
PHYSICAL REVIE% C VOLUME 34, NUMBER 5 NOVEMBER 1986

Physical interpretation and quantization of periodic time-dependent Hartree-Fock solutions
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%e outline several sets of physical conditions which lead to periodic or multiply periodic solutions

of the time-dependent Hartree-Fock equations. In every instance the Fourier components can be

identified with transition matrix elements of the density fluctuation operator between collective

eigenstates of the system. A simple variational derivation of the Bohr-Sommerfeld quantization
condition for such solutions is described.

I. INTRODUCTION

A few years ago there was considerable interest in the
theory and quantization of periodic solutions of the time-
dependent Hartree-Fock (TDHF) equations. ' Current-
ly there is intense interest in constructing and utilizing
such solutions. In this report we shall revisit the ear-
lier scene, partly with the intention of tying it in with the
current one.

One aim of the current work is to present a "new"
derivation of the quantization condition which we consid-
er simpler and more direct than those appearing in the
literature. Though admittedly the definition of simple has
some relation to taste and previous experience, it is un-
deniable that the previous work does not provide a clear
physical interpretation of the periodic density matrix,
which is the prime physical object computed by the
theory.

It is, of course, easy to guess the required interpreta-
tion: The Fourier components of the density matrix are
transition matrix elements between discrete states of the
system, states assembled into a collective band. This in-
terpretation is suggested by the notions of matrix mechan-
ics and the ideas that led to its conception through the
aid of the correspondence principle. In the past, one of us
has shown how these ideas could be refined and applied to
the derivation of the WKB approximation, both in parti-
cle quantum mechanics ' and for simple quantum field
theories containing soliton solutions. " The purpose of
this relatively brief report is to translate the methods of
Ref. 11 into the nuclear physics domain, thereby "filling a
gap in the literature. "

These methods are based on the following ideas (which
have far from outlived their usefulness): It is a truism
that any solution of HF or TDHF theory somehow de-
scribes the properties of a wave packet of eigenstates. If
this is so, then a clear modus operandi presents itself.
Starting with Heisenberg s equation of motion for a densi-
ty operator and forming suitable matrix elements, we may
look for operations and approximations by which we can
derive, i.e, justify, the TDHF limit. The bewildering Aex-
ibility of physical applications (large amplitude collective
motion, periodic motion, and heavy-ion scattering to men-
tion the most prominent of the currently interesting ones)

suggests that the derivation must in part be tailored to the
individual physics problem. This is because we must dis-
cover which packet of quantum mechanical amplitudes is
relevant to the given case. At the same time there must be
a general pattern which guarantees the Sister determinan-
tal character of the fmal result. This pattern we believe to
be a generalized factorization approximation for the two-
particle density matrix elements, which has the proper
classical limit. '2 This limit can be achieved provided the
quantity which is to satisfy TDHF theory is a suitable
Fourier (series or integral) superposition of quantum am-
plitudes. In the present example we deal with a Fourier
series with a fundamental frequency which is approxi-
mately an energy difference (for the simply periodic case).

The detailed derivation of TDHF for periodic solutions
is given in Sec. II, where we believe we have managed to
mention all cases of possible physical interest. The intui-
tively appealing interpretation of the Fourier coefficients
is established. In Sec. III we provide two simple alterna-
tives for the quantization condition. The first, based
directly on the correspondence principle, requires no
derivation to speak of but may be of limited use in the
many-body problem. The second, favored in the nuclear
physics literature, ' is derived in a few lines from a
quantum-classical version of the principle of least ac-
tion.

The interesting problem remaining at this point is the
development of efficient methods for the generation of
periodic or quasiperiodic solutions of the resulting non-
linear equations.

II. PHYSICAL INTERPRETATION
OF PERIODIC SOLUTIONS OF TDHF

A. Classical limit

%e study a standard nonrelativistic nuclear Hamiltoni-
an (5=m =l),

H = f dx P (x)( ——,
' V )f(x)

+ —,
' f dx, . dx4gt(xi)g (x2)

X V(x,x,
~
x,x, )y(x, )y(x, ) .
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Here, g(x) and 1( (x) are single nucleon destruction and
creation operators, V is an antisymmetric matrix element
of the interaction, and x refers to all single particle de-

grees of freedom. We shall repress any explicit reference
to spin and charge in the following.

In this section our aim is to provide a physical interpre-
tation of periodic solutions of TDHF. We shall carry out
the argument for simply periodic functions, but it can be
extended without difficulty to multiply periodic behavior.
The argument has two parts. (i) We define a superposi-
tion of matrix elements of the density operator which in
the correspondence principle limit takes the form of a
Fourier series in time (a periodic function). (ii) We exam-
ine the Heisenberg equations of motion for such'matrix
elements and look for conditions under which TDHF can
be derived. We apply a generalized factorization of two-
particle density matrices' and then take the correspon-
dence limit of the equations of motion. The same se-
quence of arguments leads to the condition "pz=p" which
characterizes determinantal solutions.

%'e thus assume that the many-body Hilbert space sup-
ports an approximately decoupled one-dimensional space
of collective states

I
n ) specified by an integer n, where

IO) is the ground state. Let E„be the energy of state

I
n ). The matrix element

p(x, tn
I
xztn')—= (n'

I it "(xzt)1((x,t)
I

n )

=exp[i (E„—E„)t](n'
I f (x )P(x, )

I
n )

(2.2)
can be written in the approximate form

p(x i tn
I
xztn') ~p„„(x&xz)e' '"'"', (2.3)

i.e., as the vth term in a Fourier series provided we define

Il =77+ 2 V, 71 =Pl —
~ V,

and set

(2.4)

v=w(n )v, (2.5)

p„(xixz
I

t-) = g p(x, tn
I

xztn')

is a periodic function of t with period T„=2irlw (n ).
Next, consider the Heisenberg equation of motion,

(2.6)

and provided the matrix elements p„, are sensibly dif-
ferent from zero only as long as v&&n: This is the
correspondence principle limit which (in general) requires
that p„„be a slowly varying function of n and a rapidly
decreasing function of

I
v

I
. Under these conditions,

ia, y'(x, t)y(x, t)= ,'(V', V',-)y-'(x, t—)y(x, t)+-,' I q'(x, )q'(x, ) V(x, x,
I
x,x, )q(x, )q(x, )

X3 X4 V X3X4 X2Xg X5

and form the average defined in (2.6). Let us study, for example, the first of the interaction terms in (2.7). We have

g (n'
I g (xzt)g (x3t)p(x5t)g(x4t)

I
n ) = g e' '"'"'g —,

'
I
(n'

I p (xz)g(x4) I
n")(n"

I
1(t(x3)p(x3)

I

n )

(2.7)

—(2~3)—('-= -5)+(2~3, 4= =5)I, (2.8)

which involves the application of the correspondence principle in the exponent and the application of the generalized
Hartree-Fock factorization of the two-body density matrix alluded to above. We wish to reduce the right hand side of
(2.8) to the usual antisymmetric product, characteristic of Hartree-Fock theory. Notice that with the definition

(2.9)

we have, e.g.,

2 &
n'

I p I

n") &
n"

I p I
n ) = Xp;.. .p;-,.=- Xp.„~p (2.10)

Here we have defined n'= , (n'+ n"),—n"= , (n + n"—),and then invoked the assumption of slowly varying behavior in n

By writing v= v —v'+ v' in the exponent in (2.8), Eq. (2.10) easily yields the result

P~(x4xs x3xz
I
t) —= g &n'

I 0 (xzt 4''(x3t)1('(x5t)Ax4t)
I

n ) =P (x4xz
I
t)Ps«sx3 I

t) —Ps(x5xz I t)P;(x4x3
I
t) .

tps(xixz I
t)=[A „—,p„-](xixz

I
t), (2.12)

Finally, by applying (2.11) to the equation of motion (2.7),
we find the TDHF equation

and Ii(xixz) is the single particle part of the nuclear
Hamiltonian, represented as the kinetic energy operator in
(2.1).

In addition to (2.12)—(2.14), it can be verified from (2.6)
that

A „-(xixz I
t)=h(x&xz)+ V„(xixz

I
t),

V„-(xixz
I
t)= I V(xix3 Ixzx4)p„(x4x3 I

t),
(2.13) P„XX t =iY, (2.15)

(2.14) where N is the number of nucleons. From (2.11) and
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(2.15), a standard derivation [set xi ——x5 and integrate, us-

ing (2.15)] yields

f dx p„(xix i t)p„-(xx2 i
t) =p„(x&x2

~

t) . (2.16)

In summary, we have found that periodic solutions of
TDHF can be interpreted as Fourier series with coeffi-
cients which constitute an array of transition matrix ele-
ments of the density matrix. This result is the field analo-
gue of one that goes back to the origin of quantum
mechanics.

(2.17)

allows us to derive a linearized version of TDHF for a
periodic density matrix p(x ix2

~
t) which has the form

p(x ix2 i
t) = (0

i 1( (x2)(x i )
i
0)

+(1
~
ft(x2)f(xi)

~

0)e' '

+(0~$ (x2)f(xi)
~

1)e ' ', (2.18)

where w =Ei Eo. This for—m of the derivation is thus
fully quantum mechanical in the sense that w is an energy
difference and not a correspondence principle frequency
that has to be reinterpreted.

This last remark suggests one more possibility. If the
collective spectrum is nearly harmonic, at the same time
that higher harmonics of the transition density, though
decreasing with v, are nevertheless nonvanishing, then the
TDHF equation for periodic solutions [Eq. (2.12)] can be
derived without recourse to the approximation (2.5). The
frequency w is then independent of n and equal to the
first excitation energy. This possibility is realized for the
low-lying monopole spectrum built on the isomeric state
of Mg

III. QUANTIZATION OF PERIODIC SOLUTIONS

In this section we shall discuss semiclassical (Bohr-
Sommerfeld) quantization exclusively. This development
refers to the results of Sec. IIA, since the equations de-
rived in Sec. IIB are already quantum mechanical or, as
we have emphasized, can be so understood.

B. RPA limit: Nearly harmonic spectrum

The random phase approximation (RPA) limit can be
derived in two ways using the methods of subsection A.
First, we proceed, as is most conventional, ' directly from
the TDHF equation. Assume that in the neighborhood of
a given average n, the diagonal element p„-0 is dominant
(of zero order), that the off-diagonal elements p„+i are
first order, and that all other elements can be ignored. If
p„o is identified with the ground state Hartee-Fock densi-
ty matrix, these assumptions yield, as is well known, static
Hartree-Fock plus RPA equations.

A second fully quantum mechanical derivation also has
considerable lineage. ' In this derivation we may proceed
as in (2.7) and (2.8), but we restrict n and n' to the values
0 or 1, and also restrict the selection rule for transitions
induced by a density operator to hn =0,+1. One further
approximation (no-blocking approximation), namely

A. Quantization condition
from the correspondence principle

In this time-honored method, we integrate the
correspondence principle equation

dE„
w(n)=

dn

leading to [w(n)~w(E)]
E(n)

0 w(E)

(3.1)

(3.2)

B. Quantization condition from the variational principle

This approach will yield rather succinctly the quantiza-
tion condition that has been presented repeatedly in the
physics literature. ' %e have

Pn(xix2 I
t) g ('h(( lx)(t' ((hx2)t»

h

(3.4)

where the sum is over the occupied orbitals, which are
solutions of the Hartrce-Fock equations

iB,Q»(xt)= f M„(x,x'~ t)ph(x't) . (3.5)

These equations (and their complex conjugates) can be de-
rived from the usual Hamilton's principle,

».=& f, "&+(t) i( &, H) ~~(t—)&=0, (3.6)

where
j
4(t)) is the Slater determinant composed of the

orbitals ph (xt}, and the variation is with respect to p» and
ph subject to the boundary conditions

5$»(x 0) =6/» (xT„}=5T„=O .

It is more convenient for our purposes to utilize the
principle of least action, namely

hS„=A f (C(t) ~id,
~

4(t)) =0. (3.8)

Here the variations satisfy the conditions

The lower bound chosen implies a Bohr-Sommerfeld
quantization rule. This is the extent of the accuracy to
which we shall work in this paper. To implement Eq.
(3.2), we need w (E), the frequency as a function of the en-

ergy. This is obtained from the equation

=1E(n)=(n ~H in)=H„„&=-f dt WHF(t), (3.3)
n

which is derived by the following steps: Evaluating
(n~ H

~

n. ) by the same sequence of approximations
which lead to the TDHF equation itself, we simply recog-
nize the result as the v=O Fourier component of WHF(t),
i.e., the time average of the nominally time-dependent
Hartree-Fock energy, calculated with the density matrix
p„(xix2

~

t). Equation (3.3) defines E as a function of T
and therefore w. The inversion of this relation provides
us with the function w (E).

The method just described has the superficial disadvan-
tage that we must find periodic solutions starting from
the ground state and going up in energy to the level in
which we are interested.
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b,S„=b,(I„+E„T„)=0 . (3.10)

%e apply this principle to the problem at hand by com-

puting dS„/dn Th.is can be written symbolically as a
sum of two terms,

dS„b,S„ t)S„ t)S„

nd b, n Bn Bn
(3.11)

where the first term (which is then dropped) is the contri-
bution to the derivative from those terms which enter into
the establishment of the variational principle ES„=O and
for this reason do not contribute. The quantity t)S„/t)n is
then computed by varying only those quantities which
both depend on n and remain unvaried in deriving (3.10}.
In the light of these remarks we note that BI„/i3n =0 and

also c}T„/"t)n =0. Thus from (3.10) we have

dS„dE„
T„=m(n)T„=2m .

dn dn
(3.12)

Thus we obtain the well-known condition

S„=f "&eiia, ia)

5$(x0)= [5$(xT„)+t),ph (xT„)5T„]

=5&C(t) iH i@(t))=0.
The consistency of the last condition follows from the
constancy in time of the Hartree-Fock energy. The proof
of (3.8) with the conditions (3.9) is the same as that to be
found in any mechanics textbook' and will not be repeat-
ed. Recalling (3.3} and (3.6), we can write (3.8) in the

This condition may indeed be easier to apply in practice
since, for a given n, it requires only identification of the
appropriate periodic solution.

IV. DISCUSSION

In this paper we have presented two ideas. First, we
have shown how periodic solutions of TDHF may be re-
lated to the spectrum of the system described. Such solu-
tions may exist because the system exhibits a nearly
decoupled, nearly harmonic collective subspace. This is
certainly the most interesting possibility since it yields a
relatively unambiguous physical picture. In principle, we
may also have a periodic solution emerge as a result of
correspondence principle arguments applied to a bound
motion. Since these arguments are most valid for large
quantum numbers, in practice we are more likely to have
to deal with multiply periodic solutions of substantial
complexity. This point again seems to be borne out in
practice, where solutions have been obtained which ap-
parently contain superposition of many different excita-
tion branches. Even after the projection of given mul-
tipoles, the frequency distributions remain quite complex.

An interesting problem suggested by our considerations
is how to choose initial values so as to obtain periodic
solutions of a specified structure.

As a second contribution, we have described a deriva-
tion of the known quantization condition for periodic
solutions which is certainly simpler and more direct than
found in the previous (nuclear physics) literature. We
have restricted ourselves to the Bohr-Sommerfeld level of
accuracy, but the methods can be extended to include
quantum corrections.

lt= f

dt's(ph

~id, ~ph)=2~m . (3.13)
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