (—1+1}Ht,(z) = [jt(z)—5t o],2I+1
g(qt, q2)= I d'x p(x) g ( —1)'(2l+1)

+Pl ( 'q 1 'q2 )Ht (q ~ x )Ht (q 2x )

Ho(z) =Si(z)/z, = g e; g ( —1)'(Pl +1)Pt(q, q2)

XHt(q, x, }H,(q2x, ),

where Si(z) is the sine integral. For the 0+~0+ case, this
leads to

which is a tractable expression for values of q;x not too
large.
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