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Bose-Ferxai symmetry chain for the description of odd-odd nuclei
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A Bose-Fermi dynamical symmetry scheme to describe odd-odd nuclei is proposed. A better
agreement with the experimental spectra of ' Au and ' Au is obtained as compared to previous
studies.

Recently introduced dynamical supersymmetry
schemes' have been very successful in studying correla-
tions between the energy spectra and the electromagnetic
transition probabilities of even-even and odd-even nuclei.
In particular, the U(6/4) supersymmetry' was applied to
the nuclei in the supermultiplet (' Pt, ' Au, ' Hg', . . .)

and the U(6/12) supersymmetry to the nuclei in the su-

permultiplet (' Pt, ' Pt, ' Pt", . . .). The existence of
these two schemes together implies the possibility of hav-
ing a larger supersymmetry describing the odd-odd nu-
cleus ' Au as well. However, the simplest such
scheme incorporating both the U(6/4) and U(6/12)
chains, could not account for the correct ground state an-

gular momentum of this nucleus. Since very little data
are available for ' Au, the theoretical predictions of this
scheme were instead compared ' with the experimental
spectra for ' Au. It was found that most of the low-

lying levels of ' Au could not be accounted for either. In
this article we present an alternative symmetry chain
which yields the correct ground state angular momentum
and greatly improves the description of the low-lying
states.

In general, the group structure of the interacting
boson-fermion Hamiltonian is Ug(6) X UF(trt +trt, ),
where rn (m ) is the dimension of the unpaired proton
(neutron) subspace. The group chain studied in Refs. 3
and 4 starts with the decomposition

Us(6)XUF(m +rn„)DUq(6)XUF(rn )XUt;(m„) . (1)

A new possibility arises when m =m„=m and when the
odd-proton is holelike and the odd-neutron is particlelike
or vice versa. When many orbitals are involved, the aver-
age particle or hole character of the nucleons could be

I

Utt(6) XUF(m ) XU~(m) DUtt(6) XU, (rrt), (2)

where the overbar on UF(trt) reminds us that the conju-
gate representation (H) is employed and the last UF(m) is
the group obtained by taking the direct product of the
first UF(m) and UF(m).

In the Pt-Au region, the odd-neutron occupies most-
1 3 5

ly the levels j'= —, , —, ,—, (p, r2,p3&2,fs&2), and the
odd-proton occupies the levels j
(s

~ rq, d 3&q, d sr2). For this region m =m „=m = 12. We
assume that for ' Au and ' Au nuclei, the neutron orbi-
tals enumerated above can be considered as particlelike. '

Since the protons are holelike, unpaired protons and neu-
trons can be placed in conjugate representations and the
scheme described in Eq. (2) may be applicable. Accord-
ingly, we form the group chain

considered. The odd fermions should be placed in I-
dimensional representations of the group UF(m). There
are two m-dimensional representations of this group: the
fundamental representation (denoted by CI in the Young
tableau notation) and its conjugate representation (denot-
ed by El). We place the particlelike fermions in the form-
er and holelike fermions in the latter representation. A
similar distinction for bosons was previously considered in
Ref. g; here the distinction is made for fermions. Such a
scheme naturally leads to the parabolic rule' for odd-
odd nuclei.

A detailed study of this Bose-Fermi symmetry scheme
will be given elsewhere. " In this article we concentrate on
the description of the excitation spectra of the odd-odd
nuclei. It follows from the above discussion that we have
a Bose-Fermi symmetry' with a group structure

Utt(6) X UF(12) X UF(12) D Us(6) X UF(12) &Ug (6)X Ut;(6) X SUF(2)

&SOs(6) x SOF(6) x SUF(2) DSping+F(6) x SUF(2)

D Spin~+t;(5) X SUF(2) &Spin~+F(3) X SUF(2) DSpinz+F(3), (3)

where we used the same notation as in Ref.-2. In general, the corresponding Harniltonian would contain a large number
of parameters. We choose the appropriate parameters of the Hamiltonian such that the representation with the SUF(6)
adjoint and the SU+(2) singlet is the lowest one in energy for the odd-odd nuclei. Furthermore, a third parameter will be
chosen such that the (n, 0,0) representation of the SO&(6) is the lowest one in energy for the even-even core which is the
standard SO(6) choice. ' Here n is the number of bosons in the even-even core. Under these assumptions, the low-lying
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spectra of the odd-odd nucleus is given by the following simplified energy formula:

E=EO+5[o ~(o ~+4)+oq(cr2+2)] ——[at(a~+4)+o2(o2+2)+o3]+ —[r~(~~+3)+r2(F2+1)]+CL(L+1),F F F 8
6

where (~f az, 0) are the SOF(6) quantum numbers, (o„o2,o3) are the Spin~+F(6) quantum numbers, (r&, r2) are the

Spiny +F(5) quantum numbers, and J is the quantum number of the final Spinz+F(3). [The SUF(2) in Eq. (3) is in the
singlet representation. ]

The adjoint representation of SUF(6) contains two SOF(6) representations; one with (o ~
——2,a q

——O,o3 ——0) and another
one with (o& ——l,o2 ——I,o3 ——0). Since, as discussed above, the contribution of the even-even core is expressed by the

(n, 0,0) representation of SOq(6), the values of o, , o2, and o3 can be obtained from the multiplication rules

(n, 0,0)s(1,1,0) =(n, 1, 1)e(n, 1, —l)$(n, 0,0)s(n+1, 1,0)$(n —1, 1,0),
(n, 0,0)s (2,0,0) =(n +2,0,0}e(n, 0,0)$ (n —2,0,0)63 (n + 1, 1,0}e(n —1, 1,0)63 (n, 2,0) .

(Sa)

(5b)

The decomposition of the representation (o t, 1,0) of
Spin~+~(6) into Spinz+F(5) representations is given in

Ref. 2. For the representation (o ~, 1,1) the decomposition
1s

(cr, , 1, 1 ) =(cr~, 1 )e(o, —2, 1}e(o
~

—2, 1)e (6)

Finally, the Spin~+F(3) representations included in the
above Spinz+F(5) representations are given in Refs. 2 and
14.

In Eq. (4) 5 p 0 and the representation (1,1,0) of SOF(6)
is lower in energy, Consequently, since A g 0, the
(n+1, 1,0) multiplet of Spinz+F(6) represents the low-

lying states of the odd-odd nuclei. Choosing 8p0, the
(1,0) representation of SO~+F(5) is the ground state. Its
angular momentum content is I. =2. Our scheme thus
predicts the correct ground state of ' Au and ' Au, as
opposed to the earlier treatments ' which yielded a wrong
value (L =1). A typical spectrum predicted by our
scheme is shown in Fig. 1, where the boson number is tak-
en to be n =5 (the same as the ' Au core). Unfortunate-

ly, there are very little data available on the level scheme
of ' Au. If one assumes that the structure of the low-

lying levels would not considerably change from ' Au,
one might expect to get a rough idea about the applicabili-
ty of this scheme by examining the level scheme of ' Au.
A comparison of Fig. 1 with the experimental level
scheme' for ' Au is encouraging. In this figure a third
band corresponding to the (n, 1,1) representation in Eq.
(5a) is not shown. The two lowest levels of this band have
L =1 and 3 [cf. Eq. (6) and Ref. 2], and the bandhead
(L = 1) state can be placed at -200 keV by choosing the
parameter A appropriately. Except for a low-lying 3
state, there is a reasonable correspondence between the ex-
perimental spectra and the levels predicted by Eq. (4) for
E&300 keV. In particular, the ground state spin is
correct, and the experimentally observed three 1 states
and the 4 state are accounted for. On the contrary, the
scheme presented in Refs. 3 and 4 predicts the wrong
ground state spin, and an additional low-lying 0 state
which is not experimentally seen. Furthermore, it cannot
account for the experimentally observed 4 state. These
states cannot originate from the coupling of the positive-
parity i&3~2 neutron orbit and the negative-parity h»&z

(n+ 1, ), 0) (n+2, 0, 03

0.50

(2., 0)

~ 0.25—

(Z, o)

(0,0)

0 —(~,0)

FIG. l. A typical spectrum ~ith the SU&(6) && UF(12)
)&UF(12) symmetry. The energy levels are calculated using Eq.
{8) ~here 46 —7A/2=230 keV, 8=190 keV, and C=2 keV.
The labels for Spinq+F(6} representations (at the top) and for
Spinz+F(5) representations (next to the levels) are also given. A
third band starting at -300 keV is not shown.

proton orbit either, as was also pointed out in Ref. 4.
Further experimental exploration of a low-lying 3 state
in ' Au and a study of the low-lying negative parity
states in ' Au is requisite to establish the validity of our
scheme in this region. Obviously, a study of the energy
spectrum alone is not sufficient in assessing the signifi-
cance of a new symmetry, especially since the energy
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differences are very small (-75 keV). It is also essential
to study experimentally the electromagnetic transition
rates, since such a study provides the best test of the wave
functions of the model.

We also would like to point out that energies of the
lowest-lying 0, 1,2, and 3 states lie on a parabola as
a function of L(L+1). A more complete discussion of
the relation between the parabolic rule and the supersym-
metry schemes for odd-odd nuclei is presented elsewhere.

We have presented a new class of Bose-Fermi sym-
metries applicable to odd-odd nuclei and applied it to the
odd-odd Au isotopes. %e should indicate, however, a po-
tential difficulty if one wants to extend the present
scheme to a dynamical supersymmetry describing the
neighboring even-even, odd-even, and even-odd nuclei in
this region. Namely, the odd-proton isotopes ' Au and

Au would not be satisfactorily described in such an ex-
tended scheme. In particular, the appropriate Spin(6} lim-
it, which was shown' to be successful in describing these
isotopes, cannot be obtained when the odd proton occu-
pies three orbitals with j= —,', —,', —,. Hence in this article
no attempt has been made to extend the dynamical Bose-
Fermi symmetry for odd-odd nuclei to a supersymmetry.

We have shown that for Au isotopes (Z=79) with
%=117and 119, taking the unpaired neutron to be parti-
clelike yields a better description of the excitation spectra,
and hence of the neutron-proton residual interaction. For
negative parity odd-neutron orbitals this assumption may
be reasonable, since there is a large gap between 3@3/p and

1h9&z orbits. In contrast, the treatments in Refs. 3 and 4
consider the unpaired neutrons to be holelike. In a more
rigorous treatment, one could assume particle character
for neutron bosons as well. Doing so does not significant-
ly alter the results discussed above, since, as described in
Ref. 9, the lowest-lying ( & 250 keV) states of odd-odd nu-
clei are not very sensitive to the description of the bosonic
core.
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