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Finite-temperature Hartree-Fock-Bogoliubov calculations in rare earth nuclei
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The temperature dependence of deformations and pair gaps is calculated for ' Sm, ' Er, and"""Os. Increasing the temperature induces a variety of shape phase transitions: prolate and ob-
late to spherical, triaxial to oblate, and spherical to prolate. Heating also produces the superAuid to
normal phase transition.

I. INTRODUCTION

This article considers how the shapes of rare earth nu-
clei vary with temperature. Recent experiments on giant
dipole resonances (GDR's) have increased interest in this
subject. The shape of the GDR which is constructed on
highly excited states can determine nuclear deformations
at high temperatures. One GDR experiment' suggests
that the prolate ground state deformation of ''6 Er per-
sists for temperatures up to 1 MeV. Another GDR exper-
iment implies that ' Er experiences a shape change and
has an oblate deformation at kT =1.6 MeV.

The thermal response of deformed rotational nuclei will
be contrasted with the response of transitional y-soft nu-
clei. Rotational nuclei have static deformations when

they are cold because of shell effects. Heating these nuclei
washes out the shell effects and eliminates the deforma-
tion. However, transitional nuclei may respond quite dif-
ferently when they are heated. It will be demonstrated
that raising the temperature in ' Sm changes a spherical
shape into a prolate shape.

Solutions are found for the finite-temperature Hartree-
Fock-Bogoliubov (l I'HFB) equation. At each tempera-
ture the Fl'HFB equation determines the equilibrium
values of the quadrupole deformation parameters P and y,
as well as the pairing gaps A„and 5„. Free energy sur-
faces F(P,y) are constructed to see how nuclei change
when they depart from their equihbrium states.

The pairing-plus-quadrupole (PPQ) Hamiltonian of
Kumar and Baranger (KB) is employed. Consequently
our calculations are the finite-temperature extension of
the KB static calculations.

There have been previous self-consistent field calcula-
tions to determine how the shapes of rare-earth nuclei
vary with temperature. Brack and Quentin found that a
teinperature of 3 MeV was required to eliminate the de-
formation in ' Yb. Several groups have studied ' Er,
where the deformation collapses at kT = 1.4 MeV.

II. THEORY
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and i, j, k, and I each denote nljm, r is p or n,
M =2, 1,0, —1,—2,j is the time reverse ofj, and

Q2M=r'I'2st(~ 0) . (10)

The spherical single-nucleon energies ej, are taken from
Table 1 in Ref. 4. The strengths of the monopole pair in-
teraction are

27 MeV

22 MeV
(12)

The pairing-plus-quadrupole Hamiltonian of Kumar and
Baranger ' 1s

The model space is chosen as follows: An inert core is
assumed, consisting of 40 protons and 70 neutrons. The
active proton shells have N =4,5, which can accommo-
date 72 protons. The active neutron shells have X =5,6,
which can hold 98 neutrons. The proton and neutron os-
cillator lengths are

The strength of the quadrupole interaction is

70 MeV
3'b (13)

Following KB, all matrix elements of Q2st between states
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g=(N+ —,)/(&+ —, ) . (14)

Since the Hamiltonian (6) does not include the cranking
term, —coJ„,our calculations are restricted to spin zero.

For the PPQ Hamiltonian the finite-temperature HFB
equation " simplifies to coupled finite-temperature
Hartree-Fock (Yl'HF) and finite-temperature Bardeen-
Cooper-Schrieffer (I' I BCS) equations. The solution is ob-
tained by the following steps:

1. Choose a temperature T.
2. Choose trial values for the quadrupole deformation

parameters P and y.
3. Solve the P I HF eigenvalue equation

of the upper harmonic oscillator shell (N =5 for protons,
E =6 for neutrons) are multiplied by

qo =g &«IQ201«&P ~

1
qz, = - g&«IQ22+Q2 —21«&PO'2,

(27)

(@=0,2) . (28)

The factor g is included here.
6. For the self-consistent solution, the HF potential

and the nucleon density have the same quadrupole defor-
mation. The self-consistency conditions are

and the finite-temperature HFB theory reduces to the
zero-temperature HFB theory.

5. Calculate the mass quadrupole moments

4
I
as&=e, la~&,

where the HF Hamiltonian is

(15) fmpcosy=gb (ago +a„qo„),
ficopsiny=Xb (ap2~+a„q2„) .

(29)
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(16) If these conditions are not satisfied, use the q&, of Eqs.
(26) and (27) together with Eqs. (29) and (30) to define
new values of p and y. Return to step 3, and iterate steps
3—6, until the values of p and y converge on successive
iterations. Then self-consistency is achieved.

7. For each temperature the j." I'HFB equilibrium solu-
tion provides the values of P, y, h~, b,„,p~, and p„which
minimize the free energy

41.2 MeV

g 1/3

the HF orbitals are

Iar&=QD „,Iiv&, (19)

where the energy is

E=E,+E~+E&,

(31)

(32)

(33)

and e~, is the HF single-nucleon energy.
4. Solve the Fl BCS equation for the pair gaps hp and

2

(34)

6, tanh(E, /2k T)1=
2 a)0 Ea.

(20)

Eg = Y~&

p=0, 2

and the entropy is

(35)

where the quasiparticle energy is

[(e + )2+g&]i/2 (21)
S= 2k g [f«lnf—«+(1—f«)ln(1 —f«)] . (36)

e&0
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where the orbital occupation probability is

= 2 2 2
Pa ="ax+("ar Ua )fa

(22)

(ear p~)
U~~= 2

1—

and k is Boltzmann's constant. The chemical potentials

p~ and p„are determined by the number constraints
This iterative procedure has been followed to determine

the equilibrium state at each temperature. In addition,
this algorithm was modified to study nuclear states which
deviate from equilibrium. Choose arbitrary values for T,
p, and y. Steps 3, 4, 5, and 7 determine the free energy
F(T,p, y) of a nonequihbrium state. There are no itera-
tions of these steps. A grid on (p, y) is chosen, with p
varying from 0 to 0.6 in steps of 0.05, and y varying from
0' to 60' in steps of 10. The function F(T,p, y) is calcu-
lated for this grid. The deformation free energy is defined
relative to the heated spherical state by

1

Ea /kT1+8
(25)

Fd,f(T p, y) =F(T,p, y) F(T,O, O) . —

III. CALCULATIONS

The Fermi-Dirac factor f« is the probability for thermal-
ly exciting a quasiparticle. At zero temperature fa, =O,

The Fl'HFB equations have been solved for a variety of
rare earth nuclei.
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FIG. 3. Contour map of the deformation free energy in the P, y plane. The lines have constant values of Fd~ Each m.ap corre-

sponds to a different temperature, which has units of MeV/k. See the text for details. The nucleus is "Er.
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the temperature for ' Er.
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FlG. 5. The specific heat versus the temperature for '7 Er.
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FIG. 8. The quadrupole deformation parameters P and y
versus the temperature for ' 'Os.

FIG. 6. See Fig. 2. The nucleus is "~Os.

g 1 Sos

We next consider the transitional nucleus ' Os. At
zero temperature the static shape is axially symmetric and
prolate. However, the prolate state is only 0.5 MeV below
the oblate state. Therefore this nuc'leus is very soft in the

0.20 =

P 0.12—

0.08 - 186

0.04—

l l l

0.2 0.4 0.6 0.8
kT(NeV)

1.0 1.2 1.6

FIG. 7. The quadrupole deformation versus the temperature
for the prolate and oblate shapes in ' Os.

that the critical temperature for destroying the pair gap is
much smaller than the critical temperature for eliminat-
ing the deformation. This difference will create a dramat-
ic effect in '"Sm.

The specific heat is defined by

(38)

The function C(T) is shown in Fig. 5. The characteristic
signature of a second order phase transition is a spike in
C(T). There is a large spike when the deformation van-
ishes, and two smaller spikes when the neutron and proton
pair gaps are eliminated.

y djrectjon. By raising the temperature the possibility ex-
ists that the oblate shape might fall below the prolate,
producing a phase transition from a prolate to an oblate
shape. However, Fig. 6 shows that this does not happen.
At each temperature the prolate deformation has a free
energy which is slightly below that of the oblate deforma-
tion. So ' Os remains prolate for temperatures up to 1.39
MeV, where the shape becomes spherical. Although the
oblate state is a minimum in the P direction, it is a max-
imum in the y direction. Therefore the oblate state is a
saddle point. The equilibrium deformation P(r) for the
prolate and oblate shapes is given in Fig. 7.

188Os

The transitional nucleus ' 80s has an axially asym-
metric shape at zero temperature It is e. xtremely soft in
the y direction. The effect of heating on the equilibrium
shape is shown in Fig. 8. The value of y at T =0 is 22',
which is a large deviation from axial symmetry. When
the temperature is increased to 0.55 MeV, y suddenly
rises, and y =60' at kT =0.60 MeV. There is a phase
transition from a triaxial shape to an oblate shape. An
additional increase in temperature to 1.33 MeV causes P
to vanish. This is a transition from an oblate shape to a
spherical shape.

Figure 9 depicts the deformation free energy in the P,y
plane. Even at zero temperature this nucleus is y unsta-
ble. The equilibrium state is triaxial with P=0. 181 and
y=22'. The prolate state at P=0.181 and y=O' is only
0.04 MeV above the triaxial state. The oblate state at
P=0.181 and y =60' is 0.13 MeV above the triaxial state.
~en the temperature is O.S5 MeV, the free energy is
essentially independent of y. For kT=1.33 MeV the
minimum is at P=O. The shell structure is washed out,
and the contours resemble those of a spherical liquid drop.

The preceding examples show how raising the tempera-
ture changes a deformed shape to a spherical shape. The
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FIG. 9. See Fig. 3. The nucleus is '"Os.
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FIG. 10. The quadrupole deformation versus the temperature
in '"'Sm.

transitional nucleus ' 'Sm illustrates the inverse effect.
Although this nucleus is spherical at zero temperature,
heating induces a quadrupole deformation. Since a de-
tailed description of this effect has been published in the
form of a Rapid Communication, '2 only a summary will
be given here.

Figure 10 shows how P varies with temperature. The
shape is spherical for kT &0.40 MeV. When the tem-
perature is increased above 0.40 MeV, the shape suddenly
changes from spherical to prolate. When kT =0.91 MeV
the shape reverts from prolate back to spherical.

Does this transitional nucleus remain axially symmetric
when it acquires a deformation'? The free energy contours
in the P, y plane are given in Fig. 11. For temperatures of
0 and 0.4 MeV, the equilibrium minimum occurs at P=O.
For kT =0.6 MeV, the minimum shifts to P=0. 14 and

y =O'. The equilibrium shape is axially symmetric.
There is a free energy barrier of 1.2 MeV separating the
prolate minimum from the oblate state. Consequently the
shape is not y unstable, but it is relatively soft in the y
direction.

There is also a phase transition from superfluid to nor-
mal when 5 vanishes at the critical temperature T, . For
protons T, is 0.90 MeV/k and for neutrons it is O.S6
MeV/k.

Why does ' Sm display the inverse shape transition
from spherical to prolate at kT =0.40 MeV? The ground
state of ' Sm is spherical because the monopole pair in-

teraction (which favors spherical shapes) is slightly more
effective than the quadrupole interaction (which favors
deformed shapes). The critical temperature for eliminat-

ing deformation is higher than the critical temperature for
removing neutron pairing. For temperatures between
these two critical values, the quadrupole interaction can
create a deformation. In summary, the relative effective-
ness of the symmetry restoring and the symmetry break-

ing components of the interaction is inverted, simply by
raising the temperature.

Would an interaction which is more sophisticated than
the pairing-plus-quadrupole also create temperature-
induced deformations'? For example, suppose that the in-
teraction included quadrupole pairing. It has been shown
that ' for Mg the pair gap survives to higher tempera-
tures if quadrupole pairing is included. If the critical
temperature for pairing collapse approaches that of defor-
mation collapse, then the temperature-induced deforma-
tion effect would disappear. However, if this should
occur in ' Sm, then the effect might reappear in ' Sm.
This is because (a) the presence of quadrupole pairing ac-
tually increases the monopole pair gap,

' which might
give ' Sm a spherical ground state, and (b) the two extra
neutrons should increase the critical temperature for de-
formation collapse. Detailed calculations are required to
test these conjectures.

Less dramatic examples of temperature-induced defor-
mation are shown in Fig. 1 for ' Er, Fig. 7 for ' Os, and
Fig. 8 for ' Os. For these deformed nuclei, there are
small increases in P at the temperature where the pair gap
is vanishing. Smith et aI. ' have shown that heating the
transitional nucleus " Sn induces a spherical to deformed
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FIG. 11. See Fig. 3. The nucleus is ' SSm.

P= ' 1/2
2n QE,f~,(1 f,)— (39)

shape transition.
How can these shape transitions be detected? One pos.

sibility is to look at level densities. The t IHFB level den-
sity is

S/k

very low temperatures is a common failing of level densi-
ties which are derived with the saddle-point approxima-
tion. Both curves have discontinuities in their slopes at
the spherical to prolate transition and at the prolate to
spherical transition. This is characteristic of second order
phase transitions. Since an alternative definition of the
specific heat is

ar
C =T(BS/BT), (40)

Figure 12 shows the entropy S(T) and the logarithm of
the level density p(T). The upturn in the level density at

it follows that C(T) has spikes at the two shape transi-
tions. However, if the energy rather than the temperature
is chosen as the independent variable, then the functions
S(E) and lnp(E) do not have discontinuities in their
slopes at the two shape transitions.

COz
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FIG. 12. The entropy S and the logarithm of the level densi-

ty p vs the temperature for ' 85m.

IV. CONCLUSIONS

The finite-temperature HFB equations have been solved
for several rare-earth nuclei. The temperature dependence
of the shapes and pair gaps is determined. All nuclei
display a transition from superfluid to normal when the
pair gap 6 vanishes. The critical temperature T,~ for the
proton transition is approximately 0.5—0.6b~ (T=0).
Similarly the neutron transition occurs at T,„

0.5—0.6b,„(T=0).
There are a variety of shape transitions. The nucleus
Er has a large prolate deformation at zero temperature.

The shape changes from prolate to spherical at kT = 1.81
MeV. The transitional nuclei ' ' Os are y unstable. In

Os the ground state shape is triaxial. There is a transi-
tion to an oblate shape at kT =0.60 MeV, and another
transition to spherical at kT = 1.33 MeV.

The most exotic shape transition occurs in ' Sm. Al-
though the shape is spherical for temperatures beloved 0.40
MeV, there is a transition to a prolate shape at kT =0.40
MeV, followed by another transition back to spherical at
kT =0.91 MeV. The first shape transition is created by
two conditions. First, the quadrupole-quadrupole interac-
tion and the pairing interaction are delicately balanced in
this nucleus, with the latter slightly favored in the ground
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state. Second, the critical temperature for the neutron
pairing collapse is less than the critical temperature for
the deformation collapse.

Our calculations do not include angular momentum
projection. Zero-temperature calculations' show that
when the unprojected energy surface is almost y unstable,
angular momentum projection yields energy surfaces with
well-defined triaxial minima. Furthermore, if the angular
momentum fluctuation energy is removed from the de-

formed shape, then the energy balance of the spherical
and deformed shapes could be altered, thereby affecting
the temperature-induced deformation phenomenon. '
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