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Within a unitary mNN theory a set of coupled integral equations have been developed for the

study of pion production from NN collisions, and have been applied to calculate the coincidence
cross sections of pp~pnm+ at 800 MeV. The calculation is based on a meson-exchange Hamiltoni-

an which was previously constructed to describe NN elastic scattering up to 1 GeV by extending the

Paris potential to include 6 excitation. It involves solving a Faddeev-Alt-Grassberger-Sandhas
scattering equation for the final mNN state and a NNNb, coupled-channel equation for the initial

NN state. We present the procedure of using the newly developed spline function method to solve

the considered Faddeev-Alt-Grassberger-Sandhas equation directly on the real momentum axis.
The importance of using a unitary approach to treat the initial NN and final ~NN scattering is

analyzed in detail, in order to understand the results obtained in several previous approaches by

Betz, Dubach et al. , and Verwest. The calculated cross sections reproduce the main features of the
data both in magnitude and shape. The main difficulty of the present theory is found to be in repro-

ducing the polarization data A„. Our results provide further evidence that the mNN dynamics can-
not be described completely by the conventional meson-exchange model.

I. INTRODUCTION Ho+ ~NN, NN+~m'N~h+ ~NN~N4

Extensive data' on pion production from nucleon-
nucleon (NN) collisions have become available in the past
few years. The study of these data is clearly an important
step in the investigation of the basic mechanisms of the
coupled NN+ n.NN system. In this paper we report such
a study within a unitary n NN formulation which has been
recently developed by us. The essential point of our ap-
proach is to formulate a unitary mNN scattering theory
which can describe both the conventional meson-exchange
mechanisms and the possible dibaryonic excitations of
(one-body) six-quark states. The application of our theory
can be carried out in practice by using computation
methods developed in the coupled-channel NN calcula-
tion and the Faddeev-Alt-Grassberger-Sandhas (AGS) md

calculation. This has been demonstrated in a recent pa-
per in which we show how these two works are combined
to carry out a unitary calculation of both NN and md elas-
tic scattering, using nonseparable meson-exchange models
of baryon-baryon interactions. In this paper we show that
a similar extension will allow us to carry out a unitary cal-
culation of NN~NNm. reaction. Our objective is to con-
tinue our efforts in Refs. 7 and 9 to rigorously explore the
extent to which the mNN reactions can be described by
the conventional meson-exchange models. As discussed in
Ref. 6, this is a necessary task for investigating the
genuine six-quark dynamics.

As a first step, we focus our attention in this paper on
the b;excitation inechanism. We therefore will study the
NN~NNm. reaction based on the model Hamiltonian
developed in Refs. 7 and 9. It takes the following form,

where Ho is the free energy operator, and VNN NN is a
NN potential. The pion production mechanism
NN —+NA —+NNm is clearly due to the last two transition
operators, h N a and VNN Nq. In this Hamiltonian for-
mulation, the pion and 6 degrees of freedom also influ-
ence the NN scattering at energies below the pion produc-
tion threshold. Therefore, the potential VNN NN in Eq.
(1.1) cannot be identified with a conventional low energy
NN potential. In Ref. 7 a subtraction procedure is intro-
duced to define VNN NN from the Paris potential. ' The
only freedom in using this procedure to construct the
nNN model equation (1.1) is in the parametrization of the
NN~Nh transition potential. It has been found7' that
the NN phase shifts as well as various total cross sections
up to about 1 GeV can be described to a very large extent
if VNN Nz is parametrized as the sum of pion and rho ex-
change with the cutoff parameter" of its dipole form fac-
tor chosen to be A=650 MeVlc. Our results as well as
the construction procedure can be found in Refs. 7 and 9
and mill not be repeated here. %e only want to emphasize
here that the present XX~XXm study is based on the
same model, and hence does not inuolue any adjustable pa
ra meter.

%'ith this well-defined model Hamiltonian equation
(1.1), it is clear that there are two different pion produc-
tion processes, as illustrated in Fig. 1. The first one [Fig.
l(a)] will be called the direct 6-production process, while
the second [Fig. 1(b)] will be called the final state interac-
tion (FSI) process. Their precise meaning will become
clear in Sec. II. The production strength is clearly deter-
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FIG. 1. The NN~NNm. reaction mechanisms which can be
generated from the model Hamiltonian equation (1.1). (a) The
direct 6 production process; (b) the final state interaction (FSI)
process.

mined by the dynamical content of the initial NN~Nb,
transition matrix. In the unitary mNN approach of this
work, it contains all possible NN~Nh transitions which
can be generated, in the subspace NNS NE@irNN, from
all interaction terms of Eq. (1.1). We will show in this
work that the amplitudes of these two processes can be
calculated from the solutions of a set of coupled integral
equations deduced from the general unitary mNN forrnu-
lation of Ref. 6.

Equation (1.1) is also the basis of an early meson-
exchange calculation by Betz. ' The main differences be-
tween his calculation and the present work are in the pa-
rametrization of the baryon-baryon interactions and the
treatment of the nNN unitary cut. Although Betz was
able to get a reasonable description of the NN~NNn.
cross section by adjusting the parameters of the one-
boson-exchange model of baryon-baryon interactions, he
did not show that the same set of parameters also gives a
good description of NN and md elastic scattering. We will
see in Sec. II that our NN~NNm calculation is consistent
with our previous calculations of NN and rrd elastic
scattering, as is required by the mNN unitarity condition.
The calculation by Betz neglected the mNN final state in-
teraction [Fig. 1(b)]. In calculating the initial NN —+Nb
transition, he also neglected the effect due to the one-
pion-exchange Nb ~AN interaction induced by the vertex
interaction h N ~. %e do not make these two approxi-
mations.

Based on a different unitary formulation of the prob-
lem, the NN~NNm reaction has also been studied by
Dubach, Kloet, Cass, and Silbar. ' ' The dynamical con-
tent of their calculations is essentially the one-pion-
exchange (OPE) model of Kloet and Silbar. ' Their ap-
proach, therefore, contains the same theoretical uncertain-
ty as Betz's calculation, since it can be seen from Ref. 15
that the OPE model does not satisfactorily describe the
NN elastic scattering. By examining the OPE liinit of our
theory, we will try to assess, at least qualitatively, their re-
sults from a more dynamical point of view.

Another existing approach to the study of the
NN —+mNN reaction is based on the lowest order Feyn-
man diagram in the one-boson-exchange approximation.
For instance, the early work by Verwest' was done by ad-
justing the parameters of the baryon-baryon-meson form
factors to fit the production data directly. From the point
of view of exploring the basic mNN dynamics, the signifi-
cance of these fitted parameters are not clear since they

also contain distortion effects due to the initial NN and
final mNN scattering. We will demonstrate that because
of the strong initial NN and final mNN distortions, a
direct interpretation of the NN~NNrr data, especially
the polarization observables, in terms of the lowest order
one-boson-exchange mechanism, is not very meaningful.

Apart from having a more consistent and richer
dynamical input than all of the previous approaches, an
important feature of our approach is a Faddeev-AGS
treatment of the irNN final state interaction illustrated in
Fig. 1(b). As is well known in the literature, ' it is a non-
trivial numerical problem to treat a three-body final state
interaction (FSI). We overcome this problem by using a
new numerical method' developed in a study of md

breakup reactions to handle the mNN branch cut. Our
rigorous treatment of FSI will provide information for as-
sessing the simple phenomenological parametrization of
FSI used in Refs. 14 and 16 and in most existing studies
of pion production processes.

In Sec. II we recall the formulation of Ref. 6 to derive
the mNN scattering equations for the calculation of the
NN~NNm. reaction in the 6-excitation region. In Sec.
III the numerical methods used in our calculation wi11 be
briefly described. We discuss our results in Sec. IV. Sec-
tion V is devoted to summarizing our approach and dis-
cussing future improvements.

II. UNITARY mNN SCATTERING EQUATION

F ~Nh
Tm'NN, NN Tm'NN, Nd, g ~ TNh, NN ~

0
(2.1)

where PNa is the projection operator for the Nb, state and
Ho is the free Hamiltonian. The NN~Nh transition
operator is defined by

TNa, NN(E) = VNa, NN&NN'(&) (2.2a)

with

f +) ~NN+»(E)—1+ TxN, NN(E) ~E —H0
(2.2b)

where VN~ NN is the NA~NN transition potential and

The basic idea of our unitary formulation in Ref. 6 is to
separate the m(b, ) multiple scattering mechanism from the
rest of the n'NN dynamics. While the multiple scattering
can be treated by the well-developed Faddeev-AGS
method, the effect of the essential meson-exchange
baryon-baryon (nonseparable) interaction is rigorously cal-
culated by using the coupled-channel method developed in
the study of NN scattering. ' The formalism needed for
the present study in the 6 resonance energy region can be
obtained from Sec. III of Ref. 6 by omitting the non-
resonant interactions U N and F NN NN. In this special
case the nNN Hamiltonian is reduced to the form of Eq.
(1.1) and the amplitude for pion production in NN col-
lisions is defined by only the first term of Eq. (3.69) of
Ref. 6. It can be cast into the following form,
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TNN NN is the NN elastic scattering operator. Equation
(2.2) indicates that the NN elastic scattering is an impor-
tant ingredient of the pion production calculation. The
elastic amplitude is, of course, also infiuenced by the pion

production channel. This has been formulated in Sec.
IIIA of Ref. 6. For the b;excitation model considered in
this work, the elastic scattering operator is defined by the
following equations (see also Ref. 9):

with

TNN, NN(E) = [VNN, NN+ ~NN, NN(E) l I+ T'NN, NN(E)
Z —Ho

(2.3a)

E NhI' P
NN, NN( ) VNN, N5 l+XNg Nd, (E) VNg NN

Nlk

0 E Hp ——Xg E)
(2.3b)

The effect of the pion production mechanism is contained in WNN NN(E), in which the AGS amplitude XN will be
defined»ter Xd,(E) is the b self-energy calculated from the lrN~b, vertex Th.e construction of VNN NN from the paris
potential as well as the method of solving Eq. (2.3) have been discussed in Refs. 7 and 9.

The multiple scattering amplitude T~NN Nt, is defined by Eq. (3.42) of Ref. 6. When the nonresonant mN interactions
are neglected, it takes the following form:

'1
NN Nz(E)=InNN . V +V V Nk),E —Ho —V

(2.4a)

with

~eN~h+ ~NN, NN
F (2.4b)

By using the following well-known operator relation

it is easy to see that

T~NN, wa = ~NN ~ + ~F F 1 p 1, V Nh P» —~NN V', Ng P„.1

0 E -&o- ~ E -Ho E —Ho —V
(2.5)

We now follow the standard AGS method to calculate Eq.
(2.5). The simplicity comes from the use of approxima-
tion that the NN scattering in the presence of a spectator
pion can be calculated from the following separable repre-
sell'tatloll of VNN NN,

I

~here GN~ and G~ are the propagators dressed respec-
tively by h N ~ and Ud in the well-known way. The AGS
amplitudes are defined by the following coupled integral
equations,

XNa, Nh(E) ZNa, NE(E) [ l +GNa(E)XNE, Nh(E) )

(2.6) +ZNlk, 1rd(E)G7td(E)X1rd, Nti(E) (2.9a)

where d denotes all of the quantum numbers needed to
specify the quasiparticle in the AGS approach. Note that
the separable representation equation (2.6) is only used in

solving Eq. (2.5), but not in the NN calculation equation
(2.3). The rtN~b, vertex interaction can also be written
as a separable form,

(2.7)

Substituting the separable interactions equations (2.6) and
(2.7) into Eq. (2.5), it is straightforward to show that

F ~Nb
=h~N, Z[ I +GNd, (E)XNd„Nd, (E)jGNd, (E)

+UdG~«)X d. Na«)GNa«), (2 g)

X~d Nd (E)=Zm Nd. +Z~d, Nt (E)GNd, (E)XNd. Nt (E),
(2.9b)

~here ZN~N~ and ZN~ d are, respectively, the m- and
N-exchange interaction in a subspace spanned by "two-
body" md and Nh states. Note that XN~ N~ is also the in-

put to the ~NN interaction term F NN» of Eq. (2.3b) for
NN elastic scattering calculations, if the same separable
approximation equation (2.6) is used to calculate the "con-
nected" Nb scattering term T, defined by Eqs. (5) and (6)
of Ref. 9. In the standard partial-wave representation, the
above equations reduce to one-dimensional coupled in-

tegral equations and can be handled with the existing
computation power. The use of this AGS approximation
is, of course, justified by its success in giving a reasonable
description of md elastic scattering.
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Substituting Eq. (2.8) ilito Eq. (2.1), we have

TENN, NN(E) =~ nN, a GNa (E)XNa, NN(E)

+&~G~~{E»~a,xx{E),
where

(2.10)
Nh, Nh Nh

Z G X
NIL, ~d m d

Xxa,xx(E)=[1+X+a,wa(E) Gxa {E)]Tea, we{E)

(2.11a)

Xn'd, NN(E) Xed, Na(E)GNa(E)TNE, NN(E)

The meanings of the direct b, -production [Fig. 1(a)] and
the FSI process [Fig. 1{b)] are now precisely defined by
the first and second terms of Eq. (2.10), respectively. By
using AGS equation (2.9), it is easy to cast Eq. (2.11) into

FIG. 2. Graphica1 representation of the Faddeev-AGS equa-
tion (2.12).

II&a' {E)=1+~xx' {E)[Zwa,xa{E)

+Z~z, a(E)G~(E)X q z~(E),

Xnd, NN(E) Znd, Na(E)GNa(E)XNs, NN(E)

(2.12a)

(2.12b)

XNa, NN(E) = TNa, NN(E)+ZNlL, Na(E)GNa(E)XNh, NN(E)

with

+UN', Na{E)]GNa{E» {2 14a)

«)=Z a, wa{E)Gxa(E»w~' (E), (2.14b)

XNa, NN(E) +Noh (E)~Na, NN~INN(E) ~ (2.13a)

X a, wx(E)=&'a' (E)~ra, ww&xx'(E) (2.13b)

where Q~+z' has been defmed by Eq. (2.2b). The distortion
operators for Nb and m.d are defined by

Equation (2.12) is graphically illustrated in Fig. 2. The
main feature of the above equations is that the driving
term 1N~ NN contains the crucial meson-exchange and
short-range mechanisms which have been well tested in
the study of NN scattering. As discussed in Sec. I, this
is the key difference between our approach and all of the
previous approaches. For our latter discussions, we note
that Eq. (2.12) can be exactly cast into the familiar dis-
torted form

UN4, Na(E) ZNh, m'd(E)Gn'd(E)Zgd, NE(E)

The above equations show how the bare interaction
V~& ~~ is shadowed by the initial NN and final

NA+mNN scattering. In the actual calculation, we solve
Eq. (2.12) and obtain the production amplitude T zz z~
by use of Eq. (2.10).

III. NUMERICAL METHOD

To carry out numerical calculations, it is necessary to
perform standard partial-wave decompositions of all n.NN
scattering equations in momentum space. The needed an-
gular momentum algebra is similar to what has been
developed in the coupled-channel NN study and the
Faddeev-AGS md study.

Our main task is to solve the integral equation (2.12)
which takes the following form in the partial-wave repre-
sentation:

XN NaN(p~pO) TNa, NN(p~pO)+ J p ~P ZNs. ,Na(p~p )GNa(p )XNa, NN(p ~pO)

+ I P ZNh, ,nd I ~J God I +md, NN P sPO

X~d, NN(popo) f p rip Zsd, Na(pip )GNa(p )XNa, NN(p ~po) ~

(3.1a)

(3.1b)

Here the notations NN, Nh, and m.d now stand for the necessary quantum numbers for each channel with total angular
momentum J and parity P, and po is the initial on-shell NN relative moinentum. The difficulty of solving Eq. (3.1) is
due to the nNN three-body cut which results in a logarithmic singularity in the driving terms Z. This can be handled by
the standard contour rotation method' if the analytic structure of the other driving term Tza ~~ is also known. How-
ever, this is difficult to do in practice since in the considered meson-exchange model, Eq. (1.1) based on the Paris paten-
tial, it is not easy to determine the analytic structure of T~z ~z and hence also T~q zz. For this reason we need to
depart from conventional practice and use a different numerical method for solving the integral equation (3.1) on the real
momentum axis.

%'e use the spline function method introduced in Ref. 18. The procedure is to expand all amplitudes L,

X(p po ) = Q S (i p)X {p;,po), (3.2)

where S(i,p) is the modified spline function of Ref. 20. Substituting Eq. (3.2) into Eq. (3.1), we obtain
JP JP JP JI' JP JI'X~ax~{P;,Po) =T~a, wx{P;,Po)+ g Wws~a(P; P, )'Xxa~x{P,,Po)+&w~.a{P;,PJ )X a, xx{P,,Po)] (3.3a)
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+ed, NN(Jj ~PO) g +ndNE(Pj ~Jk )+Nb, NN(Pk~PO) ~

JI' JP JI'

(3.3b)

The kernel defined by Eq. (3.3c) is now finite for all real
values of the relative momentum p since the logarithmic
singularity of the Z's has been integrated out. Of course,
it is necessary to carry out this integration with a large
number of mesh points. This has been discussed in Ref.
18. The matrix elements of the driving term Tzq NN are
finite for all real momenta and can be easily generated
from our existing coupled-channel program developed in
the NN study of Refs. 7 and 9.

Equations (3.3) can be solved by the standard matrix
method. Care must be taken in the region where X d NN
has a square-root branch point at the deuteron breakup
threshold. This is illustrated in the lower part of Fig. 3.
Clearly, we need to distribute a sufficient number of mesh
points to represent this behavior at P=311 MeV/c. A
careful test of our method has been discussed in Ref. 18.
In the upper part of the same figure we also show the

N5~NN amplitude which is smooth everywhere because
of the p-wave nature of the A~nN . interaction.

The irNN final state interaction is treated rigorously by
using the AGS amplitude X„d NN in the calculation of the
second term of Eq. (2.10). Although our method is un-

doubtedly much more rigorous than the phenomenologi-
cal parametrization employed by Verwest' and Dubach
et al. ,

' one must be aware of its limitation. This is due
to the necessity of using a separable interaction equation
(2.6) to obtain a numerically tractable AGS equation.
Therefore, the calculation becomes unrealistic in the
kinematic region where the final NN t matrix is far off
shell. We therefore limit our FSI calculation to the region
near the final state peak. In this region the energy of the
relative motion of the outgoing NN subsystem is low,
roughly less than 30 MeV for cases considered in this
work. It is therefore sufficient to include only the
Si+ Di and 'So NN channels in defining the quasiparti-

cle state "d." The needed separable representations of NN
interactions in these two channels are taken from Ref. 21.
The effect due to Si+ Di interaction is included exactly
in solving the coupled Faddeev-AGS equation (2.12). To
save computation time, the effect due to 'So is treated by
the perturbation

+ed', NN(E) Z1rd', Nlk(E)GNE(E)+Ndk, NN(E) ~ (3 4)

500

J =5

NA, NN
' O~

where d' denotes the 'So quasiparticle and XN~ NN is the
solution of Eq. (2.12). This is reasonable since as we will
show later that the effect due to 'So is much weaker.

IV. RESULTS AND DISCUSSIONS
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FIG. 3. The Faddeev-AGS amplitudes X~~,NN (Lq ——1,P;
LN ——3,PO} and X~ NN (L =2,P; LN ——3,Po) of the 3 channel
calculated from Eq. (2.12). Real and imaginary parts are sho~n
by the solid and dashed lines, respectively. Amplitudes are di-
mensionless. In X~,NN, the NN-FSI threshold (where NN rela-
tive energy is zero) is P,t,

——311 MeV/c. The impulse amplitude
VN~~N (which has only a real part) is also shown by the

dotted-dashed line in the upper graph.

Our main interest in this paper is to establish the extent
to which our approach is valid. It is therefore sufficient
to compare our theoretical predictions with the data of
pp —+pnm. + at 800 MeV, which is a typical example in the
resonance energy region. A detailed analysis of all exist-
ing data will be presented in a later publication in which
the nonresonant pion production mechanisms will be con-
sidered in order to account for data at lower energies.

The only adjustable parameter of the considered
meson-exchange model is the cutoff parameter of the
NN~NA potential VNN N~ which not only enters into
Eqs. (2.1) and (2.2) in directly determining the production
amplitude, but also plays a crucial role in elastic scatter-
ing calculation TNN NN by Eq. (2.3). As mentioned in the
Introduction, it is in the NN calculation of Refs. 7 and 9
that the cutoff parameter A=650 MeV/c is determined.
The present calculation is just a prediction of our model.
This must be noted in comparing our results with that of
the "fit" achieved by using the lowest-order Feynman dia-
gram. '

The most important feature of our approach is that we
account for the baryon-baryon interaction by generating
the Nh~NN transition TNqNN of Eq. (2.12) from the
coupled-channel model of Refs. 7 and 9. Since the model
is constructed starting from the Paris potential, the calcu-
lated TN& NN clearly contains mechanisms other than the
conventional long-range one-pion exchange. It can be
seen from Eqs. (2.2) and (2.3) that the transition is deter-
mined not only by the transition potential VN~ NN defined
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as the sum of n. and p exchange in our model, but also by
the NN scattering operator QNN'. This important
baryon-baryon dynamics is illustrated in Fig. 4, in which
the half-off-shell matrix elements of VNz NN and TNa NN

are compared. It is seen that the initial NN distortion ef-
fect plays an important role in the most relevant Nb,
momentum region, p(700 MeV/c. Its effects become
negligible only for the very peripheral partial waves with
1&4. From the definition Eq. (2.3), it is clear that the
differences between the solid curves and the dashed-d'otted
curves in Fig. 4 are quantitatively related to the accuracy
of the employed mNN model in describing the corre-
sponding NN elastic scattering. Since our model was con-
structed to give a good description of the NN phase shifts

up to 1 GeV, our calculation of the driving term TNq NN

of Eq. (2.12) is well defined dynamically. This strong
constraint from elastic scattering is, of course, the nature
of a unitary approach to mNN dynamics. It is not treated
rigorously in the calculation by Betz' and by Dubach
et al.""

The coincidence differential cross section of pp~pnn. +

can be written as

So(NN) ~ D (Nh)

Nh, NN

Pi(NN)++ P, (NQ)

(4 1)

where K is a kinematic factor, p is the outgoing proton
momentum, Q„and Q„are, respectively, the angles of the
detected proton, and n+, a, and P are the orbital-spin-
isospin quantum numbers needed to specify the initial pp
and final m+pn partial waves in the channel of total angu-
lar momentum J and parity P. The dynamical features of
the production mechanism can be seen by examining how
the cross section is built up from summing the partial
wave contributions in Eq. (4.1). Let us first examine the
direct b, production mechanism [Fig. 1(a)] calculated by
keeping only the first term of Eq. (2.10). In column 3 of
Table I we show the contribution from each partial wave.
The large contributions are from 1 & I & 5 partial waves.
The suppression of J=O partial waves is, of course, par-
tially due to the large distortion effect illustrated in Fig. 4,
but is mainly due to the geometric factors dictating the
NN~Nb, ~NNm transition. This finding is consistent
with the NN phase shift analysis in which the inelasticity
of 'So is extremely small. The largest term comes from
peripheral partial waves, 3 (the initial NN state is F&)
for this particular kinematics. In the OPE model of
Kloet and Silbar similar suppression of low partial waves
is also noted.

In the last column of Table I, we see that as the max-
imuin value of JP in the sum of partial-wave contribu-
tions is increased, the cross section is also increased.
Clearly, all partial waves contribute coherently. Hence
the summed cross section is sensitive to the small part of
the amplitude. Although the individual contributions of
2 & I partial waves are small, as seen in the third column,
an accurate calculation of these low 3 amplitudes is im-
portant in any attempt of using the production data to ex-
amine the mNN dynamics. For the same reason it is
necessary to calculate up to very high partial waves so
that the coherence can be fully included.

10- ~

8
D~(NN) ~ S~(NQ)

F~(NN) ~ P~(Nh)—

Qi

400
I

800
F' (MeV/c)

l 200

FIG. 4. Comparison of the matrix elements of TNq NN(p, po)
calculated from solving Eqs. (2.2) and (2.3) and the Nh~NN
transition potential VN~ ~N(p, po), where po ——300 MeV/c. For
the channels with I(NN) &4, the difference becomes negligible

and hence is not presented.
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TABLE I. Partial wave contributions to the unpolarized dif-

ferential cross section of pp~pnm+ at 800 MeV with the outgo-

ing proton momentum P=1000 MeV/c, Op=14. 5, and 0 =42',
a and P denote orbital-spin-isospin quantum numbers needed to
specify the initial pp and final pnm+ states. The third column is

the contribution from each partial wave. The results from the

coherent sum of partial waves up to A =J are in column 4.

d 0
dp dApdO,

I.O
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0
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2
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6
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7
8
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3p
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3p

P2+ I'p
'D
3F

F4+ H4
16
3H)

'H6+'J6
I6

3J
3J +3L

'K8

2

y TIP
aP

I

0.076
0.003
0.316
0.861
0.341
2.730
0.132
0.942
0.983
0.013
0.084
0.081
0.002
0.010

E g T,"p

aP

0.076
0.080
0.396
1.636
1.981
4.426
5.882
7.948

12.47
13.11
14.06
15.51
15.70
16.04

I 1

X
OJ

Ch
20— IMP ULSE~~--

CL

b
O

IO—

0 l

400 500 600 700 800 900 IOOO IIOO
P {MeVtc)

FIG. 5. Comparison of the full calculation ( ) with the
impulse approximation result {———) for pp~pnm+ at 800
MeV. Only the direct 5-production term is included in this cal-
culation. The data are from Ref. 2.

The simplest pion production mechanism is due to the
impulse mechanism in which the initial NN and final
mNN distortions are absent. The impulse calculation cor-

responds to setting the distortion factors QNN' ——Q~q' = 1

in Eq. (2.13). It is of interest to see in which way the
dynamical features of the bare production mechanism be-

come hidden by the distortion effects. It is seen in the
lower part of Fig. 5 that the distortion ean reduce the
magnitude of the cross section by about 30%%uo for this par-
ticular kinematics. Part of this reduction is, of course,
due to the initial NN distortion shown in Fig. 4. Further
reduction comes from the interaction due to the one-pion
exchange ZN~, ~~ and nucleon exchange Z„d N~, as
described in Eq. (2.14).

We found that the reduction of the magnitude of the
cross section is mainly due to the initial NN distortion.
This is shown in Table II, and when the NN distortion is
neglected by setting QNN' of Eq. (2.2) to 1, the magnitude
of the cross section is increased. In the last column of the
same table we show the results calculated by further set-

ting Z~N~ ——0. By comparing these two results, it is
clear that the distortion due to NN interaction in the pres-
ence of a spectator pion, characterized by the quasiparti-
cle interaction Ud, has very little effect. Its main effect is
in the FSI region, which will be discussed later.

The most drainatic effect due to distortions is in the po-
larization. As is seen in the upper part of Fig. 5, the im-
pulse term gives a very small analyzing power A„, while
the result from the full calculation is significant for all
momentum and changes sign at p =-900 MeV/c. Our re-
sult suggests that any attempt to use the polarization data

to search for any unconventional baryon-baryon interac-
tion, such as the formation of a six-quark state, must be
carried out with a careful account of the distortion ef-
fects.

%e now turn to investigating the kinematical region
which is dominated by the final state interaction, i.e., the
second term of Eq. (2.10). This is the low momentum re-

gion @~700 MeV/c in Fig. 5. The kinetic energy of the
relative motion of the outgoing np pair in this region is
roughly less than 30 MeV. Hence it is sufficient to con-
sider the np interaction in only the 5&+ D& and 'So
channels. The S~ + D~ interaction is treated to all orders

by solving the coupled quasiparticle equation (2.12). The
'So channel is only treated perturbatively using Eq. (3.4).
This is justified since the $0 channel is suppressed
geometrically; it contributes to the J =0,2,4
channels, which couple weakly to the intermediate NA
state. The weakness of the 'So FSI has also been pointed
out by Dubach et al. ' and is verified in our calculation
shown in Fig. 6.

In Table III we show the partial wave contributions to
the cross section in the FSI region. The first column is
the small contribution from the direct 6 production term
which converges very quickly at J=4 instead of J=8 in
the high momentum b, region (see Table I). When the FSI
term is included, the calculated cross section increases to a
value close to the data. The coherence is destructive when
the maximum value of J in the sum of Eq. (4.1) is in-
creased from 4 to 5 . This delicate result comes out
from solving the coupled Faddeev-AGS equation (2.12) in
each partial wave. The FSI interaction depends strongly
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TABLE II. Same as Table I. A~~ is the initial NN distor-
tion operator defined by Eq. (2.2). Z~„q is the nucleon-
exchange interaction due to the decay of the quasiparticle d de-
fined by the separable representation of Eq. {2.6).

TABLE III. Same as Table I, except at outgoing proton
momentum P=600 MeV/c. 6 is the result calculated from
keeping only the direct 6 production [first term of Eq. (2.10)];
5+FSI is the full calculation including also the 'S&+ D& final
state interaction (FSI) term.

dp dQ~dQ

aP

Exact
NN

Zmi, Nh,

d 0
dp dQ~dQ„

2=E g 'r"s
A (J

aP

6+FSI

0
0+
1

2
2+
3

4+
5

6
6+
7
8
8+

0.076
0.080
0.396
1.636
1.981
4.426
5.882
7.948

12.47
13.11
14.06
15.51
15.70
16.04

0.079
0.091
0.394
2.558
3.155
6.871
8.730

11.27
16.54
17.28
18.34
19.92
20.15
20.52

0.079
0.098
0.390
2.568
3.201
7.191
9.080

11.70
17.06
17.82
18.91
20.50
20.74
21.12

0
0+
1

2
2+
3
4
4+
5

6
6+
7
8
8+

0.012
0.013
0.156
0.162
0.785
1.402
1.397
1.177
1.110
1.110
1.114
1.114
1.114
1.115

0.012
0.020
0.932
1.002
5.211
8.681
8.634
7.349
6.954
6.957
6.988
6.996
6.996
6.996

on the eigenchannel partial wave, and cannot be realisti-
cally represented by a common factor for all partial
waves, as is usually done in a phenomenological parame-
trization of FSI. Our approach is the necessary consistent
procedure within our formulation, and is clearly dynami-
cally well defined.

With the above theoretical understanding of the struc-
ture of our approach, we now compare our full calcula-
tions with the data at 800 MeV. We first note here that
the total pion production amplitude has two components.
The first one is due to the kinematics that the detected
proton is from the decay of b++~pm+. The weaker am-
plitude is due to b, +~no+ in the presence of a spectator
proton. In Fig. 7 we show their relative importance.
Clearly, the amplitude due to b, +~nor+ is much weaker,
but its effect must also be included in order to properly
interpret the data.

Our results at 800 MeV are compared with the data in

Fig. 8. The solid curves are the results calculated from
keeping only the direct b production term [Fig. 1(a)].
The dashed curves include the contribution from the FSI
term [Fig. 1(b)j. It is seen that both the shapes and the
magnitudes of the differential cross sections are reason-
ably reproduced in the 5 excitation region. The
discrepancies in the high momentum 6 region could indi-
cate the deficiency of the m+p exchange parametrization
of the Nb~NN transition since the corresponding Nh
momentum is large and the cross sections become sensi-
tive to the short-range part of the baryon-baryon interac-
tion.

The calculations in the FSI region are also reasonable.
Both the shapes and the peak positions are well repro-
duced. At 8&

——14.5' and 8 =21', the theory is in good
agreement with the data. In other kinematic regions, the
calculated FSI peaks are lower than the data. %e must
note here that our results are not renormalized in any wiy

8 =)o5, e =or
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FIG. 6. Same reaction as Fig. 5. The solid curve denotes the

results calculated from keeping only the direct 6-production
term. The dashed (dashed-dotted) curve is the full calculation

including S~+ DI ('SI+ Dl and 'So) in defining the NN

quasiparticle state d.
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FIG. 7. Same reaction as Fig. 5. The dotted curve is direct
6-production followed by the 6++~pm+ decay. The dashed-
dotted curve is the direct 5 production due to 5+~nm+ in the
presence of a spectator proton. The solid curve is the coherent
sum of both mechanisms. The dashed curve includes the FSI
term.
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FIG. 9. Comparison of our calculation of the analyzing
power A~ for pp~pnm+ with the data at 800 MeV. Only the
direct 6-production term is kept in the calculation.
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FIG. 8. Comparison of our calculation of pp~pnm+ with
the data (Ref. 2) at 800 MeV. The solid curves are the results
calculated from keeping only the direct 5-production term. The
dashed curves include the FSI contribution due to 'Sq+'D~ in-
teractions.

from the values obtained from our unitary calculation.
FSI calculations of Ref. 14 involve an adjustable parame-
ter in fitting the data.

In Fig. 9 we show two typical results for the analyzing
power A~, calculated by keeping only the direct 5 produc-
tion term. We have also investigated the effect of FSI on
A„. No improvement has been found. The difficulty of
the meson theory in describing the polarization data has
already been found in NN elastic scattering. The re-
sults shown in Fig. 9 are therefore just more evidence of
the same dynamical problem which could require a solu-
tion from quark physics.

To end this section, we want to discuss the relationship
between our approach and the unitary approach' ' based
on the one-pion-exchange model. It is expected that the
OPE model is dynamically insufficient for describing all
mNN processes. For instance, the unitary calculation of
Kloet and Silbar' has little success in describing NN elas-
tic scattering and various gross properties of NN total
cross sections. Despite this obvious dynamical deficiency,
the OPE unitary calculation of Ref. 14 can describe the

pion production cross section as well as the present, much
more consistent, approach in the region dominated by the
b, excitation (but not in the FSI region). To understand
this somewhat puzzling situation, we examine the proper-
ties of our approach in the limit that only one-pion-
exchange dynamics is kept. The OPE model can be ob-
tained in our formulation by (a) replacing the Paris poten-
tial in the NN calculation [Eq. (2.3)] by the standard one-
pion-exchange potential, (b) setting the md~Nb, driv. ing
term Z~ Ns to zero in solving Eq. (2.12) so that no NN
interaction in any m.NN intermediate state is allowed, and
(c) keeping only the one-pion-exchange part of the
VNN Ns potential. Our OPE model is, of course, not
quantitatively identical to that of Ref. 15, because of the
differences in formulating the unitary irNN scattering
theory. It is, however, sufficient for our present discus-
sion about the importance of irNN dynamics other than
the long-range one-pion exchange.

The accuracy of the OPE model in pion production cal-
culations can be qualitatively estimated by examining the
results shown in Fig. 10 and Table II. We have seen in
Table II that the effect due to the quasiparticle interaction
Z d N& is very small. This indicates that the NN interac-
tion in the mNN intermediate state, which is not present
in the OPE model, can be safely neglected. Hence, the
main difference between our approach and the OPE
model is in the treatment of initial NN distortion. This
difference is shown in Fig. 10, in which we compare the
half-off-shell matrix elements of TNq NN calculated from
our full model and the QPE model. %e see that two ma-
trix elements are very different for / & 2 partial waves, but
are very close for all / & 3 peripheral partial waves. This
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FIG. 10. Comparison of the matrix elements of the
NN~Nh transition calculated from the model equation (1.1)
(solid curve) and the OPE model (dashed curve) described in the
text.

Starting with the model Hamiltonian equation (1.1), we
have followed the n.NN unitary formulation of Ref. 6 to
derive a set of scattering equations for the study of
NN-+NNm reaction. The calculation consists of two ma-
jor steps. First, we need to solve the baryon-baryon

means that the important distortion effects (see Table II)
for the peripheral partial waves, which are the main
source of pion production (see Table I), can be appropri-
ately account~ for by the OPE unitae calculation This
explains why although the unitary OPE model is not ade-

quate for describing NN elastic scattering, it nevertheless
can account for pion production if the parameters of the
model are properly determined from mN scattering.

V. SUMMARY

scattering equations (2.2) and (2.3). This coupled-channel
calculation simultaneously generates the NN elastic
scattering amplitude TNN NN and the NN~NA transition
matrix TN~ NN. The next step is to use T~~ NN as the
driving term to solve the Faddeev-AGS scattering equa-
tion (2.12). Its solution is used to calculate the production
amplitude equation (2.10). We have presented a practical
numerical procedure of using the newly developed spline-
function method to solve the considered Faddeev-AGS
equation.

%'e have shown that the pion production cross section
is dominated by the peripheral partial waves. However,
because of the coherent interference between partial wave
contributions (see Table I), a quantitative test of theory
also needs an accurate calculation of small amplitude due
to l &2 channels.

We have shown that the initial NN and final n NN dis-
tortions play an important role in determining the
NN~NNm cross section. Our coupled-channel treatment
of the NN initial distortion [Eqs. (2.2) and (2.3)] is essen-
tial for a correct prediction of the magnitude of the pro-
duction cross section in the 6-excitation region. This has
been understood by showing the close relationship be-
tween the initial NN distortion effect and our previous
NN elastic scattering calculation, ' which has given a
good description of NN phase shifts. We have also shown
that a Faddeev-AGS treatment of the final mNN distor-
tion is essential for a quantitative understanding of the
FSI peaks of the NN~NNir cross sections.

Our results for pp~pnm+ at 800 MeV are only in qual-
itative agreement with the data. The discrepancies be-
tween our predictions and the data are due to the intrinsic
deficiencies of the starting meson-exchange Hamiltonian
equation (1.1). The present result has provided further
evidence that the mNN dynamics cannot be described
completely by the conventional meson-exchange model.
Of course, this conclusion must be carefully checked by
investigating the mesonic effects neglected in this calcula-
tion, such as the effect due to nonresonant mN interaction.
This has been addressed in Ref. 9 for NN and hard elastic
scattering, and will be presented in Ref. 22 for the
NN~ NNw reaction.
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