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An exact three-dimensional reduction of the Bethe-Salpeter equation is presented for the case of
two spin- z fermions exchanging scalar and pseudoscalar bosons. The resulting three-dimensional

integral equation involves only a truncated basis, and once it is solved to get an auxiliary scattering

amplitude T, the fully off-shell Bethe-Salpeter amplitude T is given essentially as an integral over

T, thereby considerably simplifying its calculation. Similar remarks apply to bound-state equations
as well. Partial-wave decomposition of the latter equations is carried out leading to Schrodinger-

type equations for two-body relativistic wave functions. By means of a simple order-of-magnitude
estimate we show that in the deuteron wave functions the admixture of virtual states with both nu-

cleons in negative-energy states is more likely than that of the states with one nucleon in a positive-

energy and the other in a negative-energy state, provided the coupling is pseudoscalar-pseudoscalar.
This effect has not received sufficient attention in the literature. Another interesting result is that if
the effective interaction in our equations is calculated to the lowest order in the coupling constant,
only six out of the eight components of the deuteron wave functions are nonzero, the other two ap-
pear only in the higher order.

I. INTRODUCTION

The relativistic two-body problem is of fundamental
importance with applications in atomic (e.g. , positronium,
muonium), nuclear (e.g., deuteron, NN scattering), and
particle (e.g., qq bound states) physics. The knowledge of
a two-body scattering equation is of central importance
also in a variety of microscopic many-body theories. Re-
cent progress in meson and baryon spectroscopy and in
relativistic nuclear many-body theories has revived the in-
terest in this problem. If the approximation of nonrela-
tivistic energies is valid, one may use the Lippmann-
Schwinger equation. However, it has long been recog-
nized that in a two-hadron system relativistic effects have
to be taken into account even at relatively low energies,
particularly in the case of spin and large momentum

transfer observables. ' In the relativistic domain the
Bethe-Salpeter equation~' (BSE) or, more commonly, one
of the several approximate equations derived from it, is
often the choice (see below for a discussion of other ap-
proaches). The need for an approximate equation arises
because in the realistic case of two spin- —, particles (with

nonzero total angular momentum J), the BSE actually
represents eight coupled singular four-dimensional in-

tegral equations, the solution of which involves consider-
able numerical difficulties. For this reason the BSE is
rarely solved (see, however, Ref. 4). More commonly, it is
reduced to a three-dimensional equation by replacing the
exact two-body propagator in it by one involving an
energy-delta function which allo~s the energy integration
to be performed trivially. Many such three-dimensional
equations are available in the literature. Some of them
have been compared with each other and with the BSE,
for the simple case of two scalar particles with equal mass
in Refs. 5 and 6 and two scalar particles with unequal

mass in Refs. 7 and 8. We shall reconsider soine of these
equations for the case of two spin- —,

'
particles in Sec. III.

We mention in passing that the Blanckenbecler-Sugar
equation assumes the total energy to be distributed equal-

ly between the two particles. This puts them equally off
mass shell (in the center-of-momentum frame) and makes
the interaction instantaneous, thereby neglecting all retar-
dation effects. The Gross equation, ' on the other hand,
puts one of the fermions on mass shell throughout the
equation and keeps only the contribution of positive-
energy poles of the fermion propagator

We present below a few examples of the kind of two-

body equations that have been used in some of the most
recent theoretical calculations. In Ref. 11 Machleidt and
Brockmann describe their Dirac-Brueckner calculations of
nuclear matter. These are based on an approximate
three-dimensional two-body equation which assumes the
basic two-body interaction to be instantaneous; that is, the
retardation effects are neglected. Secondly, this two-body
equation requires that both the intermediate fermions be
in positive-energy states, thereby neglecting those inter-
mediate states where one or both the fermions have nega-
tive energies.

The second example deals with calculations of meson

(qq), baryon (qqq), and glueball spectra. Here again the
BSE in the ladder approximation is a common starting
point. ' Many of these calculations further assume in-
stantaneous two-body interactions and neglect intermedi-
ate states with one or both particles in negative-energy
states.

The final exainple deals with a recent paper by Mathel-
itsch and Garcilazo. ' They have constructed a set of se-

parable potentials for the NN, mN, and m.~ subsystems in
the framework of the relativistic two-body Kadyshevsky
equation. ' They plan to use these separable interactions
in relativistic Faddeev calculations of the three-body sys-
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tems NNN, NNm, Nmm, and metr. Their formalism satis-
fies relativistic three-body unitarity, is Lorentz-invariant,
and unlike earlier formalisms is applicable in the scatter-
ing as we11 as in the bound-state domains. %e note that
the Kadyshevsky equation restricts one of the two parti-
cles to its mass shell and neglects the contribution of the
negative-energy poles of the two-body propagator.

The two most common approximations, namely the
neglect or a crude treatment of the retardation effects in
the two-body interaction and the neglect of intermediate
states where one or both the fermions are in negative-

energy states (+ —,—+, and ——states), are highly
questionable. The importance of the retardation effects
was stressed in Ref. 15. It was shown there that a careful
treatment of these effects greatly improves the agreement
between two-body phase shifts calculated with a three-
dimensional equation and those calculated with the BSE.
However, Ref. 15 dealt only with scalar "nucleons" ex-
changing scalar bosons, and negative-energy poles of the
two-body propagator were neglected. In this paper we
reconsider this long-standing problem and present an ex-
act three-dimensional reduction of the BSE for the case of
two spin- —,

' fermions exchanging scalar as well as pseu-

doscalar bosons (Sec. II). The resulting three-dimensional
equation is far easier to handle numerically, while it re-
tains the desirable properties of the BSE in that the retar-
dation effects are present, positive-energy as well as
negative-energy intermediate states are allowed and the
ladder approximation is not made. Two-body scattering
as well as bound-state equations are discussed. The
bound-state equations are applied to the deuteron and
some interesting conclusions are drawn regarding the rela-
tive sizes of the various components of the deuteron rela-
tivistic wave functions. Finally, in Sec. III, we compare
our work with some of the earlier work on this problem.

Before we proceed further, we describe briefiy some of
the other approaches to the problem of a relativistic two-

body system.
(a) One approach, following the original suggestion by

Dirac, is based on the consideration of the ten generators
of the Poincare group. A recent work based on this ap-
proach is described in Ref. 16. Starting from a field
theory that gives the ten generators of the Poincare group
in the full space of particles, antiparticles, and bosons,
they project on the pure n-particle subspace and by a uni-

tary transformation separate the subspace from the rest of
the space. They show in the framework of the perturba-
tion theory that this procedure does not invalidate com-

I

mutation relations satisfied by the ten generators. They
thus get a relativistic theory expressed in the particle vari-
ables only, to a certain order in the coupling constant.

(b) Another approach is based on the use of the light-
cone variables (r=t+z, Z =t —z); for a review see Ref.
17. This approach offers several advantages over other
approaches. In the 7-ordered perturbation theory fewer
diagrams result from a given Feynman diagram than in
the t-ordered perturbation theory, and the diagram rules
are as simple as the old-fashioned perturbation theory
rules, in the infinite-tnomentum frame. As an example of
a recent application of this approach see Ref. 18, where
Brodsky et al. have studied bound states of two scalar
particles. They also discuss the relation of this approach
to the standard Bethe-Salpeter approach.

(c) There exists yet another approach to this problem,
that through the relativistic quantum mechanics of two
interacting particles (see Refs. 19 and 20, and references
therein). In Ref. 19 Crater and Alstine have used Dirac's
constraint mechanics and supersymmetry to obtain a con-
sistent description of two interacting particles, either or
both of which may have spin —,'. In Ref. 20 Rizov et al.
have presented a Hilbert-space formulation of the relativ-
istic quantum mechanical two-body problem for a range
of (quasi)potentials which include the electromagnetic in-
teraction of two spinless particles. The relation of this ap-
proach with the Bethe-Salpeter approach has been dis-
cussed recently by Sazdjian. '

(d) Bilal and Schuck have applied the memory-
function approach of Mori to the relativistic two-body
problem. They have obtained integral equations similar to
the BSE, taking all retardation effects fully into account
and eliminating the relative time variable. They found re-
tardation effects to be extremely important in the calcula-
tion of binding energy of two scalar particles (Cutkosky
model). Their treatment is relativistic but noncovariant.

(e),(f) Relativistic bound states, particularly the had-
rons, are also being studied in the frameworks of the lat-
tice quantum chromodynamics (QCD) and the QCD
sum rules.

II. THEORY
A. Exact three-dimensiona1 reduction

of the Bethe-Salpeter equation

Consider the Bethe-Salpeter equation (BSE) satisfied b~
the T matrix for scattering of two distinguishable spin- —,

particles of equal mass m (see Ref. 26),

Here
mion
respe y, (PO, O) s the total four momentum m
the center-of-momentum (c.m. ) frame, and V(Q, Q') is the
interaction which in the one-boson —exchange approxima-
tion (ladder approximation) is given by

20 (1)0 (2)

V(Q, Q') = (2)
(Q' —Q) p+i6—

0(1)0(2) )(1)l(2) (3a)

for a scalar boson and scalar coupling (SS), and

0(1)0(2) (1) (2)
F5 XS (3b)

V(Q, Q")(g"+m)t(P —g"+m )pT(P, Q",Q')d'Q"
T P, ,

' =V(, ')+i
2 2 2 (1)(Q" —m +i5)[(P—Q") —m +i5](2n. )

l

Q, Q", and Q' are the four-momenta of the fer- In Eq. (2), g is the coupling constant, p is the exchanged-
labeled 1 in the initial, intermediate, and final states, boson mass, and 0' ' and 0' ' are operators defined as

ctivel I' = 1 follows:



R. S. BHALERAO AND C. S. %'ARKE

Q 1

(a) (e)

(b)

(k) (o)

(p)

FIG. 1. Representation of the 16 matrix elements of
V+(Q, Q') in Eq. (4). Here and in all the figures solid lines

represent fermions and dashed lines bosons. The solid lines

pointing to the right (left) refer to positive (negative) -energy spi-

nors.

series for T:

T= ~+ ~Go V+ VGo~oo V+

where Go is the two-fermion propagator.
Step 2: We then carry out the energy integration(s) in

each term of the above series exactly using the standard
techniques of contour integration. (This is possible be-
cause the only singularities that V and Go have are simple
poles. ) The contribution of each term (say nth order) is
arranged in such a way that it corresponds to a set of dis-
tinct time-ordered diagrams of that order. This way T in
Eq. (1) appears as a series of an infinite number of time-
ordered diagrams,

Step 3: Next we try to rewrite this series in a closed
form. We first define an auxiliary amplitude T as the
sum of all the above time-orderixl diagrams, provided

g +(Q2+m 2)i/2 or P —(Q2+ m 2) i/2 Q~ +(Qi2
+m )' or &o+(Q' +m )', and the external lines are
of the particle-particle or hole-hole type. We also define
an effective interaction V,rr as the sum of all noniterative
time-ordered diagrams with the same conditions as above.
( V ff is an infinite series which cannot be written in a
closed form. ) The remaining (iterative) diagrams can be
summed, giving us a Lippmann-Schwinger —type three-
dimensional integral equation for T with V,ir as the ker-
nel. We finally write T in terms of T.

We have
20 (1)0 (2)

V(Q, Q') =
(Qo Qo o—i+ i 5—)(Qo Qo+o—i i5)—

for a pseudoscalar boson and pseudoscalar coupling (PP).
These operators are based on interaction Lagrangian den-

sltles,

20 (1)0(2)

267 Qo —Qo —oi+ +

+
Qo —Qo —oi+ i~

=—V, (Q, Q')+ V (Q, Q'), (4)

~=ig 4rsA»
respectively. We shall drop the approximation made in

Eq. (2) and discuss a more general interaction at a later

stage. We shall work in the c.m. frame.
Our first objective is to perform an exact three-

dimensional reduction of Eq. (1) by carrying out the Qo'

integration. We adopt the following approach. 's We ex-

pand the right-hand side (rhs) of Eq. (1) in an infinite
Born series, with the hope that if the energy integrations
are then performed in each term separately, we may be
able to write the resulting series or at least a part of it in a
closed form.

Our procedure thus consists of three steps.
Step I: Equation (I) is iterated to get the infinite Born

u=oiQ' —Q oi, =(x +p )' . Equation (4) is an
operator identity. We can take matrix elements of
V+(Q, Q') between any two states from the following

two-particle basis: u i(Q)u2( —Q), ui( —Q)uq(Q),
ui(Q)u2(Q), and ui( —Q)u2( —Q). Here, u; and u; are
the positive- and negative-energy solutions of the free
Dirac equation, respectively. The resulting 16 matrix
elements of V+(Q, Q') are represented by the 16 time-
ordered diagrams in Fig. l. (In all the figures time flows
from left to right. ) In Fig. 1 the solid lines pointing to the
right (left) refer to the positive (negative) -energy spinors.
The matrix elements of V (Q, Q') can be represented by a
similar set of diagrams.

For any four-vector p we have the identity

P+m m ~ ~ u(p, s)u(p, s) u( —p, s)u( —p, s)
P —~ +f$ Ep Po —E +if po+E

m A+(p) A ( —p)

Ep Po —Ep+i6 po+Ep —i 6
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where E„—=(x +m )'c and A+ are the positive- and negative-energy projection operators. Equation (5) simply states
that the propagation of an off-shell fermion with four-momentum p can be looked upon as a mixture of on-shell propa-
gation with positive energy with momentum p and on-shell propagation with negative energy with the opposite momen-

tum —p.
Substitution of Eqs. (4) and (5) in the term of order g in Eq. (1) gives

m' A'+'(Q") A'-"( —Q")
f [V. QQ" +V Q Q" ],

A(2)( ii
) A(2}( g4

[V (Q" Q')+ V-(Q" Q')] (6)
Po Qo —E& +—i5 Po —Qo+E(} —i5 (2)r)~

In each of the 16 terms resulting from tins expression, the Qo integration can be performed exactly by using the tech-
niques of contour integration in the complex- Q o' plane. Consider, for example, the terms proportional to
A'+'(Q")A'+'( —Q"). &fter Qo' integration and some rearrangement these terms can be written as

f
2

g m g(l g}{2}A1{(}Qii) A(2)( Q»)g(1)g{2)
(2ir) 4co]F2 Eq- + +

X[(P()—Q() —co] —Eq +(5) '(Q() —Q() —co] —c02+») '(Q() —Eq. co,—+i5)

+(Po Qo o)—] E~—+]—5) (Po 2E~—+i5) (Qo —Eq" —coz+]5)

+(P()—Q() —co] Eg ~ +]5—) (P() —2Eg ~ +]5) (P() Ec] Q—() cg)2+) 5)

+(Qo Eg ~ co—]+ i5) —'(P() —2Eq-+i5) '(Q() Eg coi—+(5)—

+(Qo Ert ~ co]—+i 5—) '(Po 2Eq +—i5) '(Po Eq, —Qo—co2+i5—)

+ (Qo Eq" ——co]+]5) '(Qo —Qo —co] —2+('5) '(Po —Eq" —Qo —c02+]'5) ']

where o) ] o)Q Q and c02 =cog. &-. All the terms in (7)
are operators, as in Eq. (4). The first two terms in (7) cor-
respond to the combination V+ V+ in (6), the third term
to the combination V+ V, the fourth term to V V+,
and the last two terms to V V . A11 this is consistent
with the experience one has of the time-ordered perturba-
tion theory and thus we associate these six terms with dia-

grams (a)—(f) in Fig. 2, respectively. It is easy to check
that these are the only diagrams one can draw in this case.
Note that we have not drawn lines corresponding to the
external fermions because (7) is an operator expression
and not a matrix element. As in the case of Eq. (4) and
Fig. 1, each term in (7) gives rise to 16 matrix elements;

I

I

some of them are represented in Fig. 3. Except for the
spinors corresponding to the external lines, each diagram
in Fig. 3 is given by the first term in (7). Expressions for
these diagrams are consistent with the rules of the time-
ordered perturbation theory given in the Appendix.

Consider once again the expression (6). The Qo' in-
tegration in the remaining terms can be done in a similar
manner; As before, this gives rise to six terms proportion-
al to A"'( —Q")A' '(Q"), six proportional to A'+'(Q")
A' '(Q"), and six proportional to A"'( —Q")A'+'( —Q").
These are represented by diagrams (g)—(1), (m) —(r), and
(s)—(x) in Fig. 2. For later use we write below the six
terms proportional to A'"( —Q")A '(Q"):

y3~~~ 4 2
Q g m g (1)g (2 }A(1}( Ql I

) (A2 (Q}i )gi1 g{}{2}
(2n)' 4co]o)2 E~&-

X [(Q()—a)i —P() —E(y +]5) '(Qo Qo co] co2+—i5) ——'( —Q() —co] Eg ~ +]5)—
+(Q() —o)2 —P() —Eg-+i5) '( —P() —2Eg ~ +i 5) '( —Q() —co] Eq-+]5)—
+( Eo ~ Q() co2+—i5—) —'( —P() —2Eg +i5) '( —Q() —co] Eo +i5)—
+(Q() —a)2 —P() —Eg-+]5) ( —P() —2Eq-+(5) (Q() —P() —Eg- —co]+(5)

+ ( Eo —Q() co2+i 5)—'—( —P() 2E(y + i5) '(Q() —P() —Eq—- —co]+i5 )

+( E~- —Qo coq+i5) —'(Qo—Qo co] F2+—(5) '(Q—o P—o E&- —co]+(5—) ']—. (8)
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FIG. 4, (a) A diagram resulting from Fig. 2(b}. {a) is not
iterative, but (b} is iterative because fermions intersected by vert-

ical lines (indicated by X ) are on mass shell and the interaction

V+ in (c) has been redefined in a similar may in (d).

(e)

(x)

FIG. 2. Diagrams (a)—(f), six terms in (7); (g)—(l), six terms
in (8); (m) —(r), six terms proportional to A'+'A' '„and (s)—(x),
six terms proportional to A'"A'+'.

These six terms as well as those proportional to A'+'A' '

and A'"A'+' can also be obtained by using the rules of the
time-ordered perturbation theory, given in the Appendix.

So far we have considered time-ordered diagrams re-

sulting from the term VGOV. We next consider the term
VGOVGOV. Here again we can substitute for V and Go
from Eqs. (4) and (5), respectively, and perform the energy
integrations exactly. This will give rise to additional
time-ordered diagrams. In principle, we can repeat this
procedure in the case of all higher-order terms in the ex-

pansion of Eq. (1). Having generated an infinite number
of time-ordered diagrams this way, we now try to rewrite
their sum in a closed form.

Consider the eight diagrams in the box in Fig. 2 and the
corresponding terms in (7) and (8). The matrix element of
the second term in (7) between u, ((}')u2(—Q') and

u, (Q)u2( —Q) is represented by Fig. 4(a). (We are now

considering off-shell scattering. } Note that the middle
factor in the denominator of this term, Po 2E&,. +—j5, is
independent of co, and co& and depends only on Q".
respondingly, this diagram can be "cut" in two by a verti-
cal line without intersecting a boson line. Therefore we

expect it to be iterative; that is, of the general form
f(Q, (}")g(Q")f(Q",Q'), where f and g are any arbitrary
functions. However, the other factors in the denominator
do not bear this out. That is, the factors
(Pp —Qo —coi —Eq" +i 5) ' and (Qo E~ cuz+—i5—)

which correspond to the two interactions in Fig. 4(a}, are
formally different from each other and from the basic in-
teraction

V+ (Q, Q') - (Qo —Qo —cog g+ i5)

represented by Fig. 4(c). The reason is that in deriving (7)
contour integration was performed in the complex Qo'

plane and some of the terms were rearranged so that there
was one-to-one correspondence between these terms and
Figs. 2(a)-(f). As a result, in the expression
( Qo —Qo' co2+i5—) ', Qo was replaced by Eg, giving us

(Qo Eg co2+i5—) '. T—hus the obvious remedy is to
redefine the interaction V+ with the implied choice of Qo
and Qo,

V+(Q Q )~V+(Q Q )g s g p

which amounts to replacing Fig. 4(c) by 4(d), and make
the replacements

(/'o Qo co) —Eq"—+i5)—
~(PO —Qo —co( Eg" +i5)g—

0 Q

and
T

rj
/

/ /

//

/ /
/

//

FIG. 3. Representation of some of the matrix elements of the
first term in (7).

(Q,
' Eo- ~,+i—5) '~(QO Eo ~2+»—}

Q0 —P0 —Fg.

in the expression for Fig. 4(a), which amounts to replacing
Fig. 4(a) by Fig. 4(b). With these replacements, the
second term in (7) acquires the general form
f(Q, Q")g(Q")f(Q",Q') of an iterative term. In sum-
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mary, Fig. 4(c), when iterated, does not give Fig. 4(a), but
Fig. 4(d), when iterated, does give Fig. 4(b).

The above argument can be easily extended to the other
diagrams in the box in Fig. 2. It can be checked that in
each case the external fermions intersected by vertical
lines are required to be taken on mass shell to cast the cor-
responding term in Eqs. (7) and (8) in the iterative form
(cf. Fig. 4). This amounts to replacing Qo by E& or
Po Eq, —and Qo by E~ or Po Er/. —So far we have con-
sidered external lines of the particle-particle type only.
However, the argument is applicable also when they are of
the hole-hole type. In this case Qo is replaced by —E& or
Po+Ee and Qo by —EQ or Po+Eq {see rule 2 in ttM
Appendix). It is convenient to express these conclusions
diagrammatically W.e show in Figs. 5(a)—5(c) some ex-
amples of iterative diagrams, and in Figs. 5(d)—5(f) the
corresponding (redefined) basic interactions which appear
in these diagrams.

The rest of the diagrams in Fig. 2 (that is, those outside
the box) are noniterative because there is no boson-free in-
termediate state in them; they cannot be cut in two by a
vertical line without intersecting a boson line. This fact is
also refiected in their expressions [see, for example, the
corresponding terms in (7) and (8)], which cannot be cast

th «rm f(Q Q")g(Q")f(Q" R').
Thus we have separated the diagrams in Fig. 2 into two

classes. One class gives rise to iterative diagrams with a
special choice of the external variables Qo and Qo [see,
for example, Figs. 4(b) and 5(a)—5(c)], while the other
class gives rise to noniterative diagrams. This classifica-
tion can be easily extended to diagrams of all orders. It is
important to note, however, that in the above discussion
the various diagrams did not play any essential role; they
only serve to make the arguments more transparent and
easier to follow.

We are now in a position to write a three-dimensional
integral equation for an auxiliary amplitude which we
denote by T(Po, Q, Q'). T(Po, Q, Q') is the sum of all the
time-ordered diagrams obtained from the expansion of
Eq. (1) provided the lines corresponding to Q,P —Q, Q',
and P —Q' are of the particle-particle or hole-hole type,
and Qo and Qo have been fixed as described in the

preceding paragraphs. Note that T(Po, Q, Q') in Eq. (1) is
also the sum of all the diagrams, but without any restric-
tions on the values of Qo and Qo or on the directions of
lines labeled Q, P —Q, Q', and P Q—'. Later on we will
express T(Po, Q, Q') in terms of T(Po, Q, Q').

In order to write equations for T(Po, Q, Q') and
T(Po, Q, Q'), we define the following basis,

q/++(ply, ') =—u&(p/(, )ui( —p/(, '),
(pl /(, ')—:U i ( —pk) U i(pi, '),

1q/'(pic, ')—: [u i(pA, )ui(pA, ')+U&( —pi, )uz( —pA, ')],
Qx,

(9)

1q/" (pA/(, '):— [u, (p/(, )U&(p/(, ') —U i ( —p&)u i( —p&') ],

A'(p) q/'(p/I. i, ') =4'(p)I, /(, '),
4 '(p/(. A, ')A'(p) = q/'(p/(/(, ') .

We introduce the notation

(12)

A 'I(P, p, p') =A'(p) A (P,p, p')A/(p')

and similarly for A'I(Po, p,JI'), A'I (Po,p, p'), and
A 'I(Po,P,P ').

We have

T"'"(Po Q*Q')=I".rr'(Po Q, Q')

+ g I I'."fr" (Po*Q Q")Go (Po Q")
t

)& 7"" "(Po,Q",Q')d Q"/(2ir)

where N
&

and N2 are the normalization constants.
q/++, q/, and q/' are even (e), and q/' is odd (o) in the
p-spin space. We have the relation

4'(pA, /(, ')q/'(pptu') =5i„5i„
for i =++, ——,e, or o. We also define the operators

A'( p)—:g q/'( pA, A, ')q/'( pA. A, '),
u, '

which satisfy

[A'(p)] =A'(p),

/
/

I I1"
(13)

where the superscripts k, k', and k" can be ++ and
——only. In Eq. (13),

1

E', Hk(IQI)+ ~
'

FIG. 5. (a)—{c}Some iterative diagrams and (d}—(fI the cor-
responding basic interactions which enter those diagrams. Fer-
mions marked by g are on mass shell.

H (
~ Q ~

)—:+Po —2Eo,

are the two propagators or Green functions, and V,~~ are
the effective interactions which are defined in Fig. 6.
Note that an effective interaction is the sum of a11 non-
iterative diagrams of the given type. To order g these ef-
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++ i++
( P,Q, Q')

Q Q

P-Q P- Q

~ ++
(PO,Q, Q' )

n

(PoiQ, Q')

FIG. 6. Matrix eiements of the effective interactions appearing in Eq. (13).

fective interactions are given by the following expressions:

V."kr', I(Po Q Q') =~'" (Q Q') ~"'"(Po Q Q'»

where

gk, k (Q Qt) Ak(Q)0(l)0(2)Ak'(Qi)

2~++,++(P Q Qtl )
g
2' +Po Eq Eq ——co+ l5—

yr ++, yy(P Q Qi&) g 2

2' —Eq —Eq —N+E5

Expressions for the higher-order diagrams in Fig. 6 can be
written in a straightforward way using the rules of the
time-ordered perturbation theory (see Appendix). Equa-
tion (13) represents two (not four) coupled integral equa
tio» in two unknowns, namely T++ k(Po, Q, Q')
7 pk (P Q Qtt)

«ily «f-shell Bethe-Salpeter amplitude
T(Po, g, g') «Eq. (1) is related to T(Po, Q, Q') by the
following relation:

T" (Po~g~g') = V,'rr(Po~g~g')+ g f V;rr(Po, g, Q")Go(Po, Q")V,~r'(Po, Q",Q')d'Q" /(2n )'
k

+ g f f V,'rr(Po, Q, Q")Go(Po, Q")T '" (Po,Q",Q"')Go (Po,Q"')

& V,r( (Po,Q"', Q')d Q"d Q'"/(2n. ) (16)

Here, as well as in the rest of this paper, i and j can be
++, ——,e, or 0, while k and k' can be only ++ or

The effective interactions appearing in Eq. (16) are
defined below, to order g . Higher-order terms can be
written easily using the rules of the tine-ordered perturba-
tion theory:

V;rr, (Po, g, g')=—A'i(Q, Q')P ' (Po,g, g'),

V,&,, , (Po Q Q') —=~ "(Q,Q')~"(P„Q,Q ),
V."rr', i(Po Q Q') —=~"'(Q Q')~"'(Po Q Q'»

1~l J(P Q Qt) g

Qo —Qo —cupid

+
go —go —~~&6

g & ++(P g Q&i) —g 1

2' Po Eg —go —co ~i6—
where

g l J(Q Qlr) Al(Q)0{ 1 )0(2}AJ(QI)

+
go —Eg —ci) + i 5
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1
(Po, g, Q') =-

2oi —Eq —Qo —co + E 5

1+
Qo P—o E—q ~+i 5

1~++'(P q g ) =—g
Qo —Eg —M+15

and

1+
Po Eg ——Qo co—+i5

2
l(P Q Q )—

g,' P, Eq—~+—i5

1+
Eq —Q—o —oi+i 5

P- Q P-Q-Q+Q

FIG. 7. The "crossed-box" (Feynman) diagram.

and prove that Eqs. (13) and (16) are valid even in the gen-
eral case.

1. Beyond the ladder approximation

Equation (16) can be justified as follows. Consider once
again the infinite set of time-ordered diagrams obtained
from Eq. (1) (see step 2 above). All those diagrams which
cannot be cut in two by a vertical line without intersecting
a boson line ar particle-hole lines together constitute V,'&&

which is the first term on the rhs of Eq. (16). Among the
remaining diagrams there will be some which can be cut
only once. They have to be of the form i~k~j Thei.r
sum can be written in a compact form as the second term
in Eq. (16). The rest of the diagrams can be summed to
get the third term in Eq. (16).

Equation (16) is exactly equivalent to the BSE [Eq. (1)]
with the interaction in Eq. (2). T appearing on the rhs is
obtained by solving the three-dimensional equation (13)
which involves only a truncated basis. All quantities on
the rhs of Eq. (16) are known and it expresses the fully
off-shell amplitude T essentially as an integral over T. In
comparison, Eq. (1) is a four-dimensional integral equa-
tion defined over the full basis. If one is interested in on-
shell elastic scattering of, say, two nucleons (NN~NN),
then it is sufficient to consider Eq. (13) only, because

T.+.-+.h.ii+(Po Q, Q') =T.+.+.h.ii+(Po Q Q') .

The price that has been paid is that the effective in-

teraction is an infinite series. However, experience'
shows that this may be a rapidly converging series and, in

practice, one is not likely to be required to go beyond the
terms of order g or g . An approximate method which
in the low-energy limit greatly simplifies the calculation
of these higher-order terms was presented in Ref. 15.
Like the BSE, Eq. (16) enables one to treat the relativistic,
off-shell, and boson-exchange effects in a two-fermion
(each with spin —,

'
} system in a consistent way. Equation

(16) can be applied, for exainple, to the problem of NN
scattering below pion-production threshold. It can also
serve as a starting point to derive two-body bound-state
equations which can be applied, for example, to the deute-
ron. Before we consider the bound-state equations, we

would like to overcome the only approximation that we
made so far, namely the ladder approximation [Eq. (2)],

The driving term in the BSE [Eq. (1)], V(Q, Q'), is an
infinite series representing all connected two-particle ir-
reducible diagrams, the lowest-order term in the series be-
ing given by Eq. (2). The next higher term is the so-called
"crossed-box diagram" (Fig. 7), not to be confused with
the apparently similar time-ordered diagrams in Fig. 2.
Its expression involves

Q"+In)i (8+m)i y&g

(D =P —Q —Q'+ Q"), (18)

where the interactions V are given by Eq. (2). We substi-
tute Eqs. (4) and (5) in Eq. (18) and perform the Qo' in-

tegration exactly. The resulting 24 terms (operators) are
represented schematically in Fig. 8. Their expressions are
consistent with the rules in the Appendix. These expres-
sions show that none of the diagrams in Fig. 8, not even
those in the box, can give rise to an iterative diagram
when external fermion lines are drawn. In other words,
these expressions cannot be cast in the form
f(Q, Q")g(Q")f(Q",Q'}, where f and g are any arbitrary
functions. This is essentially because, unlike the g -order
terms in Eq. (6), one of the internal fermions in (18) has a
complicated four-momentum D=P —Q —Q'+Q" that
depends on Q and Q'. The result that Fig. 7 does not give
rise to iterative time-ordered diagrams is to be expected
because the crossed-box diagram itself is an irreducible di-
agram. This result will hold true also in the case of all
higher-order terms in V(Q, Q') because they all corre-
spond to irreducible diagrams. It should be obvious now
that even in the general case the structure of Eqs. (13) and
(16) remains unchanged; one is only required to include
additional noniterative time-ordered diagrams of order g
and higher in V,ff and V,ff.

8. Relativistic two-body bound-state equations

In order to obtain two-body bound-state equations, we
use
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rK

FIG. 9. Diagrammatic representation of Eq. (21). The wavy

line represents V,ff.

FIG. 8. Schematic representation of terms resulting from Eq.
(18).

and I (Po Q), Fig. 9. Once these two vertex functions
are obtained, they can be substituted in Eq. (22) to obtain
1"(Po,Q), where i = + +, ——,e (even), or o (odd).
Note that Eq. (22) is not an integral equation for I"(Po,g)
since all quantities on the rhs are known. Moreover, it in-
volves only a three-dimensional integration.

Now we would like to write partial-wave expansions of
Eqs. (21) and (22) for arbitrary values of J. Let us con-
centrate on Eq. (21) first. We define

m I'(Po Q)
Iq "(Po,Q)) —= (k=++) . (23)

Q k

With this definition, Eq. (21) becomes

Pk(P O)gk't(P
T k, k'(P Q Q ) I Q APED+

(19)

2 d3 I

=X f E E I'rr'(Po*Q, Q') lt'(Po, Q')&
k Q Q' (2n. )'

I"'(Po, )I / (Po, ')
T'/(Po, g, Q') = i i

R' .
PQ —mg

Here, 1 and I are the vertex functions, R and R' are
(regular) functions with no singularity at Po ——ms, and

ms is the bound-state mass. Upon substitution of Eqs.
(19) and (20) in Eqs. (13) and (16), respectively, and equat-

ing the residues at I'Q ——mz, me get

I "(Po Q) = g f I'lr" (Po Q Q')
k'

(21)

I'(Po Q) = Q f I 'rr (Po Q Q')

I

XGt (Po, Q')I "(Po,Q')
(2m )'

where Po ——ma. Equation (21) represents two coupled in-

tegral equations in two unknowns, namely I ++(Po,Q)
I

where

(Po,
I Q I

)—:(P(Ql'S'J'M')
I p (P,Q) ) . (26)

In Eq. (26) and in the following discussion angular in-
tegration is implicit in a scalar product. The basis is de-
fined as follows:

I f (QlSJM))

g ( ISmi Ms
I
JM ) Fi, ( Q )

I Q, —, —,SMs )k,

I Q, —,
'

—,
'
SMs ) = g ( —, —,

'
A A,

'
I
SMs & u i (QA, ) u 2( —Qk'),

I Q, , ,'SM, & = g&—-,——,u, 'ISM, &U, ( —Qx)U, (Qa') .
u, '

We have the following orthogonality and closure relations:

We expand
I
y"(Po, Q) ) as

ei s/w (Po
I Q I

)
I g (Qi'S'J'M') &

l'S'J'W'

(25)

( p(QlSJM)
I g (Qi'S'J'M') ) =&0 &ss 4J'&Ms/'

g I
0"(

I Q I,Q, ISJM) & & @"(
I Q I,Q', iSJM )

I
=@~Ig —&g )&'«) .
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Substituting Eq. (25) in Eq. (24) and premultiplying by (P"(QlsJM) I, we get two coupled equations for ylsJM

H. ( lql)~" (P., lql)= f Q' dQ' m

(2n.}' EqEq

+&0"(QlsJM)
I

V't'r" (Po Q Q')
I
0"(Q'1'S'J'M'}&v I"s~sr (Po,

I
O'

I
) .

I'S'J'M' k'

Recall that fdQgdQg is implicit in the matrix element in Eq. (27).
For SS coupling [Eq. (3a)] using Eq. (15), we get

(f++(Q1SJM)
I

Vert+)'++(Po, q, q')
I

f++(Q'1'S'J'M') )

= (q++(QlsJM)
I

~++ ++(P, ,q,q')
I

y++(Q'1's'J M'))

= f /& ,
'

21-1-Is'M, .)(-,'-2u, IsM, )(1'sm, M,
I
J'M')(lsm, M, IJM&

X &t', (Q )1'I,,(Q') ~++'++(Po, Q, Q')

Xt7 (QA)u ( —QA, ')u~(Q'p)ut( Q'p—')dflgdf)g .

Using
I

g)(qg) p2( Qg')u ) (Q'}M)u 2( Q'p') = X~(1)X~(2) 1 — qg~(1)g~ (2) (eg =Eq+m),
(2m) E'g E'g

and defining

&~sr(q) —= g& —,
'

—,
' pp'

I
SMs & & 1SmlMs

I
JM & 1'lppgl(Q)&„(1»„(2)

the above matrix element becomes

(Q++(QlsJM)
I
v,fr i (Po,q, q')

I

g++(Q'1's'J'M'))

f~++'++(Po Q R'W (Q}f-( Q Q'}f-( Q Q'4' r (Q')df)gdf)g
(2m}

where we have introduced the following notation:

(27)

(2g)

(29)

tr'Q o "Q'
f+(~ Q Q'}=—1+

Cga

I

, g+(~; Q Q'}—=~' +
6'g 6g

Similarly, it can be shown that

(f (Q1SJM)
I Vetr (++(Po,q, q')

I

f++(Q'1'S'J'M') )

+ &» + 2» I's'J'M' gd+g'
(2m)

(y (QlsJM)
I

-v-;„-, --(P„q,q )
I
t(--(Q 1 s J'M ))

E'g 6g
2 f~ ' (Po Q Q')tr('~sJ~(Q»-(~i Q Q'}f—(o'2 Q Q')fl's'J'I'(Q )d+gd+g'.

(2m)

Matrix elements of higher-order terms in V,rr, appearing in Eq. (27), can be calculated in a similar fashion. For the
sa««™phcity and for late~ use, we choose to present below equations that are based on effective interactions calculat-
ed to order g . These will be useful when we discuss relative magnitudes of various components of the relativistic deute-
ron wave functions. Substitution of Eqs. (29)—(31) in Fq. (27) then gives

/2d I

IQI)=f, g g&g' (Q}llv"'"'(Po,Q, Q')It( (Q'))q ~ ~ (Po, IQ'I).
tSJM k

For SS coupling [(Eq. (3a)j

(32}

~--'-"-(P. Q Q'}f (,Q, Q')f (,Q, Q')
Q Q'
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(33)

cQ t

~'isJili Po Qo IQI =J, E E 2 2&0'(QISJM)
I

I'l'I'r (Po, Q, Q') l0'(O'I'S'J'M')&Ignis Jkr(Po, IQ'I»
O' I s J'M''k''

(P.,Q,Q'}=- ""' ~'-'-(P.,Q, Q')g.(,Q, Q'}g.(,,Q, Q)
g'

«r PP ~o~pling [Eq. (3b)] are obtained from the corresponding W in Eq. (33) by interchanging f and g.
k, k'

Partial-wave projection of Eq. (22) is only slightly more involved. We only quote the final results. Instead of Eq. (2'7),
we now get

(34)

where

I i (P,Q, ~ Q ~

)—: I&f'(QISJM)
~

I'(P, Q)dQ(2,

Pi s q kr on the rhs is to be obtained by solving Eq. (27), and Iti' is defined in the same manner as P.
Matrix elements in Eq. (34) can be calculated as before. Below we present equations that are based on effective in-

teractions calculated to order g . We have, analogous to Eq. (32),

~isJkr(Po Qo IQI }=,g g&Pisikr(Q}l W' (Po Q Q') lltisrkr(Q')&e&isrkr(Po IQ'I).
Q'dQ' i,k' k'

i'S J'~ k'
(35)

The W""(Pp,Q, Q') appearing in Eq. (35) are given by expressions similar to those in Eq. (33), except that
(Po,Q, Q') is replaced by P""'"(Po, Q, Q'). W'+-+-and W"+--+ are defined below. For SS coupling [Eq. (3a)] we

have

and

W'+-+-(P, Q, Q')=,~'-''-(Po, Q, Q')[f (o',Q, Q')g (o2,Q, Q') —f (o'2, Q, Q')g (o'i Q Q'}]
Q&, 4E~EsubbQ'

o Q Q'}=
4E E

~'++(Pp Q Q')[f (o'i Q Q')g+(Ir2 Q Q')+f-(0'2 Q Q')g+(iri Q Q'}] .
4E~Eq,

' ' ' ' +

Finally, for PP coupling [Eq. (3b)], W''+-+-and W'+-+-are
obtained from the corresponding W in Eq. (36) by inter-

changing f and g and changing the overall sign.
We stress that Eqs. (32) and (35) are valid in general;

only the expressions for W given above are valid to order

g
2

Equations (32) and (35) can be simplified by using the
symmetry properties of the interaction, W. The following
observations can be made by studying the expressions for
the 8"s:

(i) All W's are rotationally invariant so that the in-

teraction matrix elements are diagonal in J and M, and
are independent of M.

(ii) W ' (Po,Q, Q'), W"'" (Po,Q,Q'), and
We'" (Po, Q, Q') are symmetric under the operation

o'l-- =m2, so that they cannot connect states of different

spin symmetry ( S'&S). On the other hand,
(Po, Q, Q') is antisymmetric under this operation and

so ~«annot connect states of the same spin symmetry
(S'=S).

(ill) W '" (Po, 'Q, Q') and W"'"'(Pp, Q,Q') are symmetric
under the operation Q~ —Q, Q'~ —Q' so that they can-
not connect states with different spatial parity ( I —I'= an
odd integer}. On the other hand, W'k(Po, Q, Q') and
W ' (Pp Q Q'} aI'c antlsymmctrlc llIldcI' this opcI'atloI1
and so they cannot connect states vvith the same spatial
parity (I —I'= an even integer). This, however, does not
mean that the parity is not conserved, because the intrin-
sic parity of g'(QISJM) and P(QISJM) is opposite to
that of P (QISJM).

As a result, Eqs. (32}and (35) simplify considerably:

l2d l

~.(lQI }~~ (P., lQI)= I, g g&e~ (Q) I

W" (P.,Q,Q) le (Q'}&~" (P., lQ I)
i' —i=even k'

l2d I

(P Qo IQI)=I, XX&@' (Q) I
W" (Po Q Q'}lf (Q'}&V' (Po, IQ'I).

i'S' k'
(3g)



34 1931

In Eq. (38), if i =++, then l' —1=even and S'=S; if
i =e, then l' —i=odd and S'~S; and if i =o, then
I' —I =odd and S'=S.

Equations (37) are the Schrodinger-type equations satis-
fied by the relativistic two-fermion (each with spin —,)

bound-state wave functions if the effective interaction is
calculated to order g . Remarks similar to those made in
connection with Eqs. (13) and (16) can be made in connec-
tion with Eqs. (37) and (38) as well.

1. Apphcatian to the deuteron

TABLE I. Relative-order-of-magnitude estimates of the

quantities W'"(Po, g, g')/W'«(Po, g,g') in the static limit, for
the SS and PP couplirigs fEqs. (3)j.

pp

1+0(u /e )
O(u'/c')
O(u/e)
0 (u/c)

O(u /e )

1+O(u /c )

0 (u/e)
O(u/e)

If we use the experimental fact that the deuteron is a
J =1+ object, then the only values of orbital angular
momentum allowed in [Eqs. (27), (32},and] Eq. (37) are 0
and 2, giving us coupled equations for the S+;—and D,+

wave functions. Solutions of Eq. (37) when substituted on
the rhs of EsI. (38) give us Qp-dependent vertex functions
for the sS& —,3Di+-, 'P;, and Pi states. Interestingly,
one does not get the remaining two states, namely P

~ and
'P;. This is essentially because the effective interaction
was calculated to order g . In order to get the P~ state
from Si —and Di states--[see Eq. (38)], one needs a
W'" that is symmetric under the operation tr, ::a2 and

antisymmetric under the operation Q~ —Q, Q'~ —Q'.
Similarly, 'Pi requires a W' that is antisymmetric under

both of these operations. Such IVs do not exist to order

g . However, if the effective interaction is calculated to
order g, such 8 s do appear, giving rise to the P& and
P

~
states.

It follows from Eq. (17) and the expressions for W'"
that g '«(Po, Q, Q'}, and hence W' (Po, Q, Q') are sym-
metric under the interchange of energies of the two fer-
mions, Qp~Pp —Qp. As a result [see Eq. (38)],

I'ter«t(Po Qo I Q I
)=I"'st)st(Po Po —Qo I Q I

} ~

In other words, the Qp-dependent vertex functions for the

S~ —, D~--, 'PI, and Pt states are symmetric under the
interchange Qp~Po —Qo. Vertex functions for the Pi
and 'Pi states, on the other hand, are antisymmetric
under this interchange. Of course, all the vertex functions
are antisymmetric, as they should be, under the combined
operation of space, spin, isospin, p-spin, and energy ex-

change.
In Table I we present the relative-order-of-magnitude

estimates of the quantities

W' (P,Q,Q')ll ' (Po, Q,Q'),

in tile static llinlt, for the SS and PP couplings [Eqs (3)]
Though the static limits of P '++ (Po, Q, Q') and

(Po, Q, Q') are different, this is not expected to alter
the following conclusions.

The following is clear from Table I and Eq. (38).
(i) For the PP coupling the off-diagonal matrix ele-

ments ++, ++ are larger than the diagonal and other
off-diagonal matrix elements. [This is easy to understand
because y5st(p, s)=U(p, s) and y&u(p, s)=tt(p, s).] Thus,
in the deuteron the admixture of virtual states with both
nucleons in negative-energy states is more likely than that
of the states with one nucleon in a positive-energy and the
other in a negative-energy state, provided the coupling is
pseudoscalar-pseudoscalar. This feature of the deuteron
vertex functions, despite its simple origin, has not received
sufficient attention in the literature (see, however, Ref. 4).

(ii} The P-wave components of the deuteron are small-
er than the S-wave and D-wave components by roughly a
factor U/c. In the nonrelativistic limit only S- and D-
wave components survive.

It is desirable to have the above estimates supported by
detailed numerical calculations. The deuteron wave func-
tions displayed in Ref. 4 are consistent with these esti-
mates.

III. DISCUSSION

We have presented in Sec. II an exact three-dimensional
reduction of the BSE [Eq. (1)] for the case of two spin- —,

'

fermions exchanging scalar and pseudoscalar bosons. Sca-
lar and pseudoscalar couplings were considered. We de-
rived the three-dimensional equation (13) for an auxiliary
amplitude T and Eq. (16) for the fully off-shell Bethe-
Salpeter amplitude T of Eq. (1). Equations (13) and (16)
are valid in the general case and not merely when the
ladder approximation is made. Note that Eq. (13) in-

volves only a truncated basis and once it is solved to get
T, T is obtained simply by substituting T on the rhs of
Eq (16). .The effective interactions appearing in these
equations are infinite series, but that is not expected to
cause any problem in practical applications because they
are expected to converge rapidly (see Sec. II). From Eqs.
(13) and (16) we obtained Eqs. (21) and (22), respectively,
for the two-body bound-state vertex functions. General

. partial-wave decomposition was performed, leading to
Eqs. (32) and (35), where, for simplicity, we retained terms
of order g only in the effective interactions. Finally, the
symmetry properties of the interaction were used to
rewrite Eqs. (32) and (35) in a simplified form of Eqs. (37)
and (38). These are our equations for the relativistic two-
fermion (each with spin —,

'
) bound state. Finally, we used

these equations to estimate the relative orders of magni-
tude of the various components of the deuteron relativistic
wave functions. These results were presented at the end
of Sec. II. We now compare our work with some of the
earlier work reported in the literature.

Gross equation In the integrand in Eq. (1), if the
singularities of V(Q, Q" ) and T (P,Q",Q') in the
complex-Qo' plane and the contribution of the negative-
energy poles of the fermion propagator are neglected, and
the Qo' integration is performed by closing the contour in
the lower half plane, one gets, in the c.m. frame,
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v(Q, Q,"„)g,"„+m)1(P —g,"„+m )2+ T(Pp, Q,"„,Q')d'Q"

2Eg-Po(Po —2Eg +i5)(2n. )
(39)

where, in general, p,„=(E~,p). Equivalently, one can obtain Eq. (39) from Eq. (1) by the replacement

({())"+m), (j'—{{))"+m ), 2—ni5(QO Eg—)~({P,"„+m))(P—g,"„+m )2 (40)(Q" m—+i5)[(P Q—") —m +i5] 2Eg-Po(PO —2Eg-+i 5)

If one further replaces Q and Q' in Eq. (39) by Q,„and Q,'„, respectively, and makes the ladder approximation, one gets
the Gross equation

(Q,„,Q,"„)(g,"„+m)1(P—g,"„+m )2T(PO, Q,"„,Q,'„)d Q"
Oi on& on = on~ on +

2Eg-Pp(PO —2Eq +i5)(21r)
(41a)

20 {,
'1 )0 (2)

V( Q,„,Q,'„)=
2(Eq Eg )— cog —@+i5

(41b)

Note that in Eq. (41a) the particle labeled 1 is on mass shell throughout the scattering process, while the particle labeled
2 is generally off mass shell. The bound-state equation corresponding to Eq. (41) is

V(Q,„,Q,"„)({()),"„+m))($'—{()),"„+m)21'(PO,Q,"„)d Q"
I (Pp, Q,„)= (42)

2Eq-Po(PO —2Eq-+ t 5)(21r )'

This equation has been used in detailed numerical work, resulting in relativistic deuteron wave functions which are
perhaps the most sophisticated deuteron wave functions available in the literature today.

It is interesting to compare Eqs. (41) and (42) with our Eqs. (13) and (21), respectively. In Eqs. (41) and (42),

( g,"„+m)1——2m A'~"(Q"),

(P g,"„+m) —= [P A' '( —Q")—(P —2Eg ~ )A' '(Q")] .
pit

Thus they allow only those processes which proceed through intermediate states of the following two types. (i) Both in-
termediate particles are in positive-energy states (++ ), and (ii) the intermediate particle labeled 1 is in a positive-energy
state and that labeled 2 in a negative-energy state (+ —). Thus there is no possibility of admixture of states of the types
——and —+. In contrast to Eqs. (41) and (42), four types of intermediate states are inherent in Eqs. (13) and (21); they
are ++, ——,+ —,and —+. Secondly, we have shown that the diagrams such as those in Figs. 2(m) —2(r) represent
noniterative processes when external lines are drawn. The Gross equation treats such processes as iterative. Finally, un-

like Eq. (41b), our effective interaction is an infinite series. Consider, for example, the series for V,+tt+'++(PO, Q, Q').
The first term in it involves P"++'++(PO,Q, Q'), which may be compared with the interaction in Eq. (41b). These two
quantities, though different, are identical in the static limit. The higher-order terms in the series for V+tt+'++, however,
do not vanish in the static limit.

Schaden and J3aier equation: Recently, these authors have presented a new three-dimensional reduction of the BSE
and have applied it to the case of NN scattering. In the c.m. frame Eq. (1) can be rewritten as

A( 1 )( ii) A(1)(
T(P(),Q, Q')= V(Q, Q')+i J V(Q, Q")

Eq- Qp Eg +(5 Q()—+Eq (5—
A(2)( ii) A(2)(») 4»

T (P(),Q",Q') (43)
P() —Q() Eri-+i 5 P() ——Q() +Eg ~ i 5 — (21r)

Equation (39) would follow if the term containing A"' is dropped, A' '(Q")/(Po —Qo'+E~- —i5) is replaced
by A (Q")/Po, singularities of V(Q, Q") and T(PO, Q",Q') in the complex-Qp' plane are neglected, and the Qp' integra-
tion is performed closing the contour in the lower half plane. The procedure of Schaden and Baier is a slight improve-
ment over this in that they retain the terms containing A"' and A' ' as they are. They too, however, neglect the singular-
ities of V(Q, Q") and T(PO, Q",Q') in performing the Qp integration. [Strictly speaking, this approximation is valid
only when V(Q, Q") and T(PO, Q",Q') are independent of Qo'. ] Thus they need to consider only

2 A(1)( rr)A(2)(
T(Pp, Q, Q')= V(Q, Q')+i IV(Q, Q")

Er2- (Q() Eq +i5)(P()—Q()' —Eg-+i5)—
A(1)( ii)A(2)(» ) 4

+ „„T(P(),Q",Q'), (44)
(QI) +Eq i 5)(PO Qo'+Eq —i5') — (2~)4

'
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because the cross terms do not contribute. Note that intermediate states of the types + —and —+ do not occur in this
equation. Now there are four ways of performing the Qo' integration in the last equation, because the integration con-
tour can be closed in the upper or lower half planes in the first and the second terms; the results, in general, are different.

Blankenbecler Su-gar (BbS) equation: In Ref. 9 they proposed an approximate three-dimensional reduction of the BSE
for scolar particles only. Their equation can be obtained froin Eq. (1) by dropping the factors (g"+m)i and
(P —g"+m)2, replacing Qo' in V(Q, Q")T(PO, Q",Q') as well as Qo and go everywhere in the equation by —,'Po and
making the ladder approximation. One thus gets

V(Q Q")T(Po 0" Q')((('Q"
'l(P, , ') = V(, ')+i

(Q" —m +i5)[(P—Q") —m +i5](2')"

= V(, ')+ V(Q, Q")T(PO,Q",Q')d Q"
~ 4Eg-(P() l4 Eq-+i—5}(2m )

(45)

where

20(1)0(2)
V(g, g') =

QPQ Q'

is an instantaneous interaction. Note that the above pro-
cedure (i) neglects the singularities of V(Q, Q") and

T(PO, Q",Q') in the complex-Qo' plane, (ii) neglects all re-

tardation effects, and (iii) assumes that the two interacting
particles are always equally off mass shell. In order to
generalize the BbS equation (45) to the case of two spin- —,

'

particles, one may start with Eq. (43), which is identical to
Eq. (1}. If the Qo integration is performed, as before,
after making the replacements

V(g, g")-V(Q,Q"}.. .,„
T(PO Q" Q') T'(Po Q" Q )g",=p, n

oni~ two terms —namely those with A+ A+ and
~ (1) (2)

A' A' '—survive [cf. Eq. (44)]. In other words, inter-

mediate states of the types + —and —+ would not

occur; without them the P-wave components of the deute-

ron wave function are absent.
Zmora and Gersten ' have also presented a set of

three-dimensional equations which are exactly equivalent

to the four-dimensional BSE. Their work, however, is re-

stricted to the BSE in the ladder approximation for spin-

less particles. Their method is quite different from ours
and appears to be far more complicated even for scalar
particles. It is based on the so-called energy analytic rep-
resentation of the scattering matrix and makes use of the
generalized %ick rotation.

In summary, we have presented an exact three-

dimensional reduction of the BSE for the case of two
spin- —,

' fermions; the resulting equations have several at-

tractive features. Application of these equations to the
deuteron has provided valuable insight into the various
components of the relativistic deuteron wave function and

their couplings to each other.
Note added: Though we have considered only scalar

and pseudoscalar bosons in this paper, the method is a1so
applicable to the case of massless vector bosons with vec-
tor coupling. In that case we have W=gPy"P((}z and
o ( & )o (23 ( I ) (2)
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APPENDIX

In this appendix we give the rules to write expressions
for the time-ordered diagrams representing scattering of
two spin- —,

' fermions. We use the convention that time
flows from left to right.

(1) Given a diagram, specify four-momenta of all the
lines: Let Q and Q' be the initial and final four-momenta
of a fermion labeled 1 and let Q",Q"', .. . be its four-
momenta in the intermediate states. Four-momenta of all
other lines are determined using the energy-momentum
conservation. In particular, P —Q and P Q' will be th—e
initial and final four-momenta of the other fermion if P is
the total four-momentum.

(2) If the external line with four-momentum Q(QO, Q)
is going forward (backward) in time, we associate energy
Qo( —Qo) with it. Similar statements apply to the exter-
nal lines with four-momenta Q', P Q, and P Q'.—En-—
ergies of all relevant internal lines —bosons and
fermions —are determined assuming they are on mass
shell.

(3) With the energies of the lines, Q, Q', P Q, and—
P —Q' determined this way, calculate the total energy (E)
in the initial or final state (E=E;=Ef). Note that E
may or may not be equal to I'0.

(4) The expression for the diagram is an integral over
the internal three-momenta Q",Q"', . . . , the integrand
containing the following factors.

(i) For each distinct intermediate state a factor
(E—g„E„+i5) ', where E„are the energies associated
with the lines in that intermediate state. Recall the
relevant internal lines are an shell while the external lines
are on or off shell.

(ii) A+(Q") or A ( —Q") for each internal fermion
with four-momentum Q "(Qo',Q") going forward or back-
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ward in time, respectively [sl:Eq. (5)].
(iii) A factor of the type g 0'"0' '/(2toq) for each

internal boson with three-momentum q [see Eq. (4)], and
a factor of the type rn/Eq- for each internal fermion
with three-momentum Q" [see Eq. (5)].

(iv) Finally,

d 3QII d 3Q III
~ ~ ~

(2n) (2m)

(The & s and 0's, heing operators, should appear tn the
order in which the corresponding elements appear in the
diagram. )
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