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A systematic construction of the general forms of relativistic scattering operators for spin- T par-

ticles is presented. Lorentz-invariant two-body scattering operators for the spin- ~ -spin- —,
' and

spin- 2 -spin-0 systems are explicitly represented in a manner which is the relativistic generalization

of the %olfenstein representation of Galilean-invariant scattering operators. The simpler spin- —,-

spin-0 case serves as a prototype for the much more complicated spin- 2 -spin- —,
' case. For each case

a complete set of independent Lorentz invariants is obtained directly in terms of the available four-
momenta and the Dirac y matrices. The most general forms of the scattering operators are derived

in terms of these. The implications of parity and time-reversal symmetries are obtained and the
resultant constraints are imposed upon the scattering operator. The resulting analysis is in terms of
independent true scalar amplitudes that are invariant to all the symmetries imposed. In this way a
separation of the purely off-mass-shell components of the scattering operators is obtained and the
characteristic structure of such components is explicated. Partially and fully on-mass-shell limits

are subsequently obtained. The full implications of the Pauli principle are developed for the spin-

2 -spin- 2 identical particle case and a generalization of the Fierz transformation is developed. Iso-

spin symmetry is also incorporated into the analysis. The connection to the optical potential for the

scattering of a spin- —, particle from a composite spin-0 object {such as a nucleus) is described, com-

pleting a technical basis for the construction of such optical models from spin- —,
' -spin- —,

' scattering

operators. The systematic development also provides a natural basis for extensions to investigate

symmetry violating contributions in a relativistic context for both the identical and nonidentical par-

ticle spin- 2 -spin- 2 cases. A general framework for the reconstruction of invariant scattering opera-

tors from {known) matrix elements in the barycentric frame is developed. This framework reveals

the relationship between the relativistic invariants and the Pauli spin structure of their matrix ele-

ments in each of the p-spin sectors of the fill space. Constraints upon, ambiguities of, and alterna-
tives in the reconstruction procedure are made apparent. A specific reconstruction scheme is

developed which directly maps Pauli-space rotational invariant operators to Dirac-space Lorentz in-

variant operators via a covariant extension technique. This scheme for direct reconstruction on the
full Dirac space precludes the inadvertent introduction of kinematic singularities, as well as instabil-
ities in fitting and approximations; it also provides a vehicle for the analysis of alternative schemes.
The formalism developed here is compared to methods employed in recent work on the reconstruc-
tion of the invariant nucleon-nucleon scattering operator from matrix elements of the solution of a
relativistic scattering equation. A prospectus for further work is given.

I. INTRODUCTION

The Wolfenstein representation' of nonrelativistic
Galilean-invariant scattering operators in terms of invari-
ants compatible with symmetry principles has been enor-
mously useful in treatments of the nuclear many-bod~
problem. For the physical nonrelativistic spin- —,-spin- —,

identical particle scattering operator in Pauli spin space,
there are five independent terms compatible with invari-
ance under space inversion, rotations, Galilean frame
transformations, reciprocity (time reversal), and the Pauli
principle. The explicit structure in spin and spatial de-
grees of freedom (and in isospin degrees of freedotn when

this symmetry is employed) of the Wolfenstein form of
the nucleon-nucleon (NN) scattering operator has served
as a focus for systematically correlating the rich variety of
nuclear excitations that are possible with nucleon-nucleus
inelastic scattering. On the theoretical side, knowledge of
the invariant structure of a NN t matrix is invaluable as a
control upon approximate treatments of nuclear matrix
elements of this operator that arise in multiple scattering
approaches. In general, the NN t matrix is required off
shell for this purpose, and the symmetry constraints speci-
fy the one additional (nonrelativistic) invariant which is
needed in addition to the on-shell representation. The ad-
ditional freedoms that arise in the relativistic cir-
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cumstance have not been systematically explored. Given
the recent advances which have resulted from simple rela-
tivistic approaches to the nuclear many-body bound state
and scattering problems, it seems clear that further
development of relativistic approaches is called for. It is
also evident that the replacement of the Wolfenstein rep-
resentation of scattering and interaction operators by a
Lorentz covariant representation in terms of a complete
set of invariants is a natural first step.

In this paper we develop the Lorentz invariant counter-
part of the Wolfenstein representation of both the on-
mass-shell and fully off mass-shell structure of the
scattering (and general interaction) operators for the spin-
—,'-spin-0 and spin- —,'-spin- —,

'
systems. These representa-

tions are manifestly covariant and are minimal in the
sense that they consist of a sum of terms, each of which
is, at most, linear in the Dirac y matrices of a given fer-
mion. For each system a set of invariants that is complete
on the full Dirac space is formed explicitly in terms of the
available four momenta and y matrices such that the
discrete symmetries of parity and time reversal are
obeyed. These eovariant representations are expected to
serve as a technical basis for extensions of recent work
that incorporates selected relativistic features into nuclear
scattering and bound state processes. An example is the
construction of spin-T-spin-0 optical potentials from in-

teractions with the spin- —, constituent particles of the
spin-0 "quasiparticle. " The constraints we find on the
functional forms of the purely off-mass-shell terms (how
they go to zero as the mass shell is approached) may be
expected to prove important in the necessary development
of consistent approximation methods.

A general covariant form for the spin- —,-spin-0 optical
potential has recently been presented. Off mass-shell
features of relativistic scattering operators and invariants
have received some attention recently, but a complete set
of explicit invariants in the full Dirac space for a spin- —,-

spin- —,
'

scattering operator does not appear to have been
obtained previously. We provide a derivation of the spin-
—,'-spin-0 case in parallel to our treatment of the more
complex spin- —,'-spin- —,

' ease. The latter ease we treat
both with and without identical particle constraints. %'e

obtain a complete treatment of the twin implications of
the Pauli principle in the identical particle circumstance
and, as a by-product of this, a generalization of the Fierz
transformation. The systematic development of the im-
plications of the discrete symmetries of parity and time
reversal which we employ provides a natural basis for in-
vestigations of various symmetry violating effects within
a relativistic context. Tjon and %a1lace have recently
developed a representation of the NN scattering operator
in terms of Lorentz invariants which must be used in con-
junction with p-spin projection operators. These invari-
ants for the various p-spin sectors are not required to have
definite time reversal or Pauli exchange symmetries. In
contrast, the present work deals with Lorentz invariants
on the full Dirac space, and because we insist that each be
a (true) scalar with respect to all the symmetries imposed,
the number of amplitudes involved here is much larger in
the off-mass-shell case. An advantage of this approach is

that the purely off-mass-shell components are isolated and
have their characteristic structure revealed.

%'e derive a completely general framework by which
Lorentz invariant scattering operators, both on and off
the mass shell, can be reconstructed from knowledge of a
full set of matrix elements given in a particular frame.
Constraints, ambiguities, and alternatives in the recon-
struction process are clarified by means of a combined
Pauli-spin and p-spin decomposition. A specific scheme
based upon the unique covariant extension of Pauli-space
rotational invariant operators to Dirac-space Lorentz in-
variant operators is developed for reconstruction on the
full Dirae space. This scheme eliminates the inadvertent
introduction of problems associated with kinematic singu-
larities and instabilities in fitting and approximation; it
also provides a basis for the analysis of such questions for
alternative procedures. The relationship of our general
formalism to the method employed recently by Tjon and
Wallace for reconstruction of the invariant NN scatter-
ing operator is identified.

The role of relativistic dynamics in nuclear physics at
the level of meson-nucleon degrees of freedom is a subject
to which considerable effort is being devoted at present.
A relativistic version of mean field theory has been
developed over a number of years and provides descrip-
tions of nuclear matter saturation and the shell structure
of nuclei which depend explicitly upon relativistic dynam-
ical mechanisms. Considerable success for the description
of spin observables in nucleon-nucleus scattering at inter-
mediate energy has followed from recent work on a rela-
tivistic treatment of the first-order optical potential. '

The scattering developments are particularly interesting
because the nucleon-nucleus dynamical input is inferred
from the NN scattering operator. The inferred strengths
of the dominant Lorentz components of the optical poten-
tial have been found' to be consistent with the
phenomenological Lorentz strengths obtained by fitting
the parameters of relativistic mean field models to the
bulk properties of nuclear matter. These initial successes
must be treated with caution. In neither the bound state
nor the scattering sector do we have an underlying relativ-
istic theory which is unambiguous in relating the NN sys-
tem and the many nucleon system. A relativistic version
of Brueckner theory has been postulated' and employed
recently' "to incorporate the important NN correlation
contributions to nuclear matter properties. Knowledge of
the invariant forms allowed for the NN scattering opera-
tor are necessary here, as well as for first-order multiple
scattering constructions of an elastic optical potential or
effective interaction for inelastic scattering.

The initial work on a Dirac-based first-order optical
potential adopted an ad hoc form' for the NN scattering
operator in the product space of Dirac spinors for each
nucleon. The five Lorentz invariants for a physical
fermion-fermion interaction introduced by Fermi to
describe P decay of the nucleon were employed for the
NN operator. These are sufficient for P decay since the
nuclear four-momentum transfer is negligible and the
weak coupling effectively suppresses mechanisms beyond
the lowest order where only positive energy Dirac spinors
are required for the matrix element. For the strong cou-
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pling process of NN scattering under the influence of nu-

clear binding and distortion effects, mechanisms beyond
lowest order are important, the full spectruin of spinors is
required in intermediate states, and the momentum
transfer is significant. Use of just the Fermi invariants
can guarantee only that the positive energy spinor matrix
elements are correct, and even then, only for on-mass-shell
kinematics. The large number of matrix elements that in-
volve negative energy spinors, or off-mass-shell kinemat-
ics, are then implicitly determined by the kinematic prop-
erties of the invariants without the benefit of dynamical
input or control. As we will see, only one or the other of
a pair of the seven independent p-spin sectors can be
spanned by the Fermi invariants, and then only on mass
shell. This lack of control over the six independent sec-
tors that connect with negative energy spinors is unfor-
tunate since the dynamical content embedded in the Dirac
equation over and above the Schrodinger dynamics is the
coupling to negative energy states. Control over all the
independent p-spin sectors can be maintained by recon-
struction of the scattering operator from a complete set of
positive and negative energy spinor matrix elements ob-
tained, for example, from the solution of a relativistic
wave equation of the Bethe-Salpeter type. Consequent-

ly, in developing such a formalism, we employ an orthog-
onal basis composed of products of single particle states
in the full space that are solutions of the free Dirac equa-
tion. The natural projection operators for this basis are
not manifestly covariant. New projection operators hav-

ing covariant form are introduced and employed. A
second method, introduced many years ago by Stapp' in
work on a relativistic density matrix description of polari-
zation phenomena, is adapted here to provide a more
direct reconstruction formalism. This method employs a
covariant extension of the special Lorentz boost operator
to find Lorentz invariant forms for barycentric frame
quantities.

In Sec. II we outline the notation and variables which
we employ and define the scattering operators that we
shall deal with. The discrete symmetries of space inver-
sion and time reversal and the resultant constraints which
they yield are discussed in operator form in Sec. III. The
general forms of spin- —, scattering operators, constrained

by these symmetries, are developed in Sec. IV. The results
obtained for the spin- —,'-spin- —, system are applicable to
the case of nonidentical particles. In Sec. V the simp1ifl-
cations which arise as a result of on mass-shell kinematic
constraints are displayed and the relation between the
transition operators we employ, on-mass-shell constraints,
physical and virtual amplitudes, and cross-channel pro-
cesses is described. In Sec. VI a comprehensive treatment
of the operator constraints due to the Pauli principle is
given for the relativistic spin- —,'-spin- —,

' system. The gen-
eral form of the spin- —,'-spin- —,

' identical particle scatter-

ing operator is obtained and an extension of the Fierz'
transformation is developed to cover the complete set of
invariants that we deal with in this work. In Sec. VII we
develop the general framework for the reconstruction of
the invariant operators from matrix elements in the
barycentric frame. The Pauli spin structure of matrix ele-
ments in each p-spin sector is explicated. In Sec. VIII a

specific scheme for reconstructing the invariant operator
in the full Dirac space by means of a covariant extension
of Pauli matrix elements from each p-spin sector is
presented. In Sec. IX a summary and outlook for future
work is presented. In the Appendix the operator tech-
niques of this work are extended in a compatible way to
the symmetries of charge conjugation and PCT to facili-
tate related applications that require explicit imposition of
those symmetries.

II. NOTATION, VARIABLES,
AND SCATTERING OPERATORS

One of the objectives of this paper is to provide a basis
for relating an elemental relativistic spin-2-spin-2
scattering amplitude to the description of relativistic
spin- —,-spin-0 scattering in the circumstance that the
spin-0 "particle" is an atomic nucleus. The relationship
between the general form of a spin- —,'-spin-0 optical po-
tential and a spin- —,-spin-0 scattering amplitude will be
clarified in Sec. III. However, if one presumes something
like an impulse or "ip" source for the optical potential,
then it is clearly necessary to consider the general forms
to be expected of both the spin- —,

' -spin- —,
'

scattering opera-
tor (t) and spin- —,'-spin-0 scattering operator, as well as

the restrictions imposed upon them by general symmetry
principles. In this section we define a notation, a choice
of scattering variables, and an integral representation of
the scattering operators which is convenient for dealing
with both cases. In this section we are mainly concerned
with preparations for subsequent formal considerations.
The connection of the scattering operators and amplitudes
which we employ to virtual and physical processes, to the
Feynman propagator formalism, and to the particle-
antiparticle field theoretic formalism is described in Sec.
V, where special mass-shell results are considered.

A schematic representation of the scattering process is
depicted in Fig. 1. The particles are labeled as particles
(1) and (2). Particle (1) is always a Dirac (spin- —, ) particle
and its initial and final four inomenta are denoted by k
and k', respectively. Particle (2) is either a spin- —, or a
spin-0 particle and its initial and final four momenta are p
and p', respectively. The invariant scattering operator is
denoted by T, and it is defined such that it produces an
invariant amplitude when matrix elements are taken with

FIG. 1. Schematic representation of the scattering process
showing the four momenta employed. Particle (1} is a spin- ~

particle, while particle (2}may have either spin —, or spin 0.
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(k'~k)=5 (k' —k), (2.2)

the positive and negative energy Dirac spinors u(k, + ) are
given by

Ek+m
u(k, +)=

' 1/2

o k
Ek + Ptt

(2.3)

u(k, —)= E,+m
Ek+m

1

(2.4)

and X, is a Pauli spinor. In Eqs. (2.3) and (2A),
Ek =

~

k
~

+m, m is the mass, cJ is the usual 2 X 2 Pauli
spin matrix, and 1 is the 2X2 unit matrix. If k =m~
and k =+Ek in Eq. (2.1},then the states are on the mass
shell and are positive and negative energy solutions,
respectively, of the free Dirac equation. The orthonor-
mality relations for the basis states of Eq. (2.1) are
(i,j=+)

( k'(j),s'
~

k (i),s )=5 ( k' k)5; )5, , —

The completeness relation is

g J d k[~k(+),s)(k(+),s
~

(2.5)

+
~

k( —),s)(k( —),s
~
]=I, (2.6)

and the Dirac adjoint spinor is

(appropriately normalized) plane wave states describing
the (virtual or physical) momenta and spins of the parti-
cles. Dirac adjoint matrix elements are assumed for the
Dirac particles.

To be more specific, denote plane wave Dirac states of
four momentum k and rest-frame spin s by

ik(+),s)= ik, +)X,= ik)u(k, +)X, ,

where the abstract (momentum-space) kets satisfy

X T(k, k, [r(1)];p,p, [1.(2)] )(k;p ~, (2.9)

where d [ k'p'kp ] denotes the product of the separate dif-
ferentials, the two-particle momentum-space ket is

~

k',p') =
~

k') ~p'), and [1(i)J denotes the complete set
of Dirac gamma matrices for particle (i),
(l, y5, y~, ysy", P"), if it is a spin- —,

' particle. It is evi-

dent that the quantity

T{k',k, [ I (1)/;p', p, [ I'(2) ] }

is an operator in the spin space(s) of the Dirac particle(s).
It is also evident that the complete spin-space operator T
must be constructed from its arguments, the three in-
dependent momenta and the I matrices, and the charac-
teristic tensors of the space: the metric tensor g„„and the
Levi-Civita tensor d'"~ (after total four-momentum con-
servation is applied there remain three independent mo-
menta}. No other quantities are available.

The operator

The square root factors are needed in Eqs. (2.8) in order
that P transform as a Lorentz scalar. It is often useful to
define new basis states such that the square root factors
are absorbed into the states and a covariant normalization
condition may be employed. ' This is especially useful in
a field theoretic context employing particles and antiparti-
cles. It is also convenient in certain other circumstances,
such as in manipulating spinor matrix elements once
momentum-space or position-space integrations have been
performed. For our purposes the completeness relation on
the full space, Eq. (2.6), assumes a central role. Thus it is
convenient to use the basis states defined above. The
reasons for this and the relationships between the dif-
ferent procedures are described in more detail in Sec. VI.

It is also convenient to introduce an integral representa-
tion of the operator T on the full space. For either the
spin- —,

' -spin-0 or the spin- —,
' -spin- —,

'
cj.rcumstance we write

T= J d [k'p'kp]
I
k',p')

( k'(+), s'
i

= (k'(+),s'
i y (2.7)

T(k', k [ I (1));p',p, t I (2) ) )

1/2

(k'(j),s';p'
~

T
~
k(i),s;p ), (2.8a)

while for the spin- —,
' -spin- —,

' case we have, e.g. ,
' 1/2

m'

Our gamma matrix conventions follow those of Bjorken
and Drell. ' The basis states for the spin-0 case are sim-

ply the kets
~

k ), with the property of Eq. (2.2).
~ith these definitions we can now write the Lorentz in-

variant scattering amphtude in terms of the scattering
operator T. For spin- —,

' -spin-0 scattering we have, e.g.,

must transform as a Lorentz scalar. The set of I ma-
trices contains Lorentz vectors as well as second-rank ten-
sors. Overall scalars can be formed by contraction of the
vectors with appropriate momentum vectors and also by
contraction of the tensors with second-rank tensors con-
structed from the available momentum vectors. It is thus
necessary to construct a complete set of Lorentz four vec-
tors from the available momenta. This set can then be
used to build a complete set of second-rank tensors as
well. The complete sets of vectors and second-rank ten-
sors are then available for use in obtaining the most gen-
eral form of T in Secs. IV—VI.

Although Pauli symmetries in the spin- —,'-spin- —,
' case

are not introduced until Sec. VI, it is advantageous to be-

gin from three linearly independent momenta with simple
Pauli exchange properties:

X (k'(j),s',p'(m), o'
~

T
~

k (s),s;p( l),o ) . (2.8b) (2.10a}
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K=k ——k — —'"'+"' 'P'+P'
K =k' —p =k —p'=

2

(k'+ k)+(p'+p)
2

(2.10b)

(2.10c)

In either case, II '=II and the constraint of parity con-
servation is that the S matrix, or, equivalently, the scatter-
ing operator T, is invariant under the parity transforma-
tion; that is,

T=HTH

The particle-label exchange symmetries of these variables
are summarized in Table I. The relationship of the above
variables to the (scalar) Mandelstam' variables s, t, and u

is s =aP, r =q, and u =K . A fourth linearly indepen-
dent momentum vector is required to span the four di-
mensional Lorentz space. In view of the simple Pauli
symmetries of the variables of Eqs. (2.10), it is convenient
to construct this variable from the previous three. We
choose

In a Hamiltonian formalism Eq. (3.5) follows directly
from the assumption that both the full and free Hamil-
tonians are invariant under H, ' while in a propagator
formalism it results from the invariance of the free propa-
gator and the interaction. Use of Eq. (3.5) together with

Eq. (2.12) for the integral representation of the scattering
operator yields

'r= f 1 {k'p'kp I I
k ',p '&

P=d'" q„K~a)~, (2.11) X T(q K, co,g, {y (i)l (i)y (i)I)(k;p
I

(3.6)

where the completely antisymmetric Levi-Civita tensor
satisfies e0, 23

——+1, the convention of Ref. 16. The an-

tisymmetric nature of the Levi-Civita tensor immediately
yields g.q =g K =g.v=0, thus establishing the linear in-

dependence of g.
In the following, we employ the complete set of vector

variables, q, K„co, and g as our basis set. We therefore
rewrite Eq. (2.9) as

'r= f d {k'p'kpI
I
k';p'&T(qKco, g, {I"(/)J}(k;p I

(2.12)

7 = f a'{k 'p 'k p ) I
k',p &

x r(q, K,co, —g, {1(i) I )(k;p
I

= J d {k'p'kp)
I
k',p'&

X r(q, K,co, —g, {I(i)] }(k;p I,
where we have introduced the notation

yoyyo

(3.7)

(3.8)

(3.9)

where i=1 or 1,2 depending upon the context. This in-

tegral representation serves as the basis of our further
developments.

for the parity transform of y matrices. The particular
transforms are summarized in Table I. The parity con-

straint upon the form of ris thus

T(q,K,a),(, {I (i) {) = T(q, K,G, —g, {I (i) {}, (3.10)

III. SYMMETRIES: PARITY AND TIME
REVERSAL CONSTRAINTS

Before proceeding to the construction of the general
forms of the scattering operators in the next section, it is
convenient to develop first the operator statements of, and
the consequent constraints imposed by, the discrete sym-
metries of parity and time reversal.

The parity operator for either two-particle system is
given as the product of parity operators for each particle:

II=II(1)II(2) . (3.1)

Here, II(1) is the parity operator for a Dirac particle, and
is given by

II(1)=y (1)P(1), (3.2)

where the three-space inversion (parity) operator satisfies

p lp&= lp& . (3.3}

Il(2}=P(2) . (3.4)

Throughout this paper we adopt the notation that
p"=(p, p) implies p"=p„=(p, —p). If particle (2) is a
Dirac particle, then its parity operator is given by Eq.
(3.2) with the replacement (1)~(2), while if particle (2) is
spin 0, then we have simply

TABLE I. Parity, reciprocity transform, and particle-label

exchange (EI2) properties of the momentum variables and the
Dirac gamma matrices.

Variable

Momentum
qP
K"
~P

Transf orm
Parity Reciprocity (gk )

I matrix
y'
yP

~pv

for either spin- —,
' -spin- —,

' or spin- —,
' -spin-0 scattering.

Next we consider the implications of time-reversal sym-
metry or reciprocity. ' ' The time-reversal operator is
necessarily antiunitary and must thus be treated somewhat
differently than the parity operator. The time-reversal
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operator for a Dirac particle is

where U is the unitary (and Hermitian) operator

U =I',y'y

(3.1 1)

(3.12)

where P (=P4PO) inverts three momenta. Thus the
time-reversal operator, in a form suited to the momentum
representation, is

and A is an antilinear operator which, in a position-time
representation, is given by EPO. Here, Po is the operator
which reverses the time coordinate and K denotes the usu-

al complex conjugation operation. The complex conjuga-
tion operation is representation dependent. The operator
which produces the complex conjugate in the position-
time representation becomes, in the momentum represen-
tation, PqK, where P4 is the four-momentum inversion
operator. Since we work in the momentum representa-
tion, the operator M is given by

(3.13)

T=WT &W ' . (3.20)

8 =8 in addition, in which case 8 is time-reversal in-
variant, is a special case of Eq. (3.19). For a relativistic
multiparticle system, a field theory is needed to define a
covariant Hamiltonian formalism and then the above-
mentioned properties of H and Ho under time-reversal
remain the fundamental assumptions that produce the
time-reversal symmetry. Equivalently, a dynamical equa-
tion of the Bethe-Salpeter' type may be adopted T. hen
the reciprocity relation (3.17) follows if time-reversal in-
variance holds for the inverse of the system's free Feyn-
man propagator (instead of Hz), and if Eq. (3.17) is satis-
fied by the interaction term of the full covariant propaga-
tor (instead of T). [In such a covariant propagator for-
malism the development of the time-reversal property of
T parallels that of charge conjugation. The development
of the charge conjugation property of T is sketched in the
Appendix; the analogous treatment of time reversal is
pointed out there. ]

It is useful to employ the property W '=+M, so that
Eq. (3.17) can be rewritten as

M=I', y'y PK,
with the inverse given by

'=A U =PK(iy'y ) .

(3.14)

For a spin-0 particle we can simply take U= 1, and thus
W= Xi"=PK. Because of the presence of the global com-
plex conjugation operator, the two-particle time-reversal
operator is not simply the product of the one-particle
operators. Rather, we have, for the spin- —,

' -spin-0 case,

W= U(1)P(1)P(2)K . (3.15)

Similarly, for the spin- —,'-spin- —,
' case the time-reversal

operator is

W= U(1)U(2)P(1)P(2)K . (3.16)

For either the spin- —,'-spin- —,
' or spin- —,'-spin-0 case, the

pertinent time-reversal symmetry, or more precisely the
reciprocity relation, is that the scattering operator T satis-
fies' '

where f denotes the Dirac adjoint operator

w ~=r'w'r'.

(3.17)

(3.18)

and that the unperturbed Hamiltonian is time-reversal in-
variant, i.e., WHOM =Ho. The circumstance that

In Eq. (3.18), I denotes y in the spin- —,'-spin-0 case and

y (1)y (2) in the spin- —,'-spin- —,
' case. The origin of the

I factor is the use in Eqs. (2.8) of a biorthogonal basis in
terms of Dirac, rather than Hermitian, adjoint spinors. '

For a relativistic one-particle system the reciprocity re-
lation given in Eq. (3.17) follows' ' directly from the as-
sumptions that the full Hamiltonian satisfies the reci-
procity relation

(3.19)

The right-hand side of Eq. (3.20) then defines a useful
transformation with which to classify operators. We call
this the reciprocity transform to distinguish it from the
time-reversal transform which appears, for example, in

Eq. (3.17). The advantage of dealing with the reciprocity
transform is that certain important operators can be clas-
sified according to whether they are even or odd under
this transformation. The time-reversal transformation
does not lend itself to such a classification in the case of
scattering operators. Since invariance or antisymmetry
(evenness or oddness) under the reciprocity transformation
is also a time-reversal symmetry, we sometimes denote re-

ciprocity symmetries by W, when the context eliminates
the possibility of confusion. We also note that the time-
reversal and reciprocity transforms are identical in the
case of the momentum variables.

To obtain the reciprocity relation satisfied by the

spinor-space scattering operator T, we substitute Eq.
(2.12) for the integral representation of T into Eq. (3.20)
and obtain

T= I d4tk'p'kpI
i k;p)

X T(q,K, to,(, I I (i) I )(k ';p ' ~, (3.21)

which, after a change of variables similar to that per-
formed earlier in Eq. (3.7), can be written as

T= I d I k'p'kpj
i
k',p')

x T( —q, K,a),g, I I (i) j )(k;p
~

In the above we have introduced the notation

(3.22)

I =U[rt]'U (3.23)

for the reciprocity transform of the y matrices for each
Dirac particle, with U given by Eq. (3.12). These proper-
ties of the y matrices are suinmarized in Table I.

Comparison of Eqs. (3.22) and (2.12) shows that the
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T(q, K,co, g, [1 (i) J )=T( q—,K,co, g, ( I (i) J ) . (3.24)

Henceforth we deal almost exclusively with the operator
T. We often omit its arguments and refer to it as the
scattering operator. In fact, it is an operator in Dirac spi-
nor space but a matrix element in momentum space, as is
evident from Eq. (2.12). Properties and general forms de-

rived for T determine those of the complete scattering
operator T via Eq. (2.12).

Equations (3.10) and (3.24) are the parity and time-

reversal constraints on the form of T, with I (i) and I"(i)
given by Eqs. (3.9) and (3.23), respectively. Put another

way, T must remain invariant as its arguments transform
under parity and reciprocity according to Eqs. (3.10) and
(3.24), respectively. The transformation properties of the

arguments of T, momentum vectors and the Dirac I ma-
trices, are summarized in Table I. We have also included
a summary of the symmetries of the momentum variables
under particle-label exchange (E&2) in Table I for later
use.

Before proceeding to the construction of the general

form of T and the application of the parity and reciproci-
ty restrictions, we digress to note the connection between
these considerations and the properties of the optical po-

tential for the scattering of a spin- —,
'

particle from a com-

posite spin-0 object such as a nucleus. The assumption of
parity conservation for the inverse of the free (two-
particle) propagator and for the optical potential implies
the same property for the optical model scattering opera-
tor. Thus, the presumption of this property for the
scattering operator indicates that the covariant optical po-
tential U should satisfy

U=HUH (3.25)

and hence the parity constraint for spinor operators given
in Eq. (3.10). Similarly, if the inverse of the free two-
particle propagator is time-reversal invariant and if the
covariant interaction satisfies the reciprocity relation
(3.17), then so will the resulting scattering operator.
Thus, the assumption that the scattering operator satisfies
the reciprocity relation indicates that the optical potential
should satisfy

(3.26)

and hence also the reciprocity constraint for spinor opera-
tors given in Eq. (3.24). It is thus evident that the results
we obtain for the general invariant form of T in the spin-
—,'-spin-0 case suggest analogous results for the spin- —,'-
spin-0 optical potential. In this regard, it is to be stressed
that neither of the reciprocity relations, Eq. (3.19), or its
covariant analog Eq. (3.26), require hermiticity. In partic-
ular, Eq. (3.19) is generally satisfied by non-Hermitian
nucleon-nucleus optical potentials which contain substan-
tial absorptive parts. Although the one-body Hamiltonian
is not time-reversal invariant, it does satisfy the reciproci-
ty relation (3.19) and this is sufficient to yield a scattering

constraint upon the operator T due to the assumption of
reciprocity is

operator which also obeys a reciprocity relation.
Finally, in the construction of the general invariant

forms of scattering operators in the following section, we
do not explicitly consider the discrete symmetry of charge
conjugation. The reason for this is that the Lorentz-
invariant forms that we shall deal with automatically in-

troduce invariance under the combined PCT transforma-
tion. This is a consequence of the so-called PCT
theorem. ' ' Thus, imposition of Lorentz, II, and a
symmetries automatically yields the desired charge conju-
gation symmetry. We denote the combined operator by
G=Hcu, where C is the charge conjugation operator.
In the Appendix we give, for the sake of clarity, the expli-
cit forms of the operator C for the cases considered in this
work and sketch the derivation of the associated symme-

try of the scattering operators. Also pointed out there are
that 8=i ysP4 for a spin- —,

' particle, 8=P~ for a spin-0

particle, 8=8(1)8(2) for a two-particle system, and that
the PCT symmetry of the scattering operator is

(3.27)

Use of the integral representation for T given by Eq.
(2.12) yields, for the PCT symmetry,

T(q K co, g, ( I (i) ) ) = T( —q, —K, —a), —g, ( I (i) j ),
(3.28)

where I =y'I y for each Dirac particle. The manner in

which the requirement that T is to be a Lorentz scalar
operator constructed from its momentum and y-matrix
arguments automatically produces PCT symmetry can
now be seen. For any term of T, the reversal of each four
momentum produces a factor of —1 (corresponding to the
implicit Lorentz four-vector index associated with the
momentum). Then, left and right multiplication by y
produces a factor of —1 for each implicit four-vector in-
dex associated with a y matrix. The total number of such
indices is even due to Lorentz invariance; thus PCT in-
variance, i.e., Eq. (3.28), is assured.

IU. SCATTERING OPERATORS: GENERAL FORMS
AND APPLICATION OF CONSTRAINTS

The Lorentz scalar scattering operator T must be con-
structed from the momentum vectors q, K, ~, and g and
the available Dirac y matrices. The elementary scalar
quantities that can be constructed are those made up sole-
ly from momenta and called momentum-space scalars
(MSS's), and those formed from contractions of y ma-
trices with momenta and called mixed scalars. The avail-
able MSS's are q (= t), K ( = u), and co (=s), as well
as q.K, q co, and co-K. The scalar g is not independent of
these, and we recall that q /=K /=co /=0. The MSS's
are all true scalars under parity. Their time-reversal prop-
erties may be obtained from Table I; the results are sum-
marized in Table II along with their particle-label symme-
try for later use.

Because the matrices I (i) span the Dirac spinor space
of particle (i), T consists of terms which are, at most,
linear in these matrices. Since T is Lorentz scalar, the 1
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TABLE II. Classification of momentum-space scalar quanti-
ties according to whether they are odd or even under the parity
(H) and time-reversal (u ) (more precisely, reciprocity) transfor-
mations. The sign in parentheses to the right of each quantity
indicates whether it is even (+ ) or odd ( —) under E&2 (inter-

change of the momenta of the two particles).

even

q, u, E (+)
eE ( —)

q EC (+)
(IIt Gl ( —)

and y' matrices may appear multipHcatively, while y~
and y y" must be contracted with another vector and the
antisymmetric second-rank tensor crt" must be contracted
with another antisymmetric second-rank tensor. Since the
four linearly independent momenta span the Lorentz vec-
tor space, any tensor can be expanded in this basis. Thus,
the vectors to be contracted with y" and y yI' can be re-
stricted to the momenta q, E, co, and g and the antisym-
metric tensors to be contracted with W" can be restricted
to those which can be constructed from these momenta.
This is clearly true for both the spin- —,'-spin- —,

'
and spin-

—,'-spin-0 cases. Thus the available mixed (Lorentz) sca-
lars which can be constructed from the Dirac matrices
I (i) may be restricted to the set I, whose 16 elements are
1, y', y.&;, y y &;, and o:[),;,(A)], i~j. Here, the symbol

signifies the contraction (dot product) of two second-
rank tensors; )(,;,)(J =q, K, co, or g; and the usual commu-
tator notation has been employed. Because of the an-
tisymmetric property of W", we have

cr:[a,b] =2cr:(ab) =2cr:ab .

Thus to simplify notation we may employ the o:ab as the
mixed scalars which can be formed from W", with the
understanding that only the six independent (unordered)
momentum pairs are needed.

The parity and time-reversal properties of the members
of the set I of mixed scalars may be obtained from those
of their constituents (given in Table I). This set may then
be divided into four sets of scalars depending upon their

parity and time-reversal properties: a set A, with
members both parity and reciprocity even; a set 8, with
members which are parity even but reciprocity odd; a set
C, with members which are parity odd and reciprocity
even; and a set D, with members both parity and reci-
procity odd. The results of this decomposition are sum-
marized in Table III. Again, particle-label symmetries
relatiue to the mornento are also given in Table III for
later use.

Equipped with these results, we can now write down

the most general forms for the scattering operators T
relevant to both the spin- —,

' -spin- —,
' and spin- —,

' -spin-0
cases and impose the restrictions implied by the assump-
tions of parity conservation and reciprocity. Unlike the
procedure to this point, it is now convenient to treat the
two cases separately. Because of its simplicity we treat
the spin- —,-spin-0 case first.

A. Spin 2-spin 0

In this case, T must be a Lorentz scalar function of the
MSS's and the 16 mixed scalars I;(1), i=1—16, con-
structed from the I (1). It may be, at most, linear in the

I;(1). The most general form for T is thus

(16)
T= g F,"(s,t, u, q EC,q co,K co)I;(1) . (4.1)

In Eq. (4.1) the F; are arbitrary functions of the MSS's,
while the properties of the 16 Lorentz scalars I; are sum-
marized in Table III. However, not all of the terms in Eq.
(4.1} are allowed by the II and W symmetries and other
terms are further constrained. Parity conservation pre-
cludes any contribution from the II pseudoscalars of the
set I;; that is, no contribution from sets C or D is allowed.
This is due to the fact that all of the MSS's are (parity)
true scalars, so that the I"; must also be true scalars:
hence there is no way to compensate for the odd parity of
the elements of sets C and D and produce an overall
parity-even operator. Thus Eq. (4.1}becomes

TABLE III. Classification of the one-body mixed scalar quantities according to whether they are odd
or even under the parity (H) and time-reversal (W) (more precisely, reciprocity) transformations. The
sign in parentheses to the right of each quantity indicates whether it is even (+ ) or odd ( —) under E &2

(interchange of the momenta of the two particles).

A;
II even, W even

(+)
y~ (+)

r'x 0 ( + )

o".qE (+ )

At.

y& ( —)
o'.qa) ( —)

8;
II even, u odd

B;
y.q ( —)

o alt ( —)

C;
II odd, u even

yC (+)
y'y. co (+ )

C;:
yyK ( —)

cr:gq ( —)

D;
II odd, w odd

D+.
y' (+)

o"./co ( + )
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(8)
T= g F(s, t, u, q K,q a),K co)I;(I) .

I; EA, B
(4.2)

On the other hand, two of the MSS's (q E and q co; see
Table II) are reciprocity odd. These scalars are available

to compensate for the reciprocity-odd property of set 8
and thereby produce a net reciprocity-even operator. The

~ 1most general form of T for spin- —,-spin-0 scattering, con-
sistent with the restrictions of parity and reciprocity, is
therefore

(6)
T= g F;(s, t, u, K co, (q K),(q co),q Kq co)I;(I)

I;EA

(2)

+ g [q EG;(s, t, u, K c0, (q K),(q a)),q Kq co)+q coG;(s, t, u, K a), (q K),(q ~),q Kq co)]I;(I) .
I;E8

(4.3a)

The off-mass-shell operator T is thus determined by 10
independent functions (the F;, G;, and G;) that are scalars
with respect to the Lorentz, parity, and time-reversal sym-
metries. That is, they are true scalars, as are the operators
that multiply them. The seven independent arguments are
also true scalars. Previously, Celenza and Shakin ob-
tained a set of eight Lorentz invariants for this case which
are equivalent to the set I;(1) that appears above. Those
authors obtained eight amplitude functions because they
chose to treat the square-bracketed expression in Eq.
(4.3a) as a single (reciprocity odd) function. It should be
noted that the necessary linear dependence of the terms in
the second summation of Eq. (4.3a) (and the lack of it in
the first summation) upon particular momentum-space
scalars (q K, q co) is an important consequence of reci-
procity. Since q E and q co in Eq. (4.3a) are linearly in-

dependent quantities, so are the amplitudes 6; and 6;,
and one can envisage a variety of applications in which
these amplitudes will be needed separately rather than in
the combination shown. We therefore choose to exphcitly
decompose in this way the amplitudes corresponding to
those spinor Lorentz invariants that are reciprocity odd.
The resulting number of independent amplitudes that is

invariant with respect to all the symmetries being con-
sidered, i.e., true scalars, will always be larger than the
number of amplitudes that is required to satisfy only
Lorentz invariance. The distinction between these two
ways of defining and counting amplitudes will be much
more evident in the spin- —,-spin- —, case. As we will see,
in the fully on-mass-shell case q K =q m =0, so that here,
as well as throughout the remainder of this work, explicit
linear dependences upon momentum-space scalars serve to
identify the purely off-mass-shell parts of scattering
operators. This explicit separation is an advantageous
feature of the representation that we develop, and is one
of the main results of the paper. If one is prepared to em-

ploy amplitudes that have no particular reciprocity sym-
metry, then, as will become evident in Sec. VII, a total of
six such amplitudes (combined with projection operators)
can carry the same information as Eq. (4.3a)

Before leaving the spin- —,
' -spin-0 case we display the ex-

plicit structure of T. With the arguments of the ampli-
tude functions suppressed, and with the explicit forms of
the mixed scalars substituted from Table III, Eq. (4.3a)
for the general off-mass-shell form of T is

T=Fi+Fry. co+F3y E+F4y y /+F5':qco+F6o:qK+(q KGi+q coGi)y q+(q KG2+q co Gq)omK . '(4.3b)

We note that early work ' on a relativistic optical poten-
tial for nucleon elastic scattering from spin-0 nuclei has
included contributions from only three amplitude func-
tions (Lorentz scalar, vector, and tensor) from among the
ten which are found in Eqs. (4.3). The more recent work
of Tjon and Wallace has included contributions from the
first six terms of Eq. (4.3b) since the last four terms van-
ish under the approximation of on-mass-shell momenta
for both particles, as will be discussed in Sec. V.

B. Spsn z-spsn 2

Although considerably more complicated, the analysis
in this case is a straightforward extension of that em-

1

ployed in the spin- —,-spin-0 case. The Lorentz scalar T
must be constructed from the MSS's, the mixed scalars

I;(1), i= 1—16, and the mixed scalars IJ(2), j=l—16.
Again, T may be at most linear in the I;(1) and the IJ(2).
It follows that the most general form of T is

16 16
T= g g F'J(s, t, u, q K,q co,K co)I;(1)IJ(2) .

i =1j=l
(4.4)

Evidently, there are 16 =256 independent invariants, as
expected, to span the two-particle Dirac space. Again, all
of the MSS's are true (parity) scalars, so that all of the F~
are also. Conservation of parity then requires that parity
even (odd) I;(1) must be matched with parity even (odd)
Ii(2) in order to form an overall parity-even operator.
Thus Eq. (4.4) immediately reduces to
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(8) (8) (8) (8)
T= g g F~(s, t, u, q K,q cu, K.co)I;(1)IJ(2)+ g g FJ(s, t, u, q.K,q co,K cia)I;(1)IJ(2),

I; EA, B I.EA, B I;EC,D I GC, D
(4.5)

for a total of 128 independent terms.
As in the spin- —,

' -spin-0 case, time reversal does not further reduce the total number of terms due to the presence of the
two time-reversal odd MSS"s, q K and q.co. These two MSS's are available to compensate for products I;(1)IJ(2)which
are reciprocity odd and thus produce an overall reciprocity-even operator. In order to write a simpler equation for T it is
convenient to classify the (parity even) products I;(1)IJ(2) into two sets according to their reciprocity properties. One
set, which we call E„consists of the reciprocity even operator products and the other set, which we denote by E„con-
tains the reciprocity odd operator products. Clearly, then,

E, a A (1)I8 A (2), 8 (I)e8 (2), C( 1 )e C(2), D (1)eD (2) (4.6a)

E, DA (1) 8(2), 8(1)sA (2), C(1)SD(2), D(1)C(2), (4.6b)

where we have employed the usual notation D to mean "contains. " We have also employed the direct product notation
whereby the set A (1)88(2) consists of the products I;(1)IJ(2),where I;(1) is contained in the set A(1) and IJ(2) is con-
tained in the set 8(2). The set E, consists of (6X6)+(2X2)+2(4X4)=72 elements, whereas the set E, consists of
(6X2)+(2X6)+2(4X4)=56 elements.

With this notation we can now write the most general form of T, which is consistent with parity and reciprocity sym-
metries, as

(72)
T= g Fj(s,t, u, K co, (q K),(q ~),q Kq co)I;(1)It(2)

I;E CE

(56)

+ g [q.KGJ(s, t, u, K co, (q K),(q co),q Kq co)+ q coGJ(s, t, u, K co, (q K),(q co),q Kq co)]I;(1)IJ(2) .
i,.r,.eE,

(4.7)

In Eq. (4.7) the FJ, G;~, and G;~ are Lorentz scalar func-
tions of their arguments. They are also true (parity and
time reversal) scalars since their arguments are. Equation
(4.7) determines the operator T, consisting of 128 Lorentz
invariant operators [the parity even I;(1)I (2J)EE„E,|,
and 184 true scalar amplitude functions which are other-
wise arbitrary. Again, the lack of linearity in q K or q co

of the terms in the first summation of Eq. (4.7) and the
necessity of such linearities in the terms of the second
summation in Eq. (4.7) are important consequences of re-
ciprocity. These restrictions may be expected to play an
important role in subsequent developments; for example,
in the construction of approximations to a covariant
spin- —,

' -spin-0 optical model. If one is prepared to employ
amplitudes that have no particular time-reversal symme-
try, then, as will be seen in Sec. VII, a total of 80 such
amplitudes (combined with projection operators) can carry
the same information as Eq. (4.7).

V. MASS-SHELL CONSTRAINTS
AND SIMPLIFICATIONS

The general forms of the scattering operators developed
in the preceding section simplify considerably when one
or both particles are subjected to on-mass-shell con-
straints. ln this section we describe the constraints and
obtain the simplified forms. Throughout the remainder
of this paper we take an "on-mass-shell" constraint to
mean only that the magnitude of a four momentum is set
equal to the rest mass of the associated particle. Clearly,
this restriction operates within the momentum-space sec-

I

tor of the full Hilbert space associated with the descrip-
tion of the particle and does not imply a restriction to a
particular Dirac-spinor sector of the space. We return to
this tojc shortly, but we note that, in contrast, other au-
thors ' often take the terminology "on mass shell" to
specify, in addition, a projection upon either positive or
negative energy Dirac spinors, according to whether the
fourth component of the momentum is positive or nega-
tive.

With reference to Fig. 1, the two constraints which
arise when particle (1) is put on its mass shell, in both the
initial and final state, are k' =m i =k . In terms of the
three independent momentum variables which we employ,
these constraints are

q (co+K)=0

q +(co+K) =4m i .

(5.1)

(5.2)

If, instead, ~article (2) is on mass shell, the constraints
p' =rn2 ——p can be expressed as

q (a) —K)=0,

q +(co—K) =4m2 .

(5 3)

q.e q E 0
2 2co'K ='fn
)
—p?l 2

s+t+u =q +co +K =2(m, +mz) .

(5.5)

(5.6)

(5.7)

The important case in which both particles are on mass
shell in both the initial and final states is summarized by
the four constraints



A. PICKLESIMER AND P. C. TANDY

M~(q, K, to) =u(k', i)T(k',p', k,p; I I (1)j )u (k,j), (5.8)

where, we recall, the i,j labels indicate the sign of the en-

ergy associated teith the Dirac spinars. Since we want to
focus on the description of the Dirac particle, we suppress
discussion concerning the character of the four momenta
of the boson in the fallowing. There are four different
combinations of the pair of labels i,j These .determine
the spinor character of the matrix elements so that there
are four spinor degrees of freedom for each set of values
of the four momenta. An analysis of general (off-mass-
shell) spinor operators such as that developed in this paper
clearly requires that the full range of degrees of freedom
be considered. The four spinor degrees of freedom corre-
spond to four distinct physical or virtual processes.
Whether these processes are physical or virtual depends
upon the particular kinematical circumstances alone. For
ko, and ko both positive and both on mass shell, one com-
bination of (i,j) in Eq. (5.8) [namely (ij)=(+,+)] yields
a physical scattering amplitude. This scattering ampli-
tude corresponds ta that for the scattering of a spin- —,

'

particle, in accord with either a Feynman propagator or
field theoretic viewpoint. This physical process is often
called the s-channel process and the amplitude M++ in
Eq. (5.8) is called the s-channel physical amplitude since
for the specified kinematic circumstances the Mandelstam
s variable attains values which correspond to physical
values of the invariant mass of the system of particles.

The other three combinations of i,j yield scattering am-
plitudes for other processes which are virtual (off shell)
for this choice of kinematic conditions. That is to say,M, M +, and M+ are virtual amplitudes in the s
channel. For example, (i,j)=(—,—) in Eq. (5.8) corre-
sponds to virtual antiparticle scattering for the process
( —k'~ —k), in accord with the Feynman picture. When
the time components ko and ko are both negative and

In the special case of identical particles, we see from Eqs.
(5.5)—(5.7), together with Eq. (2.13), that when all parti-
cles are on mass shell the momenta q, K, co, and g consti-
tute a set of four mutually orthogonal momenta.

Before applying these constraints to simplify the gen-
eral forms of scattering operators, we digress to remark
upon the relation between the transition operators, physi-
cal and virtual scattering amplitudes, the above on-mass-
shell kinematic constraints, and cross-channel processes. '

As noted above, the sign of the time component of a four
momentum is not specified by the on-mass-shell kinemat-
ic constraint. Moreover, a constraint that a particle's
momentum be on mass shell does not imply a choice of
the positive or negative energy Dirac spinor-space sector
even if we, in addition, specify the signs of the time com-
ponents of its momentum vectors. In other words, the
time component of the four mom entuin in the
momentum-space ket [see Eqs. (2.1)—(2.6)] and the Dirac
spinor space represent independent degrees of freedom in
the full Hilbert space.

Given this, let us consider as an example the simpler
spin- —,-spin-0 case where particle (2) is a boson. Consider
the transition matrix elements (we suppress the inessential
Pauli spinors for convenience)

Xu( —k',j) . (5.9)

Thus we explicitly see that under this transformation of
variables the former s-channel virtual amplitude M
now represents the u-channel physical amplitude, and the
former s-channel physical amplitude M++ now
represents a u-channel virtual amplitude. Similarly, the s-
(and u-) channel virtual amplitudes for the cases
(i,j ) =(+,—) and ( —,+ ) can correspond to physical
particle-antiparticle creation and annihilation processes in
the t channel [when the Mandelstam t variable has the
characteristics of a physical invariant mass (squared)].
For example, the ( —,+) annihilation case in Eq. (5.8)
represents a physical amplitude, according to the Feyn-
man rule, when ko is positive and ko negative, and both
are on mass shell. It is clear that in this case the variable
t attains values corresponding to a physical invariant
mass for the particles.

The spin- —,-spin- —, case is similarly characterized.
Here, there are 2 =16 possible combinations of Dirac spi-
nor sectors (16 p-spin' sectors). Many of the correspond-
ing amplitudes becomes physical in some Mandelstam
channel, where it represents a physical particle and/or an-
tiparticle process. The interpretation of scattering matrix
elements involving negative energy spinars in terms of an-
tiparticles follows the Feynman rule, as illustrated in the
spin- —,

' -spin-0 example above. This concludes our discus-
sion of the physical interpretation of the scattering opera-
tors and their matrix elements.

A. Spin 2-spin 0

From Eqs. (5.1)—(5.3) we see that when either particle
(1) or particle (2) is on mass shell q co can be eliminated in
favor of q.K, and to K can be eliminated in favor of s, t,
and u. The general form of the scattering operator T,
given previously in Eq. (4.3), thus simplifies to

(6)
T= g E( st, ,u( q. K)')I;( )1

I,-CA

(2)
+ g q K G (s, t, u, (q K) ) I;(1),

I;GB
(5.10)

satisfy the on-mass-shell condition, then the case
(ij ) =(—,—) in Eq. (5.8) corresponds to the physical an-
tiparticle scattering amplitude for ( —k'~ —k). In this
case (assuming the appropriate boson kinematics) it is the
Mandelstam variable u which has the character of a phys-
ical invariant mass (squared). Consequently, this process
is termed a u-channel process and M is called the u-
channel physical amplitude.

This is perhaps made a bit clearer if we note that the
variables s and u are, in fact, interchanged under the
crossing transformation ( k, k') ~(—k', —k). Consider
again the kinematic circumstance w'here ko and ko are
positive and the s-channel process is physical. Under the
crossing transformation, which then effectively reverses
the signs of the time components of the momenta, Eq.
(5.8) becomes

M~J(q, —to, —K)=u( —k i)T( —k p', —k',p; t I (1)j )
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when one of the particles is on mass shell. In this case
only eight scalar amplitude functions F and G are re-
quired and the number of independent scalar variables is
reduced to four. When both particles are on mass shell,
Eqs. (5.5)—(5.7) show that q K and one of s, t, and u are
eliminated as independent variables as well. Thus Eq.
(5.10) reduces to

(6)
T= g F/'(s, t)I

J,.ea
(5.11)

T=F', +F2y u+Fiy K+F4y y.(+F5o".qar+F6o".qK

+q K(G y q+G2o- coK), .

and for both particles on mass shell,

(5.12)

T=F'i'+F2'y'a)+F'3'y'K+F'4'y y'g

when both particles are on mass shell. Now only six sca-
lar amplitude functions of two variables are required to
completely specify the scattering operator T. Explicit
forms showing the mixed scalars and suppressing the ar-
guments of the amplitude functions are as follows. For
one particle on mass shell,

symmetries for the scattering operator T.
The precise constraints imposed upon T by the Pauli

principle depend upon the choice of the particle exchange
symmetry presumed for the two-particle initial and final
states used in forming physical matrix elements. A gen-
eral statement of the Pauli prescription is that operators
involving identical particles must be symmetric under par-
ticle interchange, awhile states are to be antisymmetric
under particle interchange. Schematically, the scattering
amplitude is then given by

1 —E~z
(6.2)

such that

(6.1)

where the two-particle operator T'(l, 2) and the two-
particle states, e.g., +z(1,2}, satisfy the stated particle-
exchange symmetries. However, it is generally convenient
to employ a scattering operator T(1,2) which contains the
requirement of initial and final state antisymmetry, to-
gether with corresponding simple (unsymmetrized) prod-
uct states, %(1,2)=$(1)f(2). This ean be obtained by in-

troducing an operator antisymmetrizer M defined by

+E5'o".qm+F6'cr:qE . (5.13)
~
%„(1,2) ) =M

~

%(1,2) ), (6.3)

B. Spin 2-spin 2

In a similar way, with one particle constrained to be on
mass shell, the general form of T given by Eq. (4.7)
reduces to

(72)
T= g FJ(s, t, u, (q K) )I;(1)I (2)

I;I)6E
(56)

q KGJ(s, t, u, (q K) )I;(1)IJ(2),
X,.I.eE,

(5.14)

so that 128 scalar amplitude functions F; and G are
needed instead of the 184 necessary in the off-mass-shell
case. For both particles on mass shell, Eq. (5.14) reduces
to

(72)
T= g F,'J'(s, t)I;(1)IJ(2),

I;J GE
(5.15)

VI. SPIN- ~ -SPIN- 2 SCATTERING
OPERATORS: PAULI SYMMETRIES

For the spin- —,-spin- —, system we are particularly in-

terested in the identical particle case. This section con-
sists of a detailed exposition of the implications of Pauli

which involves only 72 scalar amplitude functions.
The formulae in this section are our final results for the

general forms of, and the symmetry constraints upon, the

scattering operators T for two nonidentical particles.
Reconstruction of scattering operators from "known" am-
phtudes is treated in Secs. VII and VIII. Further results
concerning the special case of the scattering of two identi-
cal fermions are developed in the next section.

where Ei2 is the particle-exchange operator. It then fol-
lows that the desired antisymmetrized scattering operator
1s

T=WT'(1,2)W, (6.4)

It is advantageous for us to work with a scattering opera-
tor T consistent with Eqs. (6.5) and (6.4). In this way we

clearly preserve the results of preceding sections, and
scattering amplitudes remain as defined previously in
Eqs. (2.8).

Since T'(l,2) is symmetric under particle interchange,
that is

T '( l, 2)=Eip T '(1,2)E i2, (6.6)

it follows immediately from Eq. (6.4}, and the property
Ei2 ——1, that

T=(1—Ei2)T'(1,2)=T'(1,2)(1—Ei2) .

It is also readily verified that

(6.7)

T=E12TE)P,

so that the antisymmetrized operator T is also required to
be symmetric under particle-label exchange. The two
terms in Eq. (6.7} are often referred to as the direct and
exchange processes.

Equation (6.8) does not express the full implications of
the Pauli principle, however, since the required antisym-
metry in the initial and final states is not represented [Eq.
(6.8) contains no more information than Eq. (6.6)]. Equa-

in terms of which the scattering amplitude from Eq. (6.1)
becomes

(6.5)
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T= —E)2T . (6.9)

The two independent constraints of Eqs. (6.8) and (6.9)
embody the full implications of the Pauli principle. This
is clear since, from Eq. {6.8),

2 (E12TE12++12TE12)

= —,(T+EiiTEip),

so that use of Eqs. (6.8) and (6.9) gives

T=(1—Eip)( —,
' T),

(6.10)

(6.11)

(6.12)

which shows that T has the required form, Eq. (6.7).
It is convenient at this point to recall the integral repre-

sentation of T given in Eq. (2.12), and to write it here in
the form

tion (6.8) holds equally well for bosons and fermions. The
additional antisymmetry requirement for fermions is
readily seen from Eq. (6.7) to be

[A;+AJ+]+-= —,
'

{A;+(1)Aq+(2)+A;+(2)A~+(1) I (6.16)

allows the A (1)A(2) part of E„as given by Eq. (4.6a),
to be subdivided into the set

Z+ ~[A,+A,+]+, [A,-A;]+, [A,+A;]-, (6.17a)

particle label symmetry by applying Eq. (6.8) in the form
of Eq. (6.15). In particular, we need to find the necessary
modifications to the general result of Eqs. (4.6) and (4.7)
and to the on-mass-shell limit, Eqs. (5.14) and (5.15). In
order to do this it is convenient to subdivide the sets E,
and E, of two-body spinor operators defined in Eqs. (4.6).
In particular, we divide each set into its parts which are
symmetric, E, and E, , and antlsymmetric, E, and E, ,
under particle-label exchange, making use of the classifi-
cation of the one-body mixed scalars in Table III accord-
ing to their symmetry under the operation E&2 which in-
terchanges the momenta of the two particles (for example,
the A;+ are symmetric under Eiz). The construction
proceeds as follows. Introduction of the notation

T= J d Ik'p'kpI ik';p')

&& T(k',p', k,p;I (1),I'(2l)(k;p i, (6.13)

which is symmetric, and the set

E, a[A,+AJ+], [A; AJ ], [A;+AJ ]+, (6.17b)

so that we may express the two requirements of the Pauli
principle, Eqs. (6.8) and (6.9), in terms of simpler require-

ments upon the spinor operator T. In the case of Eq. (6.9)
this necessitates the construction of a particular represen-
tation for E,z. Furthermore, it turns out that the con-
straint of Eq. (6.8) restricts the Lorentz invariants that

may appear in the general form of T, while Eq. (6.9) only
provides further constraints upon the properties of the in-
variant amplitude functions, such as the F~~ of Eq. {4.7).
For these reasons it is convenient to treat the implications
of Eqs. (6.8) and (6.9) separately and in that order. We
defer consideration of Eq. (6.9), the exchange antisym-
metry constraint, until subsection B.

The implications of Eq. (6.8), the particle-label symme-
try constraint, are developed in the next subsection, and in
preparation for this we note that the combination of Eq.
(6.13) with Eq. (6.8) implies that

T= J d Ik'p'kpI
~

k';Ji')

x T(p', k';p, k;I (2),l'( l))(k;p i
. (6.14)

Comparison of Eqs. (6.13) and (6.14) yields, as the restate-
ment of Eq. (6.8) for the constraint of particle-label sym-

metry,

T(k',p';k, p;I {1),I (2))=T(p', k';p, k;I (2), l {1)).

which is antisymmetric under particle label interchange.
In Eqs. (6.17), i and j specify the particular members of
the set A of mixed scalars and are unrestricted, except for
i&j in the case of the first two contributors to Eq.
(6.17b). Thus the number of elements contributing to E+
above is 10+ 3+ 8=21, and the number contributing to
E, above is 6+ 1+ 8=15, for a total of 6X6=36, as is
necessary. A completely analogous procedure can be car-

E,+ (E]2 even)

[ A;+A)+]+

[A; AJ ]+
[A+A~ ]

[B;B;]+

(10)
(3)
(8)
(21)

(3)
(3)

E, (E]2 odd)

[A; A+]
[ A; A, ]
[A;+A, ]+

[B BJ]

(6)
(1)
(8)
(15)

TABLE IV. Contents of the set E, of (two-particle)
reciprocity-even mixed scalar operators, given in terms of the
one-particle mixed scalars of Table III and separated according
to their symmetric (E,+ ) or antisymmetric ( E, ) nature under
particle-label interchange using the notation of Eq. (6.16). The
numbers in parentheses give the number of contributing ele-
ments of each type.

(6.15)

Equation (6.15) simply states that the operator T must be
symmetric under the simultaneous interchange of the mo-
menta and the y matrices of the two particles.

A. Particle-label symmetry

We subject the spin- —,
' -spin- —,

' results for the form of T
obtained in Secs. IV and V to the further constraint of

[ C+CJ+ ]+

[C~+C, ]

[D+D,+]+
[D;D, ]+
[D'D, ]

Total

(3)
(&)

(4)
(10)

(3)
(3)
(4)
(10)

[ C+C+]—
[ C; C, ]
[ C,+C,—]+

[D+D+]—
[D; D, ]
[D;+DJ ]+

(1)
(1)
(4)
(6)

(1)
(1)
(4)
(6)
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ried out for the 8(1)SB(2), C(1)SC(2), and D(1)D(2)
contributions to the reciprocity-even operator set E, . The
results are summarized in Table IV.

The reciprocity-odd operators E, are easier to separate.
The two sets A(1)I3|8(2) and A(2)SB(1) are combined
into particle-label symmetric elements [A;+B~ ] and

[A; BJ ]+ and particle label antisymmetric elements
[A;+Bj ]+ and [A; Bj ] . Thus, these contributions to
E, can be subdivided into the symmetric set

E,+D[A;+Bj ], [A; Bj ]+

and the antisymmetric set

(6.18a)

E.—~[A,+8;]+, [A,-B;]- . (6.18b)

The number of contributors to E,+ above is thus
(4X2)+ (2X2)=12 and the number of contributors to
E, above is also 12, for the necessary total of 24. The
contributions of C(1)D(2) and C(2)D(1) are handled
similarly. The results are summarized in Table V.

Each of the reciprocity-odd operators in E, must be
combined with one of the two time-reversal odd MSS's,

q K and q co, as in Eq. (4.7), in order to form an overall
reciprocity-even operator, the full set of which we denote

by E, . Since q.K is even and q co is odd under particle
interchange, it is useful to categorize the set of
reciprocity-even operators formed in this fashion (E, ) ac-

cording to whether they are symmetric (E,+) or antisym-

metric (E, ) under particle interchange. The results of
this task are summarized in Table V.

Before writing down the general form of T consistent
with identical particles, it remains only to treat the parti-
cle exchange properties of the seven arguments of Eq.
(4.7): s, t, u, K co, (q K), (q co), and q Kq co. Two of
the seven, K co and q Kq co, are E&2 odd. We refer to
them as MSS2. The other five arguments are E&2 even

(56) (56)

+ g HEI&j+ g 'K c0 H&jIfj'
i,,eF. + I; GF.

(6.19)

where the arguments of the 212 independent, true scalar
functions Fj, G;j, G'j, H;j, and H j are the seven momen-

tum scalars in MSS1. Since the MSS1's are Lorentz, pari-
ty, and time-reversal scalars and are symmetric under
particle-label exchange, so is each of the 212 amplitude
functions.

The argument which yields Eq. (6.19) is as follows.
From Eq. (4.7), T must be constructed from the sets of
reciprocity-even operators E, of Table IV and E, of
Table V, together with the seven variables manifested in
Eq. (4.7). This variable set may be replaced by the
MSS1's together with possible linear dependences upon

and form part of a set of E~z-even scalars which we refer
to as MSS1. The other elements contained in the set
MSS1 are (K.e) and the product q Kq.coK e. Evident-
ly, an arbitrary function of the initial seven variables
above can be expressed as some function of the seven
MSS1's together with possible linear dependences upon
the elements of MSS2. The elements of MSS1 form a set
of Lorentz, parity, and time-reversal scalars which are
also E]2 even.

An expression for the most general form of T con-
sistent with invariance under Lorentz and parity transfor-
mations, reciprocity under time-reversal, and with particle
indistinguishability can now be read from Tables II—V
with the help of Eq. (4.7). Let an arbitrary element of the

sets E, and E, of mixed scalar operators be denoted by

I;J. Then,
(44) (2S)

T= g F;jI;j+ g (K co 6;j+q Kq coGj)I;j
I,,CF.+ I; GF.

TABLE V. Contents of the set E, of (two-particle) reciprocity-odd mixed scalar operators, given in
terms of the one-particle mixed scalars of Table III and separated according to their symmetric ( E,+ ) or
antisymmetric (E, ) nature under particle-label interchange using the notation of Eq. (6.16). The third

column categorizes the set of reciprocity-even operators E„constructed from -the operators E, and the

reciprocity-odd MSS's (q K and q e), according to their particle-label symmetry (E,+) or antisym-

metry (E, ). The numbers in parentheses give the number of contributing elements in each case. The
final column lists the set of available time-reversal even, particle-exchange odd, momentum-space sca-
lars: MSS2.

E,+ (E~2 even)

[A;+Bj ]
[A;8;]+

[C+D; ]
[C, Dj ]+
[ C+D+]+
[C; D,+]

(8)

(4)
(12)

(4)
(4)

(4}
(4)
(16)

E, (E]2 odd)

[A, Bj+]+-
[ A; 8, ]

[C+D, ]+
[C;D, ]
[C'D' ]
[C; D+]+

(8)

(4)
(12)

(4)

(4)

(4)
(4)
(16)

E, (W even)

E,+ (E]2 even)

qI( E,+
Qp Fp

E (E]2 odd}

q ~Ep
q KE,

(28)

(28)
(56)

(28)
(28)
(56)

K 6
q I(:q e

Total Total (112)
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the MSS2's. Each of the 184 Lorentz scalar operators

IJ EE„E, defines a possible term of T. Each of these
terms is multiplied by an arbitrary function of the
MSS1 s. Fol Eiz-eveil I(i this flixes the term [fli'st alld
third summations of Eq. (6.19)] since no dependence upon
the E&z-odd elements of MSS2 is permitted. For the
Eiz-odd I1EE, ,E, a linearity in an element of MSS2 is

required. For I;J EE, , either element is permitted, yield-

ing the second summation of Eq. (6.19). For IJ EE, , the
element K.co of MSS2 is allowed [yielding the fourth
summation of Eq. (6.19)]. The other element of MSS2,
q Kq.co, is also allowed, but, due to the fact that each ele-

ment of E, is already necessarily linear in either q to or
in q K (see Table V), this possibility simply reproduces
the result of the preceding one. Thus, Eq. (6.19) is ob-
tained.

Equation (6.19) expresses the general, off-mass-shell re-

suit. Complete specification of T requires 212 true scalar
functions (of the MSSl variables), even after the imposi-
tion of the symmetry principles discussed above. The
number of reciprocity-even, parity-even covariants re-
quired is 184. These are constructed from the basic set of
128 parity-even, but reciprocity even or odd, mixed sca-
lars. If the only requirement upon amplitudes is Lorentz
invariance and no particular symmetry under time rever-
sal and particle label exchange is demanded, then, as will
become clear in Sec. VII, a total of 56 such amplitudes
(combined with projectors) can carry the same informa-
tion as Eq. (6.19).

The restriction of this result to the case wherein both
particles are on mass shell is readily obtained from Eq.
(6.19) and the considerations of the preceding section for
the on-mass-shell limits in the distinguishable particle
case. With both particles on their mass-shell, K ~
=q co=q K=O, so that the second and fourth summa-
tions in Eq. (6.19) are immediately eliminated. The third
summation in Eq. (6.19) is also eliminated since all of the

elements of the set E,+ are linear in either q co or q K.
The expression for T in the limit of on-mass-shell parti-
cles is thus

(6.20)

which involves 44 invariant amplitude functions FJ(s, t)
of two of the Mandelstam variables.

8. Antisymmetry

T= —EizT . (6.21)

%e wish, first, to express this as a constraint upon the spi-
nor operator T, and to this end we introduce, for the ex-
change operator E&z, the representation

E,z= f d IkpI ip;k)(k;p iEriz, (6.22)

In this subsection we develop the further restrictions
upon the scattering operator which arise from the an-.
tisymmetry constraint given by Eq. (6.9); that is,

E)'ized(1)$(2)
=f(2)P(1), (6.24)

where tP and P are four-component spinors. From the
algebra of Dirac matrices the standard representation

EIz ———,
' (S+V+ ,

' T —A—+P) (6.25)

can be obtained (as a special case of crossing matrices ') in
terms of the Fermi invariants denoted by 5= 1,
V=y(1) y(2), T =o(1):cr(2), P =y (1)y (2), and
2 =PV. Other representations of Eriz are possible. For
example, it can be useful in some extensions of the present
work to expand Eriz in direct products from the set of 16
one-body invariants I; introduced in Sec. IV. A particu-
lar representation is not needed for the present discussion.

Use of Eqs. (6.13) and (6.22) for the integral representa-
tions of T and Eiz converts Eq. (6.21) into the form

T= —f d4(k'p'kp)
i
k', p')E~~z

X T(p', k';k,p;I (1),I (2))(k;p
~

(6.26)

Comparison of Eqs. (6.13) and (6.26) yields, as a restate-
ment of the antisymmetry constraint for the spinor-space
scattering operator, the equation

T(k',p', k,p;I (1),I (2))= EizT(p', k',—k,p;I (1),I (2)) .

(6.27)

The general form for T derived in the preceding subsec-
tion and given in Eq. (6.19) can be summarized in the
schematic form

T= gF (k',p', k,p)I (k',p';k, p), (6.28)

where the I' are the amplitudes and the I are mixed
scalars. Here we are concerned with the nature of any
modifications to this form that are necessary to satisfy
Eq. (6.27).

In fact, the effect of Eq. (6.27) is only to restrict the na-

ture of the amplitudes F . The set of mixed scalars I is
not affected. The reason for this is the property (estab-
lished below) that the particle exchange operator E&z is
invariant under parity, time reversal, and Lorentz
transformations. To see this, we note from Eqs. (3.1) and
(3.16) that the parity II and time-reversal W operators are
symmetric in the particle labels. Thus E&z commutes
with both operators, so that the equations

Eiz~E]z =~
(6.29a)

(6.29b)

where the spinor-space operator EI'z is constructed so as
to interchange the Dirac spinors of the two particles. It is
convenient to express Eq. (6.22) as

Eiz =E izE iz (6.23)

where (E&z) =1=(Eiz), and Eiz interchanges the mo-
menta of the two particles. The exchange operator E iz is
defined in the direct product space of Dirac spinors such
that
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together with E &2
——1, yield

IIE}2'-}=E„=wE„~-', (6.30)

the invariance of E}2 under parity and time reversal.
From its definition, Eiz is Lorentz invariant. The sym-
metry properties of EizT then follow directly from the
symmetry properties of T. In particular, we have

II(E, T)II '=E, IITII '=(E, T) (6.31a)

W(EizT)W '=Eiza TW

=Eiz T t= T'Eiz = [Eiz Tl' . (6.31b)

Equations (6.31) establish the result that if T has been
constructed to satisfy parity, time-reversal, and Lorentz
transformation symmetries, then E,zT will automatically
satisfy the same symmetries. Also, if T is even under par-
ticle label exchange„ then so is E}2T, Thus the general
operator forms obtained for T necessarily suffice for
E}2T.

The set of mixed scalar operators I found in the
schematic form of T given in Eq. (6.28) is a complete set
for expanding an operator consistent with the presumed
symmetry properties. Because of this completeness, Eiz
maps the set I into itself. Put another way, the "ex-
change" covariants E}2I are contained in the space
spanned by the "direct" covariants, and can thus be ex-
panded in terms of them. To be more specific, we com-
bine Eqs. (6.27) and (6.28) to obtain the antisymmetry
constraint in the form

gF (k',p', k,p)I (k',p', k,p)

E'jqIp(p', k', k,p)= gap I~(k',p';k, p), (6.33)

where the matrix a of scalars has the property az=1.
Substitution of Eq. (6.33) into Eq. (6.32) and use of the
linear independence of the I leads to

F (k',p', k,p)= —QF~(p', k', k,p)ap
P

(6.34)

Thus the antisymmetry constraint is upon the amplitudes
F~ and not upon the set of mixed scalars. The general
form for T obtained in the preceding subsection therefore
fully subsumes the Pauli principle for identical fermions.

The matrix a of scalars introduced in Eq. (6.33) is a
generalization of the Fierz' matrix which relates the
"direct" and "exchange" versions of the five Fermi invari-
ants. The generalized matrix that appears here is larger
than 5/5 because the direct and exchange character of
the complete operator is being described rather than just
the physical (positive energy, on mass shell) matrix ele-

= —QF&(p', k';k, p) ErizI~(p', k';k, p) . (6.32)
P

Use of the above-mentioned properties of Eiz and the

completeness of the set of Ip allows the expansion

ments. A representation for Eriz in terms of the complete
set I~ would, through Eq. (6.33) and the use of trace tech-
niques, allow the generalized Fierz matrix a to be con-
structed.

For applications to the nucleon-nucleon scattering
operator, the isospin structure of the problem needs to be
incorporated into the analysis. This is easily accom-
plished for the usual case in which the system is to be in-
variant with respect to rotations in isospin space. The al-
lowable independent isospin scalars are then I and v}.v2,
both of which are symmetric under particle-label inter-
change. The previous general forms can be multiplied by
either of the isospin scalars, and thus the total number of
amplitudes is doubled.

VII. RECONSTRUCTION OF SCATTERING
OPERATORS: GENERAL FRAMEWORK

u(k, +)=
Ek

}/2

uii(k) (7.1a)

In this section we develop a general formalism for the
reconstruction of the invariant scattering operators T, or
T, from knowledge of their matrix elements in a particu-
lar frame. We assume the "known" matrix elements to be
supplied in the frame of zero total three momentum, the
barycentric frame. The matrix elements may be thought
of as being the result of a solution of, e.g. , the Bethe-
Salpeter equation with a given interaction model. ' '

In the general case the matrix elements may be presumed
to be known off, as well as on, the mass shell and the
complete off-mass-shell representation of T, or T, is to be
constructed. Specific motivation for the considerations of
this section lies in the realm of applications of two-body
scattering operators to many-body contexts.

It turns out to be advantageous to relate the Lorentz in-
variant form of T (or T) to the Pauli-spin structure of its
Dirac spinor matrix elements (in the barycentric frame) in
each of the possible p-spin channels. A particular p-spin
channel is defined' by the characteristic sign of the ener-

gy (+Ek) associated with each of the Dirac spinors em-
ployed in forming matrix eleinents (i.e., positive and/or
negative energy spinors in the initial and final states). In
the case of two identical particles a simple p-spin product
space is sufficient because the full Pauli principle is incor-
porated into the operators; see Sec. VI. Casting the
analysis in this form not only subdivides the elucidates the
reconstruction problem, but it also provides a convenient
(and easily obtained) intermediate representation of the
known matrix elements. The results obtained here can
easily be transcribed into the singlet and triplet p-spin rep-
resentation {the p-spin algebra is identical to that of the
Pauli or a spin), which is often used in numerical work
with the Bethe-Salpeter equation. ' '

In order to maintain close contact with standard con-
ventions, we first note that our basis states, defined in Sec.
II, are related to those of Ref. 16 by
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' 1/2
Mu(k, —)= Ug( —k) . (7.1b)

A (k) = —U~(k)uz(k), (7.9b)

The orthonormality relations satisfied by the spinors of
Ref. 16 are

uii(k)uii(k)= —u~(k)uii(k}= 1

or more simply,

+ +mA+(k) =
2ppl

(7.9e)

u~(k)v~(k) =u~(k)uii(k) =0 . (7.2b)

In Eq. (7.9c), k =(Ek,k) and the usual slash notation
k=y k has been used. Since the spinor space is also
orthogonally decomposed by the A;(k),

where the positive and negative energy projectors H;,
i =+, are given by

9';= f d k
~
k, i)(k, i

~

(7.4a)

= f d k
~
k)P;(k}(k ~, (7.4b)

P;(k)=u(k, i)u (k, i) (7.5)

operate in the spinor subspace; they are the purely spinor-
space projectors onto positive and negative energy Dirac
spinors of momentum k. Both the full and spinor-space
projectors are Hermitian and they satisfy

H;Hl ——H;5; J, (7.6a)

P;(k)PJ(k) =P;(k)5;J, (7.6b)

P~(k)+P (k)=1 . (7.6c)

The essential features of the projectors H; and P, (k) aie
summarized by

and

H; ~kj)=5;, (kj)

P;(k)u(k j)=5;iu(k j),

(7.7a)

(7.7b)

which follow from Eqs. (7.4) and (7.5), and Eq. (2.5).
Explicit representations of the spinor-space projectors

are

In the treatment of the full scattering operator in terms
of its matrix elements in the different p-spin sectors, it is
necessary to introduce projectors which divide the full and
the Dirac spinor spaces according to their positive- and
negative-energy spinor character. From the completeness
relation (2.6), together with Eq. (2.1), we find that the full
Hilbert space (for a single Dirac particle) may be decom-
posed into positive- and negative-energy spinor spaces ac-
cording to

(7 3)

A+(k)+A (k) =1,
with

(7.10a)

A;(k}AJ(k) =A;(k)5; J, (7.10b)

the completeness relation for the spinors of Eqs. (7.9) is

1= f d k
~
k)[A+(k)+A (k)](k

~

(7.11)

as opposed to Eq. (7.3), which is

1= f d'k ~k)[P+(k)+P (k)](k
~

. (7.12)

and

~0~ ~0 (7.13a)

The advantage of the A; is their invariance property. The
advantage of Eq. (7.12) is its association of the Dirac spi-
nors of three momentum k with the momentum space
kets

~
k) which have the same three momentum. Thus

Eq. (7.12) is an expansion in the (positive and negative en-

ergy) eigenstates of the free Dirac Hamiltonian. The (spi-
nor) negative-energy part of Eq. (7.11), on the other hand,
associates kets of three momenta k with Dirac spinors of
momentum —k [see Eqs. (7.1b) and (7.9b)]. The projec-
tors A+(k), which do not yield a particularly useful repre-
sentation of completeness in the full Hilbert space, find
their main use in the computation of cross sections via
closure and trace techniques in spin or space after
momentum-space integrations have been performed. The
case of interest here is the reconstruction of the scattering
operator T from its matrix elements, which are naturally
given in terms of eigenstates of the free Dirac Hamiltoni-
an. These are the matrix elements that arise, for example,
in the solution of an equation of the Bethe-Salpeter type,
since it is natural to employ a basis which diagonalizes the
free Hamiltonian' and the free propagator. ' Thus,
in our considerations we employ the noncovariant projec-
tors H; and P;(k). As we shall see, a covariant form for
the reconstructed scattering operator can still be achieved.

Because the invariant amplitude is given in terms of
Dirae adjoint matrix elements [see Eqs. (2.8}],it is useful
to introduce the auxiliary quantities H; and P;(k) defined
by

P+(k) =+ A+(+k)y (7.8) P;(k)=y P;(k)y =y u(k, i)u(k, i), (7.13b)

where the A+ and A are the more familiar (invariant)
spinor-space projectors of Ref. 16:

A+(k) =u~(k)u~(k),

so that

9';= f d k ik)P;(k)(k
i

(7.13c)
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%++P =1, (7.14a)

(7.14b)

P+(k)+P (k)=1, (7.14c)

P;(k)Pi(k) =P;(k)5; i . (7.14d)

Evidently, the operators P; and P;(k) are also Hermitian
projectors. The essential properties of the projectors P
and P(k) follow as a consequence of their definitions,
Eqs. (7.13), and of Eqs. (7.7):

and

& k j ~
P;=

& k,j'
~ 5;,. (7.15a)

u(k, j)P;(k) =u (k,j)5;, , (7.15b)

in the full space, and

(7.17)

in just the spinor space. For ihe auxiliary projectors we
find from Eqs. (7.16) and (7.13) that

(7.18)

so that these operators project onto positive and negative
energy Dirac adjoint states.

Before proceeding to the development of a general
framework for the reconstruction of the scattering opera-
tors for the spin- —,-spin-0 (subsection A) and spin- —,

'-
spin- —, (subsection B) cases, it is useful to first obtain the

parity and time-reversal properties of the projectors P;,
P;, P;(k), and P;(k). If we use A to denote either the
parity operator II given in Eq. (3.2) or the time-reversal
operator W given in Eq. (3.14), then from Eqs. (7.4) and
(7.8) we find the symmetry properties

(7.16)

parity and reciprocity symmetries satisfied by T, Eqs.
(3.5) and (3.20), respectively, it is immediate from the in-
variance of the H; and P; under parity and time rever-

sal, Eqs. (7.16) and (7.18}, that the three operators
H+ TH+, H TH, and X+TH + H T9'+ share
these symmetries. Given covariant extensions of the pro-
jectors (which we obtain shortly), it is then evident that
these three operators can be expressed in terms of expan-
sions which are form identical to those already obtained
for T. Such is not the case for the "difference" operator
%+TH P—TH+, which is easily seen to be reci-
procity odd, unlike the other operators. Thus„although
the sum of the off-diagonal elements automatically has
the same symmetry properties as T, this is not the case
for the individual off-diagonal projections which appear
in Eq. (7.21). (We find explicit examples of such behavior
at the end of this subsection. ) It is important to note that
the fact that the off-diagonal elements do not have the
same symmetry properties as T does not pose an "in prin-
ciple" impediment to the reconstruction process. This is
because the "difference" operator does not contribute to
Eq. (7.21) in any event and since, more generally, it is evi-
dent that the decomposition of Eq. (7.21) is such that [see
Eqs. (2.8a), (7.7), and (7.15)] the relevant matrix elements
satisfy

&k' j'p'
I
T

I
k i'p) =&k' j'p'

I
+J'T+ ki Ip) . '{72

Equation (7.22) implies that a valid procedure for con-
structing the 2~', TH; would be to fit the appropriate ma-
trix elements with an operator of the same form as T and
then to attach the appropriate projectors. As we will see,
a better method can be obtained.

In terms of the spinor-space operator T, the decomposi-
tion of Eq. (7.21) is easily seen to yield

T(k',p', k,p; I
I'

j ) = g P, (k') T(k',p', k,p; I I j )P;(k)

in the full space and, of course,

in just the spinor space.

A. Spin 2-spin 0

(7.19)
= g TJ;(k',p';k, p; Il j),

while if we define

M~;{k',p', k p) =u(k',j )T(k',p';k, p; [ I'j )u (k, i),
then the analog of Eq. (7.22) is

(7.23a)

(7.23b)

(7.24)

It is convenient to begin from the integral representa-
tion, Eq. (2.12), of the full scattering operator T, which
we write in the form

T= I d t k'p'kp j i

k';p') T(k',p', k,p; I I j ) & k;p
i

(7.20)

MJ, (k",p', k,p) =u(k', j)PJ(k')

X T(k',p';k, p; t
I'j )P;(k)u (k, i)

=u(k',j )TJ., (k',p', k,p; I I j )u (k, i) .

(7.25a)

(7.25b}

The p-spin decomposition of T is then introduced by
means of the identity

Note that MJ; is a 2 & 2 operator in Pauli spin space.
Combining Eq. (7.25b) with Eqs. (7.5) and (7.13b) yields

T= g O', TH;, (7.21) Tp(k', p', kp; I I j ) =y u (k', j)MJ;(k',p';kp)u (k, i)

where i,j=+. Equation (7.21) expresses T in terms of its
projections in each of the four p-spin channels. Given the

(7.26)

Although Eq. (7.26) essentially reconstructs each of the
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(7.27)

operators TJ, [and hence the operator T via Eq. (7.23b)] in
the barycentric frame from knowledge of the matrix ele-
ments Mj, , the resultant operator will not be in Lorentz
scalar form since its constituent elements are not covari-
ant. Thus, although matrix elements of T or T in other
reference frames are obtainable from Eq. (7.26), the n~es-
sary procedure is complicated. Equation (7.26) does not
provide the con'venience and conciseness of a Lorentz sca-
lar operator form.

One way of overcoming the inconvenience of Eq. (7.26)
is to fit the matrix elements MJ;, as given by Eq. (7.25b),
directly in terms of some "consistent" invariant represen-
tation for the TJ;. Once this is done the full T may be
constructed via Eq. (7.23a). However, just what is re
quired to obtain "consistency" must be determined.
Furthermore, in order to guarantee an invariant represen-
tation for the operator T constructed in this fashion, co-
variant forms for the P;(k) and P;(k) must be developed
and employed in Eq. (7.23a) instead of the noncovariant
forms used so far.

Put differently, presumed invariant forms of the opera-
tors TJ; may be determined by fitting them to the relevant
invariant amplitudes P [see Eq. (2.8a)]

' 1/2
Ek Ek

MJ;(k',p', k,p)

component so that a covariant extension of y is given by
the simple expression co y/v s. Similarly, it is easily veri-
fied that a covariant extension of the barycentric quantity
m/Ek is given by the somewhat more complicated ex-
pression

2'R(ikf)=
[tee (K —q)} /s —(K —q) +4m ]2 2 2 1/2

(7.30)

while the covariant extension of the barycentric quantity
m/Ek is obtained from Eq. (7.30) by the replacement
q~ —q. However, despite the fact that all three of the
momentum variables (q,K,co) appear in Eq. (7.30), they
are not needed. The covariant extension of the barycen-
tric quantity m/Ek (m/Ek ) depends only upon the ini-
tial (final) momenta co =k +p and E —q =k —p
(co=k'+p' and E+q =k' —p'). Thus if we regard co as
a symbol for the sum of the four moments of the two par-
ticles and K —q as a symbol for the difference of the four
momenta, then both results are expressed by Eq. (7.30).
We adopt this interpretation of Eq. (7.30); with it no dis-
tinction between the descriptions of the initial and final
states is needed and we avoid the introduction of an
inessential asymmetry.

Thus if one introduces the covariant realizations of the
barycentric projectors of Eqs. (7.29) as

or, equivalently,
' 1/2

Ek'Ek
u(k',j )TJ., (k',p';k, p; I I } )u (k, i) .

77l

b, +(k) =A+(+k) +R (
i
k

i
)

S
(7.3 la)

(7.28)

The full scattering operator T is then formed from Eq.
(7.23a). Two well-defined issues in this reconstruction
method require resolution. First, covariant forms of the
projectors PJ and P; must be found for use in Eq. (7.23a)
in order to produce T in invariant form, given Lorentz

scalar representations of the TJ;. Secondly, the con-
straints which limit the choice of the invariant forms that
can be adopted for each of the operators TJ; must be clari-
fied and a convenient fitting procedure must be developed.
In particular, must the general operator form of T [i.e.,
the ten terms in Eq. (4.3a)] be employed for the TJ, in
each p-spin channel? Are there simple alternative fitting
methods'? What constraints arise from the parity and
time-reversal symmetries, etc.7

To resolve the first issue, we recall from Eqs. (7.8) and
(7.13) that the projectors are

+P?l 0P+ (k) =A+(+k) y

b, +(k)= +R(
i
k

i
) A+(+k),

S
(7.31b)

(7.32)

with the manifest Lorentz scalar operators TJ; determined
by a fitting procedure yet to be described.

The question of the forms to be presumed for the TJ,
and of a convenient form of the fitting procedure remain.
It is especially useful in this regard to develop the symme-
try properties of the MJ; under the parity and time-
reversal transformations. In the case of parity we make
use of Eq. (3.10) to rewrite Eq. (7.25b) as

Mj, (k',p', k p;a) =u(k',j )y T(k',p';k, p; [
I"})y u (k, i)

(7.33a)

where the A+(k) satisfy Eq. (7.9c), then an invariant form
of T is given by

T(k',p', k p; [I I ) = g b~(k')TJ;(k', p', k p; I I })b„(k),

P+(k) =

where the A+ are already in covariant form. Thus we
need only cast the factors y m/Ek and y m/Ek in
Lorentz scalar form. In the barycentric frame the
kinematic variable co [see Eq. (2.10c)] has only a time

=ij u( k',j ) T(k',p', k,p; [—I } )u ( —k, i),
(7.33b)

where i,j =+ and ~here we have made explicit the possi-
ble linear dependences of the Mj, upon the Pauli spin ma-
trices. Equation (7.33b) states that the constraint'of pari-
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ty conservation upon the Mj, is

MJ, (k.',p', k,p;cr) =ij Mj, (k'.,p', k,p;cr) . (7.34)

Thus M~; is even (odd) under the reversal of the three-

momenta of both particles (the Pauli-space parity opera-
tion m)i.f i =j ( i &j )

To obtain the time-reversal symmetry of the M~;, we
make use of Eq. (3.24) to rewrite Eq. (7.25b) as

MJ;(k', p', kp;o)=u(k', j)(y iy'y')[T(k, p;k', p';I I j) ]'(iy'y y )u(k, i)

= —&(k',j)(y y )[T(k,p;k', p';II I) ]'(y y )u(k, i) .

(7.35a)

(7.35b)

Upon noting that y y =X y =cr y (where o =cr 2), and making use of the complex conjugation operator K, Eq.
(7.35b) becomes

MJ, (k',p', k,p;o) =K[u(k',j )"2 y T(k,p;k', p; [I I )tyoX2u(k, i)']K

=Kcr [u( k',j)y—T(k,p;k', p';[I I) y u( k, i)—]o K .

In terms of the usual Pauli-space time-reversal operator given by

~=0. K,
we have the result

(7.36)

(7.37)

(7.38)

MJ, (k'„p', k,p;rr ) = ~[u ( —k,i ) T(k,p; k ',p', I I I )u ( —k',j)] ~

=rM&(k, p;k', p', a) w

(7.39a)

(7.39b)

After implementation of the ~ operation, Eq. (7.39b)
yields a constraint of the form familiar from nonrelativis-
tic scattering theory:

MJ, (k',p', k,p;rr) =M J(k,p;k', p', —cr) .

Equation (7.40) is the time-reversal (reciprocity) constraint
upon the form of the M~;. It constrains the form of the
M;;, while for i&j it determines MJ from Mj; such that
the sum M;1+M~; satisfies the same time-reversal con-
straint as the M;;. The parity and time-reversal con-
straints upon the (invariant) P J; of Eq. (7.27) are, of
course, identical to those upon the M&, .

A convenient and informative representation of the MJ;
can now be obtained as follows. Due to rotational invari-
ance, each of the MJ, (or WJ, ) can be expanded in com-
ponents which are linear in either the unit matrix or in the
rotational invariants which can be formtxl from the Pauli
spin vector rr: tr (q X K), o".q, and o"K. We refer to this
set of four operators as the set E . The parity (n) and
time-reversal (~) symmetries of these operators are sum-
marized in Table VI. In forming a particular one of the

TABLE VI. Classification of the available Pauli one-body
mixed scalars E in the barycentric frame according to their
parity {m) and time reversal {v) symmetry. Their symmetry
character under the interchange of momenta ( E» ) is included
for later use.

{Pauli) F.

Imposition of the symmetry constraints of Eqs. (7.34) and
(7.40) yields, for the form of each of the two diagonal ele-
ments M;;,

M;;=6&+Gptr (qXK), (7.42a)

i.e., the familiar form for a Pauli spin- —,-spin-0 scattering
operator. ' For each of the nondiagonal (i&j) MJ, , the
structure, as determined by the odd parity constraint of
Eq. (7.34) and the lack of a time-reversal constraint, is

MJ, =(63+63q K+63q co) o"q

+(G4+G4q K+6' co)rr K (7.42b)

Since M;J. (i&j} is fully determined by M&, , Eqs. (7.42}
require the determination of 10 true scalar functions, pre-
cisely the number known to be required for the specifica-
tion of T via Eq. (4.3a). Evidently, when one (both) parti-
cles are on mass shell, this number is reduced to eight
(six), as described in Sec. V A. We note that the quantities
in parentheses in Eq. (7.42b) could be treated as single am-
plitudes that do not have a particular time-reversal sym-
metry. A total of six such amplitudes (two for each of the

M~;, each of these operators is multiplied by an arbitrary
scalar function 6; of the seven available parity and time-
reversal even momentum-space (Lorentz) scalars of Eq.
(4.3a): s, t, u, K co, (q K), (q co), and q Kq co. In addi-
tion, linear dependence upon the time-reversal odd (but
parity even) Lorentz scalars q K and q co is permitted,
just as in Eq. (4.3a). Before the imposition of parity and
time-reversal constraints, each of the MJ, may therefore
by expanded as

(4)

MJ, —— g (6 +G q K+G' q cu)I, (7.41)
I FF-
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three independent p-spin sectors) are needed to reconstruct

the full operator T.
Equations (7.42) reveal alternatives and simpiifications

in the structures needed in the fitting procedure used to
obtain Lorcntz scalar realizations of the T;J.. The full set
of 10 independent invariants [See Eq. (4.3a)] is not needed
in any of the p-spin channels. Only two terms are re-

quired for T++ and T . Six independent terms are
necessary for either T+ or T +. Evidently, the set of
four invariants linear in the time-reversal odd MSS (q X,
q co) should be included as a subset of these six, and the
remaining two invariants of the p-spin channels should
evidently be chosen from among the set of six invariants
which do not vanish when both particles are on their mass
shells. This choice seems otherwise constrained only in
that the chosen pair must be nonvanishing and linearly in-
dependent on the particular projected space where they
are used. Clearly, considerable flexibility in the choice of
the particular invariants to be used in each of the p-spin
channels remains.

In short, the Pauli spin representations of Eqs. (7.42)
provide a convenient intermediate representation of the
known matrix elements. Fitting these expressions to the
matrix elements could be the first step of the fitting pro-
cess (a variant of this approach is considered in detail in
Sec. VIII). For the off-diagonal terms, fitting the sum

MJ+M~; and the difference MJ —Mj, is advantageous
since this further subdivides the problem [to see that this
is the case, use Eq. (7.42b) for M;J, use Eq. (7AO) to obtain

M~;, and then form the sum and the difference]. With
this accomplished, essentially any two of the six (Lorentz)
scalar operators of Eq. (4.3a) which have no linear depen-
dence upon either q EC or q ~ may then be used in fitting
to the Pauli representations in each p-spin channel. In fit-
ting one of the off-diagonal terms, the four operators
linear in one or the other of q E or q cu should also be
used. The choice of invariants employed in the fitting
process seems to be otherwise unconstrained, except, of
course, that the chosen invariants must be nonvanishing
and linearly independent on the projected spaces where
they are used. With Lorentz scalar representations deter-

mined for each of the TJ, the full operator is obtained by
means of Eqs. (7.32) and (7.20).

Although these results provide for significant simplifi-
cation, considerable fiexibility in the general reconstruc-
tion method also remains. Such flexibility might be used
to advantage. However, methods which guarantee the re-
quisite linear independence in each of the p-spin sectors
and methods for choosing a set of invariants with desir-
able interference and stability properties remain to be ob-
tained. A particular reconstruction procedure which both
avoids these pmMems aIld pmvldes 8 me81ls foI' Rsscssmg
tllc properties of otllcl. procedures ls obtained ill Scc. VIII.

B. Spin z-spin z

where n =1,2 refers to the particle labels of the two Dirac
particles. The decomposition of T into its projections in
each of the 16 p-spin channels is introduced through the
identity

T= Q Pi(1)9' (2)T9';(1)9' (2), (7.44)

where i,j,l, m =+. The parity and tine-reversal proper-
ties of the various projections of T follow from those of
T, Eqs. (3.5) and (3.20), and from the invariance of the
projectors under the parity and time-reversal transforma-
tions. As we noted in the preceding subsection, these
properties are not (in general} the same as those of T.
However, from the analog of Eq. (7.22),

(k',j;p', m
~

T
~
k,i;p, /&

= (k',j;p', lrl
~ +,( I)+~(2)T&;(1)+i(2)I k, l;p I &

(7.45)

it is evident that a valid procedure for constructing the

P, (1)P (2)TH;(1)&i(2)

is to fit the appropriate matrix elements to an operator of
the same form as T [see Eq. (4.7) or (6.19) for the
nonidentical and identical particle forms, respectively, and
Eqs. (5.15) and (4.20) for the corresponding on-mass-shell
limits] and then to attach the corresponding projectors.
Better methods are available, however, and we develop
these shortly.

In view of the integral representation in Eq. (7.43), the
decomposition of Eq. (7.44} yields, for the spinor-space
operator T,

T(k', p', k,p; I
I"(n) I )

= g P~(k')P (p')T(k', p', k,p; t I (n) ) )P~(k)Pi(p)

= g T~; (k',p';k, p; I I (n)I) . .

(7.46a)

(7.46b)

section A. For this reason we adopt a treatment which
parallels that of the preceding subsection. It is again con-
venient to begin from the integral representation, Eq.
(2.12), of the full scattering operator T, which we write in
the form

T= f d'Ik'p'kp] Ik''p'&T(k'. p'k. p;Ir(~)I)&k;p I

Although technicaHy more complicated than the spin-
—,'-spin-0 case duc to the presence of two Dirac spinors in
both the initial and final states, the considerations of this
sllbscctloll Rrc R straightforward cxtcllsloll of tllosc of sllb-

In this and in the following we suppress particle labels
since no confusion should arise if our convention of asso-
ciating momenta k, k' and p, p' with particles (1) and (2),
respectively, is kept in mind. VA'th Dirae spinor matrix
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elements of the spinor-space scattering operator defined

by

MJ; (k',p', k,p) =u(k', j)u(p', m}

X T(k',p', k,P; j I (n) j )u (k, i)u (p, l),
(7.47)

we find the analog of Eq. (7.45)

Mp~ (k',p', k,p) =u(k', j)u(p', m)

X T,; (k',p', k,p; j I (n) j )u (k, i)u (p, l) .

(7.48)

The MJ;
' are, of course, operators in the (direct-product)

Pauli spin space of the two particles. Similarly, combin-
ing Eq. (7.48) with the expression (7.5) for P;(k) and
(7.13b) for P;(k) yields the analog of Eq. (7.26),

T~; (k',p', k,p; jl (n) j)=r (1)u(k', j)r (2)u(p', m)M~;'(k', p', k,p) u(k, i) u (p, l)t . (7.49)

The reconstruction of the scattering operator T from knowledge of the barycentric matrix elements M~;
' through Eqs.

(7.46b) and (7.49) suffers from the same disadvantages as described previously for the spin- —,-spin-0 analog, Eq. (7.26).
The resultant operator is not in Lorentz scalar form.

In order to construct the scattering operator T in Lorentz scalar form [and from it T by means of Eq. (7.43}],we em-

ploy, instead of the projectors P~(k) and P;(k), the covariant extensions b,;(k) and b, ;(k) given by Eqs. (7.31). With these

projectors we can rewrite Eqs. (7.4b) for the p-spin decomposition of T as

T(k',p', k,p; j I (n) j )= g b (k')3 (p')T (k',p', k,p; j I (n) j )b„(k)bi(p),
ij 1m

(7.50)

which is the two-particle analog of Eq. (7.32). Given
Lorentz scalar operators T J which reproduce the
relevant matrix elements according to Eqs. (7.47) and
(7.48), Eq. (7.50) solves the reconstruction problem. We
note that the procedure indicated by Eq. (7.50) differs
from the procedure recently employed by Tjon and Wal-
lace to reconstruct the NN scattering operator. They em-

ploy not the projectors 6;, but the projectors A; of Eqs.
(7.9). The associated negative energy basis states are not
free particle eigenstates in the full Hilbert space since the
employed spinors, identifimi by Eq. (7.9b), have the oppo-
site momentum to what is needed [see Eq. (7.1b)]. For
this method, the TJ must be consistently defined using
the Bjorken and Drell spinors in Eq. (7.48). Thus the sup-
plied matrix elements M~; are also to be in this basis, and
the necessary transformation must be carried out for all
values of the momentum arguments of the MJ;'. To
transform from the basis used here to the basis required
by the method of Ref. 6, it is only necessary to multiply
the projectors 6; from the right by Eq. (7.10a) and then
multiply the projectors 5; from the left by (Eq. (7.10a).
The linear coefficients for the change of basis are pro-
duced this way. We note that the nondiagonal terms
A (k)b, +(k) and b, +(k)A (k) are not zero, while the
other nondiagonal combinations are zero. The method
used here can be viewed as a development of projectors
suited to the free-particle eigenstate basis that is usual for

the solution output from scattering equations of the
Bethe-Salpeter type. The method of Tjon and Wallace
can be viewed as based upon a linear transformation of
such supplied matrix elements to a basis suited to the
available covariant projectors. Especially in the off-
mass-shell case we expect the present method to be more
economical due to the number of independent scalar argu-
ments of the matrix elements to be dealt with. Moreover,
the approach used here results in a particularly advanta-
geous realization in Sec. VIII.

To complete the discussion of the scheme represented
by Eq. (7.50), we develop the properties of the invariant

operators T J, that aid in their construction. In particu-
lar, we may ask the same questions as in the treatment of
the spin- —,-spin-0 case in the preceding subsection: What

is the form of the operators which comprise the TJ in
each p-spin channel, e.g., must we employ the full opera-
tor form of T'? What constraints arise from parity and
time-reversal symmetries? Are there simple alternative
fitting methods, etc.'? To reveal the underlying features of
the operators, we proceed as in the preceding subsection
and first develop the parity and time-reversal syminetry
properties of the Mj; '.

In the case of the parity transformation we make use of
the parity constraint upon T, Eq. (3.10), to rewrite Eq.
(7.47) as

M, (k',P';k P; j~(n) j)=u(k', J'}u(p' m}r'&l}r'(2}T(k'P';k P jl «}j)r'(»r'(2}u(k»(p l}

= ijlm u ( —k', j)u( —p', m )T(k,p';k, p; j I (n) j )u ( k,i )u (——p, l),

(7.51a)

(7.51b)

where i,j,l, m =+ and where we have made explicit the possible linear dependences upon the Pauli o for each particle.
Equation (7.51b) yields, for the parity constraint upon the MJ;,

MJ; (k',p', kp; j n(n) j )= ijlm Mz,. &k',p';k, p; j cr(n) j ) .



A. PICKLESIMER AND P. C. TANDY 34

Thus, MJ,
' is even (odd) under the reversal of the three momenta of the particles (the Pauli-space parity operator n. ) if

the number of + (or -) spinors involved is even (odd).
To develop the time-reversal properties of the MJ;

' we employ the time-reversal symmetry of T, Eq. (3.24), in Eq.
(7A7) to obtain

M;. (k',p', k p; Icr(n) j ) =u(k', j)u(p', m)yT(1)yT(2)[T(k, p;k', p'; I I (n) j ) ]*yT(1)yT(2)u (k, i)u (p, /), (753)

where we have used the shorthand iy y'y =yT. Upon noting that yT ———y y, y y =X y =0 y, and employing the
complex conjugation operator Ic', we find from Eq. (7.53) that

Mjc
'(k', p', kp; [cr(n) j )=l( [u(k', j)'cr (1)y (1)u(p', m)*cr (2)y (2)T(k,p;k', p', [I (n) j )

Xy (1)o (l)u (ki), 'y (2)o (2)u (p, /)']E

= [u( —k', j)y (1)u( —p', m)y (2)T(k,p;k', p';[1(n)j)

Xy (1)u ( —k, i)y (2)u ( —p, /)]~

where we have employed the two-particle Pauli-space time-reversal operator

r=cr (1)o (2)E .

Equation (7.54b) may also be written as

MJ, (k',p', k p;[cr(n) j )=v[u( —k, i)u( —p, l)T(k,p;k'p ', [ I (n) j )u ( —k', j)u( —p', m)] r

=re)~(k,p;k', p', Io(n) j ) r

(7.54a)

(7.54b)

(7.55)

(7.56a)

(7.56b)

Upon performing the r operation, Eqs. (7.56b) yield a con-
straint reminiscent of the form of the usual nonrelativistic
result:

MJ; '(k', p', k,p; [cr(n) j ) =M~ (k,p;k', p'; I
—o(n) j ) .

(7.57)

Equation (7.57) is the time-reversal (reciprocity) constraint
upon the M . It provides a constraint upon the operator
form of the four diagonal elements, M;;. For the other 12ll

(nondiagonal, i&j and/ or /&m) elements, Eq. (7.57)
determines six pairs of elements such that knowledge of
one member of the pair yields the other. Thus there are
10 linearly independent p-spin sectors of M.

Given the parity [Eq. (7.52) and time-reversal [Eq.
(7.57)] constraints upon the spinor matrix elements MJ,.
in the 16 p-spin channels, we can now obtain an advanta-

geous representation of the MJ, . The unit matrix and the
three Pauli spin matrices span the two-dimensional Pauli
spinor space for each of the particles. In view of the fact
that the three linearly independent vectors qXK, q, and
K span the three space, we can use the set of rotational
invariants E (introduced in the preceding subsection and
described in Table VI), 1, o"n, o"q, and cr K, to span the
spinor space of each particle, where we have used the no-
tation n=qXK. Any (two-particle) spinor-space depen-
dences of the MJ;.

' can thus be represented by an expan-
sion in terms which are bilinear products of the operators
E for each particle: E (l)XE (2). Let us denote this
set of 16 operators by Ex, Ex E(1)XE (2——). Thus, be-
fore the imposition of the parity and time-reversal con-
straints, each of the MJ;

' can be expressed in terms of a
linear combination of the Ez (note that the resulting
number of terms is 162=256). However, it is convenient
to first subdivide the set Ex according to the parity and

TABLE UII. Decomposition of the set Eq of two-particle Pauli mixed scalars into subsets Eq' of
specific parity (m) and reciprocity {~)symmetry. The subset Eq, for example, consists of the parity
even and reciprocity odd constituents of Ex. Each of the Ex is further subdivided into its particle-label
exchange symmetric (s) and antisymmetric (a) parts using the notation of Eq. {6.16).

E +(s).
1

o(&)-no(2) n
o(1)-q o(2).q
o(1).K a{2)-K
—[o(1)+o(2)].n

Ex+(a):
z [o(1)—cr(2)] n

Ey+ (s):

[q cr o K]+

Eg (a):

[q.cr o.K]

E + (s}.
—,[cr(1)—o (2) ] K
[K.cr o.n]

Ey +(a):
—[o'(1)+o(2)] K
[K.o cr n]+

Ex (s):
—,[o(1)—cr(2)] q
[o qcr n]

Ey. (&):
—[cr(1)+cr(2)] q
[cr.q o -n]+
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ml
M); ——

I EEx+,E~

(F +q KG +q cuH )I . (7.59b)

(3) The two independent operators MJ;' (i&j, l&m).
In this case the operators must be parity even', the recipro-
city constraint reduces the number of independent opera-
tors of this type from four to two. Making use of Table
VII, we obtain, from Eq. (7.58),

(8)
(F +q.KG +q AH )I

I eE++,E+-
rnl

M); —— (7.59c)

From Eqs. (7.59) we see that 184 independent true sca-
lar amplitude functions must be specified in the fully off-
mass-shell circumstance. This agrees with the number re-

quired to specify the Lorentz invariant form of T con-
structed in Eq. (4.7). ~ith one particle on mass shell, q K
and q.co are no longer independent (see Sec. IV) and the

time-reversal properties of its constituents and, for subse-
quent use in the identical particle circumstance„according
to the particle-label exchange symmetry of the constitu-
ents as well. Thus, we split F.~ into the four sets F.~,
where, for example, Ez consists of those elements of
E& which are parity even and reciprocity odd. The re-
sults of this decomposition are summarized in Table VII,
where we have also subdivided each of the Eq' into its
particle-exchange symmetric Ex'(s) and antisymmetric
Ez'(a) parts for later use. The decomposition described
in Table VII follows directly from the results of Table VI
and the use of the (particle-exchange symmetrization) no-
tation of Eq. (6.16).

Thus, before the imposition of the constraints which
arise from the discrete symmetries, the general form of
each of the MJ;

'
may be written

(16]
(F~+q KG~+cI AH )I~, (7.58)

I 6E~

where the F, G, and H are arbitrary functions of the
time-reversal and parity even momentum-space (Lorentz)
scalars: s, t, u, K co, (q K), (q co), and q Kq co [see,
e.g., Eq. (7.7) or (7.41)]. In Eq. (7.58) we have manifested
the possible linear dependences upon the time-reversal odd
(but parity even) momentum-space scalars q K and cl co

(see Sec. IV and Table I). Because of the character of the
parity [Eq. (7.52)] and time-reversal [Eq. (7.57)] con-
straints, there are three cases to consider.

(1) The four operators M . In this case, the operators
must be both parity and reciprocity even, so that we see
from Table VII that Eq. (7.58) reduces to

(6) (2)
M;;= g F~I~+ g (cI KG +q coH~)I

I CE~++ I EE~+

(7.59a)

(2) The four indep~nde~t operators MJ", ( i+J') and M
( m &l). In this case the operators must be parity odd; the
reciprocity constraint reduces the number of independent
operators of this type from eight to four. Making use of
Table VII, we obtain the reduction of Eq. (7.58):

number of amplitude functions in Eqs. (7.59) is reduced to
128, in agreement with the number needed in the con-
struction of Eq. (5.14). If both particles are on mass shell,
then q K and q co vanish and Eqs. (7.59) require only 72
coefficient functions, in agreement with the number need-
ed in the covariant construction of Eq. (5.15). From these
results it is evident that Eqs. (7.59) identify a minimal set
of true scalar amplitudes necessary to describe the opera-

tor T. It is also apparent that Eqs. (7.59) identify the
minimal number of linearly independent true scalar opera-
tors which are necessary in forming an operator T1, to be
fitted to the MJ, (in each p-spin channel). In cases
[(1),(2),(3)] the number of invariant (operator) constituents

of the operator T J which are necessary is [10,24,24] in
the fully off-mass-shell circumstance (rather than the full

184 term operator form of T), and [8,16,16] when one
particle is on mass shell (rather than the full 128 term ex-

pansion of T), and only [6,8,8] when both particles are on

mass shell (rather than the full 72 term expansion of T)
Thus, Eqs. (7.59) reveal drastic simplifications in the in-

Ivariant operator forms needed for constructing the T z,
' in

each of the p-spin channels. Equations (7.59) also suggest
the manner in which the total number of operators em-

ployed in each p-spin sector should be apportioned be-
tween terms with and without linear dependences upon
the time-reversal odd momentum-space scalars, just as in
the spin- —,'-spin-0 case. Otherwise, no further constraint

upon the invariant operator form of the T~ is present,
except, of course, that they should be linearly independent
and nonvanishing on the projected space where they are
employed. A specific procedure which obviates questions
of linear independence and stability is derived in Sec.
VIII. This scheme also provides a vehicle for examining
the characteristics and behavior of procedures such as
those outlined above. If one were to treat the quantities in
parentheses in Eqs. (7.59) as single amplitudes that have
no particular time-reversal symmetry, then 80 of such am-
plitudes (eight for each of the 10 independent p-spin sec-

tors) are needed to reconstruct T off the mass shell.
In order to obtain the restriction of these results to the

special circumstance wherein the two spin- —, particles are
indistinguishable, it is first necessary to obtain the permu-
tation symmetries of the Pauli-space operators MJ, . In
view of the particle-exchange symmetry Eq. (6.8) of the
full scattering operator T, it is evident that the projected
operators T J; of Eq. (7.44) .satisfy

(7.60)

so that we may expect the implications of particle identity
to result in restrictions upon the form of the operators for
(m, l =j,i) and relationships among the different opera-
tors for (m, l&j,i), in general. To deduce the precise
statement of the particle-label symmetry obeyed by the
MJ, , we define Pauli spinor matrix elements of these
operators by [see Eqs. (2.1)]

Xz, (k',p', k,p) =X, (1)X' (2)MJ, (k',p';k, p;cr(1),cr(2))

(7.61)
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If we now employ the particle-label symmetry relation

(6.15) obeyed by the spinor-space scattering operator T to-
gether with the decomposition of the full two-particle ex-
change operator Ei2 Eq (6 2 } o obtain

then we may employ this expression for T in the defmi-
tion Eq. (7.47) of the MJ; to obtain a slightly modified
form of that equation. Inserting this result into Eq. (7.61)
and making use of Eq. (6.24) for the (full, Dirac) two-
particle spinor exchange property of E i& yields

Xji (k',p', k,p) =X (1)X,(2)MJ'i(p', k',p, k;cr(1),a(2) }

XX (1)X,(2) .

Use of the Pauli-space spin-exchange operator

(7.63)

1 +o(l) o(2}
12 2

in Eq. (7.63) yields

XJ; '(k', p', k,p) =X, (1) X~(2)Eip

&(Mm~'c(p', k';p, k;cr(1),cr(2) )

XEi2X,(1)X (2), (7.65)

or, making use of the completeness of the o' (to note that
the MJ, contain terms, at most, linear in the cr for each
particle) to perform the Ei2 operation,

T(k',p', k,p;I'(l), I (2))

=E",2T(p', k', p, k;I"(1),l (2))Eri2, (7.62)

XJ, (k. ',p', k,p)=X, (1)X (2)Mi'i(p', k',p, k;a(2),a(1))

xX,(1)X.(2) . (7.66)

Since Eq. (7.66) is valid for arbitrary choices of the
s,s', a,a' in the spinors, comparison of Eqs. (7.66) and
(7.61) yields, for the permutation symmetry of the M~; ',

Mz,. (k',p', k,p;o(1),a(2)) =MJ'i(p', k';p, k;cr(2},a(1)) .
(7.67)

As expected, this result provides a constraint upon the
form of the MJ'i for (ij ) =(I,m), whereas for (ij )&(l,m)
it determines one of the operators MJ'i and M~;' from the
other.

We note that two of the seven momentum-space scalar
arguments of the coefficient functions in Eqs. (7.59) (K c0

and q Kq co; we refer to these as the set MSS2, see Sec.
VI A) are particle-label exchange, Ei2, odd. Thus, in con-
sidering Pauli symmetries it is advantageous to divide the
functional dependence of the coefficient functions into an
arbitrary dependence upon the set of seven (particle-
exchange even} variables: s, r, u, (K co), (q K), (q co),
and q Kq roK co (we refer to these as MSS1, see Sec.
VIA) together with possible linear dependences upon the
MSS2.

We can now obtain the reduction of Eqs. (7.59) in the
identical particle circumstance. %e again treat the three
cases of Eqs. (7.59) separately. In the following, the arbi-
trary coefficient functions F, G, and H are functions
of the (Lorentz scalar) parity, time-reversal and particle-
exchange even variables, MSS1. We also recall from
Table II that the time-reversal odd scalars„q E and q co,

are even and odd, respectively, under particle-exchange.
(la) The two operators M++ and M . In this case,

Eqs. (7.67) requires that the operators be symmetric under
particle exchange. We find from Eq. (7.59a) that

I GE~++(s) I &EX++ (a)

(K c0G +q Kq coH )I +
I

E Ex+
(s)

(q KG +q coK AH )I

I EE~+ (a)

(q KK cd G~+q coH~)I~ . (7.68a)

(lb) The one independent operator of the pair M++ and M++, know edge of one of the pair determines the other via
Eq. (7.67). We find

(6) (2)

M; = g (F~+K coG +q.Kq AH )I + g (q KG +q KK su 6' +q AH +q coK coH' )I . (7.68b)
I eE++

cr y„
I eE+-

cJ

(2) The two independent operators MJ', (i&j ); the operators M,&' (i&j ) are determined from these via Eq. (7.67). We
find

(8)
MJ;= g (F +K coF' +q.Kq.coF"+q KG +q KK co 6' +q AH +q coK.AH' )I

I EE~—
(7.68c)

(7.68d)

(3a) The one independent operator M~~ ( i~j); the operator M&~' is determined from M'J via the time-reversal constraint
(7.57). In this case Eq. (7.67) requires particle-label syminetry and from Eq. (7.59c) we find

(6) (23

(F +q.K G +q coK AH )I + g (K coF +q Kq coF' +q KK ru G +q AH )I.
I G E~+ —(s) I G E~+ —(a)
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(3b) The one independent operator Ml'i~ (i&j ); knowledge of this operator determines the operator MJJ' by either the
time-reversal constraint (7.57) or the particle-exchange constraint (7.67). Furthermore, combination of these two con-
straints yields a constraint upon the form of Mjj, namely the requirement that MJJ (i&j) be symmetric under the prod-
uct of the time-reversal and particle-exchange transformations. Employing this requirement, we obtain, from Eq.
(7.59c),

(F +q.KK.coG +q AH )I
~ ez++{s),E+-{a)

{2)
+

GE++ {a),E+ {s)o

(K coF~+q.Kq aF~+q KG~+q coK AH )I~ . (7.68e)

Thus, in the identical-particle case the number of linearly
independent p-spin sectors of M is reduced from 10 to
seven (in the p-spin product representation).

It is easily verified from Eqs. (7.68) that the total num-
ber of true scalar amplitudes in the off-mass-shell case is
212, while the an-mass-shell circumstance requires only
44. These numbers are the same as the number of ampli-
tudes required by the covariant constructions of Eqs.
(4.19) and (4.20), respectively. Thus, it is clear that we
have identified the minimal number of terms required to
construct acceptable forms for the independent TJ, and
thus to reconstruct T. Equations (7.68) also determine the
minimal number of linearly independent true scalar opera-
tors which must be employed to properly represent the
T J, in each of the p-spin sectors. In cases
[( la), (lb), (2),(3a),(3b)] the number of linearly independent

operator constituents of T j must be [11,26,56,26,26] in
the off-mass-shell circumstance and [5,6,8,6,6] in the on-
mass-shell circumstance. These represent the minimal
number of true scalar operators for each case. As before,
the quantities in parentheses in Eqs. (7.68) could be treat-
ed as single amplitudes that are not, in general, scalars
with respect to time-reversal or particle label exchange.
In the off-mass-shell case it is clear that 56 such ampli-
tudes (eight for each of the seven independent p-spin sec-
tor) can describe the full operator T. This makes contact
with the number of amplitudes employed in Ref. 6.

We note from Eq. (7.68a) that for M++ the 11 invari-
ant terms that are present off the mass shell reduce to five
on the mass shell. This is a relativistic generalization of
the well-known circumstance' that in the Wolfenstein rep-
resentation of Galilean-invariant nonrelativistic scattering
operators for two identical fermions there are six Pauli in-
variants off the energy shell which reduce to five on the
energy shell. These five on-shell Pauli invariants are
given by the set Ez+(s) that enter the first term of Eq.
(7.68a), and are listed in Table VII. Of the six purely off-
mass-shell invariants in Eq. (7.68a), only the first term in
the third summation has a nonrelativistic counterpart. To
see this, we refer to Fig. 2, and note that

co K =V s (~o+ro),

In a nonrelativistic treatment there is no counterpart to
the variables ~Q and ~Q. In the nonrelativistic limit vQ~O
and ~Q—+0, so that the only momentum-space scalar avail-
able is q K. Thus only the first term of the third summa-
tion survives the passage to the nonrelativistic treatment
and it becomes the Wolfenstein purely off energy shell in-
variant given by

q K[cr(1) qcr(2) K+cr(2) qcr(1) K] . (7.69)

k' = ('l2 ~s+&,', k') k = ('l2 ~s+ &o, k)

The other five off-mass-shell invariants in Eq. (7.68a) are
purely relativistic terms. Thus for the nucleon-nucleon
scattering operator in the sector where all the Dirac spi-
nors are positive energy spinors, there are as many purely
off-shell amplitudes beyond the nonrelativistic treatment
as there are on-shell amplitudes that can be determined
from data. When nucleon-nucleon scattering takes place
in the environment of a nucleus, the purely off-mass-shell
two-body amplitudes will, in general, contribute. We note
that recently the off-mass-shell character of bound nu-

cleons has been shown to be a very possible explanation of
the results from the European Muon Collaboration
experiment —known as the EMC effect.

To summarize this section, we have developed a general
framework for the reconstruction of scattering operators
from barycentric matrix elements for the spin- —,'-spin-0,
nonidentical spin- —,-spin- —,, and identical spin- —,-spin- —,

systems. In all cases, reconstruction of the full Lorentz
scalar scattering operators is achieved in terms of invari-
ant operator forms which are used and fitted in each par-
ticular p-spin channel. The Pauli-space operator forms of
the different p-spin projections of the scattering operators

p' = ('l2 -ill - r'„ -k') p = ('l2 +s-r„-k)
co q=v s (ro —To),

q.K=(~o' —ro) —q.K-

FIG. 2. Schematic representation of the scattering process in
the barycentric frame. The four momenta are expressed in
terms of the nine independent quantities that exist in that frame
for the general off-mass-shell case.



A. PICKLESIMER AND P. C. TANDY

provide a convenient intermediate representation of the
known matrix elements; these might be obtained as the
first step in a fitting procedure. More importantly, this
representation of the operators reveals alternatives and
simplifications in the invariant operator forms to be em-

ployed in each p-spin channel. Our results not only iden-
tify the number of operators required in each p-spin chan-
nel, they also indicate the manner in which these are to be
apportioned between terms with and without linear depen-
dences upon certain momentum-space scalars. The out-
come is a generalization of the method recently employed
on the mass shell to reconstruct the NN scattering opera-
tor. Projectors which are consistent with the convenient
free-particle basis states are developed in preference to un-

dertaking a change of basis for every supplied matrix ele-
ment. Considerable flexibility in the reconstruction pro-
cess, particularly in the choice of the invariant operator
forms to be employed in each of the p-spin channels,
remains. In the next section we develop a specific recon-
struction scheme in which there is a unique association
between the Pauli spin structure of the p-spin sectors and
operators in Dirac spinor space. This scheme obviates
questions of linear dependence (kinematic singularities) as
well as of other instabilities. It also provides a means for
assessing the properties of alternative procedures, such as
those which follow the general framework detailed above.

VIII. COVARIANT EXTENSION
OF MATRIX ELEMENTS

The general framework developed in the preceding sec-
tion for the reconstruction of the scattering operator from
a given complete set of matrix elements is ambiguous in

that the form of the p-spin projected operators T~; and

T~ is not fully determined. Such fiexibility allows the
possibility of employing a number of different assumed
forms for these operators, and thus may permit "con-
venient" choices. However, a number of important issues
are also raised by this circumstance. The linear indepen-
dence of the chosen set must be guaranteed in order to re-
move the possibility of the inadvertent introduction of
kinematic singularities (see the discussion below) and it is
not yet clear how this is to be accomplished. Further-
more, some choices of the set of invariant operator forms
to be employed in a given p-spin sector are likely to be
better adapted for practical use than others. Since the
number of available invariant operators is vastly larger
(see Sec. VII) than the number needed in a particular p-
spin sector, it is clear that some choices will inadvertently
depend upon large (implicit) cancellations (that can occur
when p-spin projections are carried out) in order to prop-
erly represent the underlying linearly independent "natur-
al" operator forms. This may appreciably affect the accu-
racy and stability of both the fitting procedure and subse-
quent approximations. These issues have been somewhat
clarified in the preceding section, where the choice of in-
variants in each p-spin sector was subdivided according to
certain essential kinematical dependences. In this section
we find a clear and complete resolution of these issues
which also provides an avenue for investigation of the al-
ternative reconstruction procedures.

A. Spin 2-spin 0

From Eqs. (7.23b) and (7.26) we have the scattering
operator in the form T= g, Tz, , where, in the barycen-
tric frame,

T;(k',p';k, p; I I I ) =y u(k', j) MJ( k'p'; kp)u (k, i)

(8.1)

Note that the projectors onto p-spin sectors j and i are ef-
fectively built into this expression. We convert this ex-
pression to covariant form by representing each spinor in
terms of the special Lorentz boost applied to the appropri-
ate spinor for a particle at rest. ' That is, we employ

u(k, +)=
1/2

5(+k)u (0, + ), (8.2)

where the special boost operator is given by'

As described in the preceding section, the given M ma-
trix elements in each p-spin sector are Pauli-space opera-
tors defined in one Lorentz frame (here taken to be the
barycentric frame) and they must be converted or related
to (Dirac-space) Lorentz co variant y-matrix operator
forms in order to obtain the full scattering operator in co-
variant form. It is necessary to determine how to select a
subset of the many available Dirac spinor operators for
use in the representation of the M in each of the p-spin
sectors. A set of Dirac spinor operators which are linear-
ly independent on the full space may, in general, become
linearly dependent when projected onto a particular p-spin
sector. Such induced linear dependences are the source of
the so-called kinematic singularities which often arise in
the covariant representations of scattering amplitudes. 2s

A zero caused by the lack of linear independence of the
projected operators can induce a divergence in the associ-
ated amplitudes in an "attempt" to maintain linear in-
dependence. The occurrence of kinematic singularities
thus simply signifies a poor choice of Dirac invariants to
be employed in a particular p-spin sector. To ensure the
absence of such behavior, it is sufficient to find the
(unique) direct mapping which connects each of the
Pauli-space rotationally invariant operators in each p-spin
sector with an appropriate Dirac-space Lorentz invariant
operator on the full space. We develop such a mapping in
this section. This information can then be used to specify
the Dirac invariant operator forms which should be
selected for use as the operator constituents of TJ; of Eq.
(7.25b) and T J of Eq. (7A6) (which are to be fitted to the
supplied matrix elements M~; and M~; ). However, the
analysis supplied in this section also constitutes a more
direct technique for reconstruction of the covariant form
of the scattering operator on the full Dirac space. The
projected operators T»; and T~ are shown to be directly
obtainable from the couariant extensions of the Pauli-
space operators M», and M; ' into Dirac-space operators.
We illustrate the method for the spin- —,'-spin-0 system
first, and then extend it to the spin- —,

' -spin- —,
'

system.
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S(k)= exp

' 1/2

1+
0

Ek+ m

With the notation 8;(k), i =+ or —,and the definitions
(8.3)

(8.10)

(8.11)

(k)=8(k), 8 (k)=8( —k)=8 '(k),

we have, in place of Eq. (8.6), the equivalent form
8.4)

TJ.; =81 '(k')MJ;(k', p', k, p)8;(k) .

Tp ——SJ '(k') MJ, ( k', p'; k, p) S;( k),

where we have introduced

(8.6)

PFt

Ek Ek

1/2

y u(0j)MJ, (k',p';k, p)u(0, i)t (8.7)

which is a 13irac spinor operator constructed directly out
of the Pauli spinor operator MJ, . One interpretation of
Eq. (8.6) is that, for each p-spin sector, the constituent
scattering operator may be expressed as the product of
two I.orentz boosts and a scattering operator MJ; for "at-
rest" spinors. The first boost converts the incident spinor
from its value in the specified frame to its value at rest,
then MJ, describes the scattering for at-rest spinors, and
finally the second boost converts the scattered at-rest spi-
nor to its value in the specified frame. The reason that
this particular factorization is preferred over the
equivalent form given in Eq. (8.1) is the ease with which
each of the factors in Eq. (8.6) may be cast into covariant
orm.

As might have been anticipated for the two-body sys-
tem under consideration, the ingredients needed to con-
struct the covariant extension' of the boost operator S(k)
have already been obtained in our construction of covari-
ant projectors in Sec. VII. In fact, if we rewrite Eq. (8.4)
in the equivalent form

—1/2

S(k)= 2 1+ (1+y ky'),
Pl

(8.8)

where the unit four vector k =(1/m)(Ek, k), then it is evi-
dent that covariant extensions of the barycentric quantity
m/Ek and y are all that is required. These are given in

Eq. (7.30) and in the discussion preceding that equation,
respectively. Thus we find that the covariant boost, 8 (k),
is given by

where tanhu =
~

k
j /Ek. It is convenient to employ the

notation S;(k), where, for each p-spin index i =+ or —,
the definition is

S+(k)=S(k), S (k) =S(—k) =S '(k) . (8.5)

Since S =S and y Sy =S ', Eq. (8.1) can now be ex-
pressed in the form

If the Dirac spinor operator MJ, , which is defined in the
barycentric frame, can now be assigned a covariant exten-

sion, then a covariant form for TJ, (and . hence also for the

full scattering operator T= g," T,; ) is assured. Further-
more, this constructive procedure clearly avoids the intro-
duction of kinematic singularities since it maps well-
behaved Pauli-space operators directly to their covariant
Dirac-space extensions.

Explicit evaluation of the direct product of the spinors

in Eq. (8.7) for M~; leads to the results

M++ ——h(y +1)M++(k',p', k,p), (8.12a)

M+ ——h (y +1)y M+ (k',p';k, p),

M + =h(y —1)y'M +(k',p', k,p),
M =h (y —1)M (k',p', k,p),

where

(8.12b)

(8.12c)

(8.12d)

1 m

2 Ek Ek
—= —,[R(

/

k'
/
)R(

/

k
/

)]'~ (8.13)

h spin structure of the ~p~~a
given in Eq. (7.42), may now be combined with the y ma-
trices evident in Eqs. (8.12) in order to produce a y-matrix
representation of the M~;. In terms of the Dirac spin
operator X=(o,cr ',0' ), the results are

M++ f, (y'+1)+——f,(y'+1)X (qXK),

M =fi(y 1)+f4(y —1)X (qXK)—,

M+ ——{fq+f6q K+f7q co)(y +1)y X q

(8.14a)

(8.14b)

M = —(f5 f6q K f7q co)(y 1—)y —X q—

+{f8+f9q'K+fipq'~)(y +1)y'X K, (8.14c)

where the ten scalar amplitudes f;, i =1—10, are related
to the amplitudes of Eq. (7.42) by multiplication by the

factor h. The Dirac operator M + is not independent,
but is given by Eq. (8.12c) with the Pauli operator M +
determined from M+ by the reciprocity relation of Eq.
(7.40). Thus we have

8{k)=[2[1+R(/k/) ']j '" 1+y.ky
S

{8.9a) +(f8 f9q.K f ioq —co}{y —1)y —X K . (8.14d}

while the covariant extension of the inverse boost S '(k)
1s

8-'(k}=[2[1+R(
~

—k
~

)-']~-'" 1+ y

(8.9b)

where the covariant quantity R is as defined in Eq. (7.30).

The quantities in Eq. (8.14) are defined in the barycentric
frame. It remains only to obtain covariant expressions
which have the same value in that frame and then to em-

ploy these to produce covariant versions of Eq. (8.11). In
Eqs. (8.14) there are eight linearly independent Dirac ma-
trix operators and they have even parity. The eight are 1,
y, X (qXK), y X.(qXK), y'X q, y y X q, y'X K, and

y y X K. We recall from Table III that there are also
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q =(ro —io, q), K =(ro+~o, K),
co=(vs, O), g=(0, vs q)&K) .

(8.15)

The spin structure evident in Eqs. (8.14) originates from a
Pauli spin representation of matrix elements and is thus
described by scalars formed out of the three vectors X, q,
and K. The energy components of the four momenta are
not involved in the formation of these barycentric frame
quantities (which are rotational scalars). This separate
treatment of energy and three momentum suggests that
the four momenta whose values in the barycentric frame
are K'=(O, K} and q'=(O, q) are most efficient for
describing the covariant extensions of the mixed scalars of
Eqs. (8.14). In the barycentric frame these are clearly
orthogonal to the total four momentum co; that is,
K' co=O=q'. oi. The covariant extensions of q' and K'
which have the specified value in the barycentric frame
and which remain orthogonal to co in all Lorentz frames

g =g —COCO'g

(8.16)

eight linearly independent one-body mixed (Lorentz) sca-
lars that have even parity. Hence, in the barycentric
frame, there must be a unique linear transformation
which maps one of these sets of matrices into the other.
We employ this fact to obtain the covariant extension of
the Mz, in terms of the one-body mixed scalars.

The kinematics of the scattering process in the barycen-
tric frame is illustrated in Fig. 2. With ro and ro denoting
the relative energies in the initial and final channels, the
particular form of the momentum variables can be taken
as

y y X K= —y-E'= y co —y.E,0 5, 63'E
s

(8.17fl

y X.K= omE'= oxoE .
Vs vs

(8.17g)

M++=f, +1 +f, o".q'K'+y IQ r'r 0
s s

(8.18a)

M =fs —1 +f4 o".q'K'+-y'N r'r 0
s s

(8.18b)

M+ —(fs+f6q K+f7q oi) —y q' — o:q'co
vs

+(fs+f9q K+fioq ~) rK'+—.vs

(8.18c)

In the above we also show, where necessary, the expan-
sions in terms of the standard mixed scalars of Table III.
The extensions of Eqs. (8.17) hold off, as well as on, the
mass shell. When the two particles have the same mass
and are both on mass shell, the momenta q' and E' be-
come identical to q and E and there is then a one-to-one
correspondence with the standard set of mixed scalars
which we employ.

Substitution of these expressions into Eqs. (8.14) pro-
duces the desired covariant extensions of the spinor opera-
tors MJ, . In particular, the results are

E'=E —coo) E .

We may loosely refer to q' and K' as the covariant exten-
sions of the three momenta q and K. Since X transforms
as (part ofl a tensor under Lorentz transformations, the
covariant extension of X qxK is evidently o:q'K'. In
like manner the eight Dirac operators in Eqs. (8.14) are
found to have covariant extensions which are hnear com-
binations of the eight even-parity mixed scalars given in
Table III. When the momenta q' and E' are used instead
of q and K, the correspondence is diagonal. These results
are (excluding the unit operator)

M + ———(fs f6q K f7q o—i) —y q'+— o:q'oi
vs

+(fs f9q K fioq oi) —yK' — o—mK'—
vs

(8.18d)

Use of Eq. (8.11) to attach the covariantly extended
boosts, followed by summation over all p-spin sectors,
produces the manifestly covariant form

T(k',p', k,p; t I'I ) = +8 '(k')M;(k', p'; pk)8;( )k,

O ycor (8.17a)
(8.19)

y XqXK=

(8.17b)

(8.17c)

yyXq= —yg = yap —y'g,
s

(8.17d)

/

y g q= + ~ o'Q7$ = + ~ o".Q)qvs vs (8.17e}

co E co'g
X q & K.=o'.q'E'=o. :qE — cr:q~ — o xoE

s s
for the reconstructed scattering operator in the spin- —,'-
spin-0 case. This is our final result for this case.

In order to identify the contributions of the various
pieces of the right-hand side of Eq. (8.19) to each of the
invariant amplitudes F;, 6;, and 6; appearing in the gen-

eral form for T given in Eq. (4.3b), it is only necessary to
expand the product of the three factors in Eq. (8.19) in
terms of the mixed Lorentz scalars. The required algebra
of the mixed scalars is most easily handled through the
trace properties of the y matrices. This tedious process is
straightforward and will not be detailed here.
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B. Spin 2-spin 2

The spin- —,'-spin- —,
' case is handled as an extension of

the spin- —,
' -spin-0 ease treated in the preceding subsection.

The introduction into Eq. (7.49) of "at-rest" spinors for
each of the two fermions leads to the expression

T,; =8, '(k')8 '(p')M, ; (k',p';k, p)8;(k)8i(p), (8.20)

for the projected scattering operator in the p-spin sector
(ji,ml) H. ere, the scattering operator for "at-rest" spinors
has been defined as the spinor-space operator analogous to
that of Eq. (8.7),

M J,
' ——4h y (1)y (2)u(0 j)u (O,m)MJ, 'u (O, i) u (0,1)

(8.21)

where the MJ;
' are the supplied matrix elements of T in

the barycentric frame and are defined by Eq. (7.47). In
obtaining the above expressions we have made use of the
covariantly extended boost operators 8 defined by Eqs.
(8.9), together with the notation displayed in Eq. (8.10).
We have also employed the covariantly extended quantity
h, defined by Eq. (8.13) as the collection of normalization
factors introduced by the action of the special boosts as
shown in Eq. (8.2). In order to obtain manifestly covari-
ant forms for the rj via Eq. (8.20), and hence for T via

Eq. (7.46b), it is only necessary to cast the M J, into man-
ifestly covariant form. To do this, we first introduce (for
each particle) the spinor direct products

BJ;(1)=2y (1)u(0,j)u(O, i) (8.22a)

B i(2)=2y (2)u(O, m)u(O, l) (8.22b)

M++ —Fj +F2QJ'n CT2 Ii+F30 ] q cr2 q
++

+F4o, K o2 K+F5 —,
' (o i+o2) n, (8.25)

where n=qXK, and subscripts on the Pauli spin opera-
tors have been used to denote particle labels. Substitution
into Eq. (8.24) yields, for the desired Dirac operator, the
expression

M ~+=fi(y, +1)(y2+1)+f2Si nS2 n

+fiSi qS2 q+fgSi KS2 K

+f5 2 [Si(y2+1)+S2(yl+ I)] n

The particular values of these operators are

8 =y +1, 8 =y —1,
B+ =(y +1)y; B +=(y —1)y',

(8.23a)
(8.26)

(8.23b)
where we have defined the Dirac operator

the covariant extensions of these Dirac-space rotational
invariants into Lorentz invariants. Evidently, if we pro-
vide this extension for all possible one-particle Pauli in-
variants, then the results for any two-particle invariant
can be obtained by simply forming the appropriate bilin-
ear products. This, in turn, yields a covariant form for
the right-hand side of Eq. (8.24) and the invariant opera-
tor T via Eqs. (8.20).

In the preceding subsection, we have carried out the co-
variant extension of the set of eight even-parity Dirac
operators that are required to describe the MJ; of the
spin- —,'-spin-0 system. For the present system, the eight
odd-parity operators for a single Dirac particle will also
be required, since an even-parity two-particle operator can
be formed from the direct product of odd-parity operators
for each particle. These are obtained shortly.

As an illustration, the covariant extension of the opera-
tor M from Eq. (8.24) will be explicitly described for the
p-spin sector (ji,m1)=(++, ++) in the on-mass-shell
limit and for identical particles. The other sectors and the
off-mass-shell extensions can be treated in an analogous
way. From Eq. (7.68a) and Table VII we see that, for this
special case, the Pauli spin structure is given by

which we have already implicitly employed in Eq. (8.12).
In terms of these quantities the Dirac spinor operato|'s
M J, can be written as

M J, '(k', p', k,p)=h BJ,(1)B i(2)

&&MJ, (k',p';k, p;cr(1),o(2)} . (8.24)

At this point, the general forms of the Pauli-spin opera-
tors M need to be made explicit in order to proceed fur-

ther with the covariant extension of the M. These have
been detailed in Sec. VII. There, each p-spin sector of M
is expanded in terms of the 16 rotationally invariant
operators that can be constructed in the two-particle
Pauli-spinor space. The general form of the expansion is
given in Eq. (7.58), and the basis set Ez of rotationally in-
variant operators, which are bilinear in the possible
Pauli-space mixed scalars for each particle, is given in
Table VII. When such an expansion for M is introduced
into the right-hand side of Eq. (8.24), the effect of the fac-
tors B for each particle is to convert each Pauli-space ro-
tational invariant into a Dirac-space rotational invariant,
just as in the preceding subsection. We therefore require

S=(y'+ l)X, (8.27)

and have absorbed the kinematic factor h into the new
amplitudes f; =h F;. The covariant extensions of y and
S n follow from the spin- —,'-spin-0 results, Eqs. (8.17).
We still require the covariant extensions of S q and S K.
These are two of the set of eight possible parity-odd,
Dirac-space rotational scalars made from the available
three vectors q, K, and X in the barycentric frame. The
complete set is obtainable from the even-parity set which
appears in Eqs. (8.14) by multiplication from the right by

y . These eight Dirac operators are y, y y,
y X (q)&K), y y X (qXK), y X.q, X.q, y X.K, and
X.K. Thus to form the covariant extensions in all possi-
ble cases, we need to find the unique linear transformation
which relates this set of operators to the set of odd-parity
mixed (Lorentz) scalars of Table III when the latter are
evaluated in the barycentric frame.

For the same reasons raised previously for the spin- —,-

spin-0 case, the results are efficiently expressed when the
Lorentz scalars are written in terms of the four momenta
q' and K', which are the covariant extensions of the



A. PICKLESIMER AND P. C. TANDY

barycentric vectors (O,q) and {O,K) automatically orthog-
onal to co. Multiplication of Eqs. (8.17) from the right by

y produces results which are easily cast in terms of our
standard odd-parity mixed (Lorentz) scalars for six of the
eight operators in question; the results for these six are in-
cluded in Eqs. (8.28) below. The remaining two operators
X q and X.K are not so easily dealt with. For I.orentz
transformations, X is (part ofl a rank-2 tensor and must
be contracted with a rank-2 tensor formed from two four
momenta in order to make a mixed scalar. Thus both q
and K must be expressed as rank-2 tensors. For both par-
ticles on the mass shell this is straightforward since

(q, K,g') are orthogonal, and the required rank-2 tensor
forms are K~qXg and q~KXg. It is not surprising
then that the extension of X q is proportional to +ATE',
and that the extension of X K is proportional to cr:gq'. In
the general off-mass-shell case, q' and E' are not orthogo-
nal, and the required rank-2 momentum tensors are more
complicated than the above. One would expect to achieve
simple forms such as o gE" and o'gq" if the new momen-
tum E" is defined to be orthogonal to q' and g, while the
new momentum q" is defined to be orthogonal to E' and

This expectation is indeed fulfilled, and the sought-
after covariant extensions of the full set of terms, other
than y, are found to be

(8.28a)
S

y'X qxK= ——cr:/co,
S

(8.28b)

)")'XqxK= — } g,vs

vs
X q= — agE",

y X K=y'y E',
vs

X K= — u:gq",

(8.28c)

(8.28d)

(8.28e)

(8.28fl

(8.28g)

where q' and E' are defined in Eq. (8.16), and q" and E"
are defined in terms of them by

q"= (q' E')E' {E'.E'}q', —

E"=(q' q')E' (q' E')q' . —
(8.29)

Note that the orthogonality relations q".E'=O=q'. K"
hold, but that q" and EC" are not orthogonal to each oth-
er. Thus even off the mass shell the set of momenta
(q",E', co,g) provides an orthogonal basis, as does the al-
ternative set (q', E",co,g). In the limit of equal mass par-
ticles on their mass shell, both sets become identical to the
basis (q, E,co, g) which we have used throughout this paper
to express our standard mixed scalar Dirac operators.
~en q", K", q', and E', are expressed in terms of the
momenta q and E, Eqs. (8.28) provide the covariant ex-
tensions of all the odd-parity operators that arise from the
barycentric frame matrix elements.

%'e return now to the task of developing the covariant
extension of Eq. (8.26) and, in particular, the S q and

S K terms. Use of Eqs. (8.27) and (8.28) allows the
desired forms to be read off immediately.

Each p-spin sector can be treated in this manner, even
off the mass shell. The resulting form will always be co-
variant. Use of these results for the M J in Eq. (8.20), to-

Igether with the covariant boost operators, produces T&,.
t(and hence also T=g, &TJ, ) in covariant form

It is worth emphasizing that the mapping of the Pauli-
space operators to covariant Dirac-space operators elim-
inates the possibility of kinematic singularities. Each of
the (well-behaved) Pauli-space terms is mapped to a
unique covariant extension. Linear independence of the
set of invariants is maintained at all stages, thus eliminat-
ing the concerns in this regard that arise in the alternative
reconstruction procedure described in Sec. VII. Finally, it
should be noted that the explicit construction of the

(minimal form of the} general operator T in terms of the

TJ of Eq. (8.20) is an exercise in y-matrix trace tech-
niques, just as in the spin- —,-spin-0 case of the preceding
subsection.

IX. SUMMARY

In this paper we have systematically derived the general
invariant form of the relativistic scattering operators for
spin- —,

' particles. A complete set of invariant operators in

Dirac spinor space is developed for the representation of
the scattering operators both on and off the mass shell.
The results presented here are the Lorentz-invariant gen-
eralizations of the familiar Wolfenstein representations of
nonrelativistic Galilean-invariant scattering operators.
Both the spin- —,'-spin-0 and the spin- —,'-spin- —' systems

were treated in parallel, with the former used as a proto-
type for the methods which are extended to the more
complex and interesting latter case. The invariant forms
of scattering operators developed in this paper should pro-
vide a framework for a systematic investigation of those
relativistic dynamical mechanisms in nucleon-nucleus
scattering which derive from similar features of the NN
scattering operator. The general forms obtained are con-
strained by the successive application of the symmetries
of Lorentz invariance, parity conservation, tiine-reversal

symmetry, and, for the fermion-fermion case, the Pauli
principle for identical particles. This succession can be
broken at any point so that, as a by-product, the form of
symmetry breaking mechanisms may be considered in a
general, covariant context as a further application. The
imposition of isospin symmetry is indicated. For identical
fermion-fermion scattering, the standard Fierz transfor-
mation between exchange and direct Fermi invariants is
generalized to treat the complete set of invariants em-

ployed here.
The analysis is facilitated by the development of in-

dependent invariants (and corresponding ainplitudes) that
possess all the imposed symmetries of the system. Vfe
refer to such quantities as true scalars. The results for the
general off-mass-shell invariant forms are given in terms
of 10 true scalar amplitudes in Eqs. (4.3) for the spin- —,

'-
spin-0 case, in terms of 184 true scalar amplitudes in Eq.
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(4.7) for the case of two distinguishable spin- —, particles,
and in terms of 212 true scalar amplitudes in Eq. (4.19)
for the case of two identical spin- —,

'
particles. We show

that if the individual amplitudes are required to be scalars
only under Lorentz transformations, then the above num-
bers become 6, 80, and 56, respectively. The finding of 56
amplitudes of this type confirms a result from a recent
work on the relativistic NN scattering problem. An ad-
vantage in dealing with true scalar amplitudes, on the oth-
er hand, is that purely off-mass-shell terms enter separate-
ly into the representation. The completely on-mass-shell
invariant forms are given in terms of six true scalar am-
plitudes by Eq. (5.13) for the spin- —,

' -spin-0 case, in terms
of 72 true scalar amplitudes by Eq. (5.15) for the case of
two distinguishable spin- —, particles, and in terms of 44
true scalar amplitudes by the first term of Eq. (6.19) for
the case of two identical spin- —,

' particles.
The numerical input necessary for a complete deter-

mination of scattering operators may be taken from the
solution of a dynamical equation of the Bethe-Salpeter
type with a meson-theoretic interaction model which ac-
curately describes the available two-body data. Such solu-
tions will usually be obtained in the barycentric frame.
Because of the considerable complexity arising from he
four-component nature of the states, the reconstruction of
covariant scattering operators from barycentric ampli-
tudes is a nontrivial task, even conceptually. Thus, we
develop a general framework for such a reconstruction.
We find that a combined p-spin and Pauli-spin analysis is
advantageous both practically and conceptually. Howev-
er, the natural projectors for such an approach, which in-
volve the free-particle Dirac eigenstates that are also in-
variably used in solutions of dynamical equations of the
Bethe-Salpeter type, are not covariant. The usual covari-
ant projectors are not convenient. %e utilize kinematical
properties of the two-particle scattering system to define
covariant extensions of the natural projectors in order to
formulate the reconstruction procedure along the desired
lines. These covariantly extended projectors on the full
Hilbert space are given in Eqs. (7.31), and in terms of
them, the reconstructed scattering operator is expressed by
Eq. (7.32) for the spin- —,

' -spin-0 case and by Eq. (7.50) for
ihe spin- —,-spin- —, case.

We relate the covariant scattering operators in the full
Dirac spinor space and the Pauli spin structure of their
matrix elements in each p-spin sector. One outcome of
this is a specification of the number, type, and kinemati-
cal character of the Dirac operator invariants needed to
represent the scattering operators on each of the p-spin
sectors. This determines the manner in which the total
number of unknown amplitude functions is distributed
among the various p-spin sectors. All of this is done in
the fully off-mass-shell circumstance as well as in the
presence of on-mass-shell constraints. For the spin- —,'-
spin-0 system there are three independent p-spin sectors
needed to construct the operator, while for the spin- —,'-
spin- —, system there are ten independent sectors in the
product p-spin representation (seven for identical parti-
cles). The Pauli spin representation of the scattering
operators in the various p-spin sectors thus subdivides the

reconstruction process, provides a convenient intermediate
representation of the scattering amplitudes, and identifies
certain essential kinematical properties which enable one
to avoid instabilities. The Pauli spin structure of each in-
dependent p-spin sector is given by Eqs. (7.42) for the
spin- —,-spin-0 case, by Eqs. (7.59) for the system of two
distinguishable spin- —, particles, and by Eqs. (7.68) for the
system of two identical spin- —,

' particles. The number of
independent true scalar amplitudes revealed by this
analysis of the p-spin sectors agrees with, and therefore
confirms, the numbers identified in the analysis on the
full Dirac space presented in Secs. IV and VI.

Knowledge of the. Pauli spin structure on the full col-
lection of p-spin sectors also forms the basis of a specific
procedure for direct reconstruction on the full Dirac
space. This method employs a covariant extension of the
special Lorentz boost operator in a manner similar to that
used some decades ago by Stapp in work on a relativistic
density matrix formalism for polarization phenomena. In
this procedure each member of the set of invariants in
Pauli spin space is assigned a unique covariant extension
into Dirac spin-space invariant operators. This method
not only absorbs the covariant projection operators, but it
also avoids any question of the introduction of kinematic
singularities by virtue of the fact that it maps Pauli-spin
operators directly to (unique) Dirac-space extensions. The
covariantly extended special Lorentz boost operator is
given by Eqs. (8.9), and the Lorentz covariant extensions
of the rotational invariant Pauli-spin operators are given
in Eqs. (8.17) and (8.28). For the spin- —,-spin-0 system,
the latter are used to explicitly display in Eqs. (8.18) the
covariantly extended barycentric frame values of the p-
spin scattering amplitudes. The final covariant form of
the reconstructed scattering operator on the full Dirac
space is given by Eq. (8.19). The application of this tech-
nique to the spin- —,-spin- —, system is described by Eqs.
(8.20), (8.24), and (8.28).

The results obtained in this paper provide the super-
structure needed for a systematic treatment of relativistic
spin- —,-spin-0 scattering in the circumstance that the
spin-0 object consists of spin- —, constituents. This paper
is specifically designed with an investigation of the rela-
tionship between relativistic nucleon-nucleus and
nucleon-nucleon scattering in Inind. As an immediate ap-
plication, a future work from this perspective will address
the construction of the relativistic nucleon-nucleus optical
potential. Under the assumption that the nuclear ground
state matrix element of the NN t matrix is an appropriate
first-order optical potential in the relativistic context, the
general Lorentz-invariant form of this spin- —,-spin-0 in-

teraction will be related, term by term, to the general form
of the NN I; matrix. The identification of the dominant
contributions is facilitated by knowledge of the general
operator forms consistent with symmetry principles. The
final steps of this program include the numerical con-
struction of appropriate models of the relativistic NN
scattering operator based upon meson theory, their use in
determining nucleon-nucleus optical potentials, and, final-
ly, nucleon-nucleus scattering computations and investiga-
tions.
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and the spin-0 operator 60 ' is

=P —7?l
2 2

(A4a)

(A4b)

and

S(+) S(+)

S(+ ) =S()+'( l )6()+'(2),

S(+ ) =S()+ '( l )S()+ '(2),

(A5a)

(A5c)

Thus the covariant propagators of the system, with the
boundary conditions specified by the addition of a vanish-

ingly small positive imaginary part to Eqs. (A4), are,
respectively,

APPENDIX: CHARGE CONJUGATION
AND PCT INVARIANCE

C = U, P4K =i y2P4E, (Ala)

Charge conjugation for a Dirac particle is implemented
in momentum space by the antiunitary operator

where the Feynman fermion propagator is

5o = P P —fPl +l 6' P

and the boson propagator is

ho+' f d p Jp——)(p m+ie—) '(p
]

.

(A6)

(A7)

where the unitary (and Hermitian) operator U, =iy, and

P4 is the four-space inversion operator. The operation K,
which has been introduced earlier in Eq. (3.13), produces
the complex conjugate. The momentum-space operator
combination P4K is just complex conjugation in the
position-time representation. For a spin-0 particle, U, is
replaced by 1.

We consider the implications of charge conjugation for
the scattering operator in three distinct circumstances: a
spin- —,

' (Dirac) particle in an external field, spin- —,
' -spin-0

scattering, and spin- —,
' -spin- —,

' scattering. The charge con-

jugation operator for the first circumstance is given by
Eq. (Ala} with the possibility of the addition of some in-

struction concerning the external field, while the charge
conjugation operators applicable in the other two cir-
cumstances are, respectively,

Because of the antiunitary nature of C, and Eq. (A2), each
of the free propagators of Eq. (A5) satisfies

CS(+)C =S(—) .

The propagators also satisfy

s( —)=s(+)t,

(A8)

where we recall that f denotes a Dirac adjoint
At= I 2 I, with I =y (1) or y (l)y (2) according to
whether there are one or two Dirac particles. Thus,

CS(+)C-'=S(+)& . (A10)

If we assume a similar property for the covariant interac-

tion U,

(A 1 1)

and

C = U, (1)P4(1)P4(2)K=iy P4(1)P4(2)K (A lb) then the inverses of the full propagators for the three sys-

tems all satisfy

C = U, (1)U, (2)Pq(1)P4, (2)K C(S ' U)C '=S-—' U t -. -— (A12)

=[i@(1)][iy (2)]P4(1)P4(2)K . (A lc)

In all three circumstances the inverse of the free covari-
ant propagator of the system, 5 ', is charge conjugate in-

variant,

(A2)

This may be verified using the inverse propagators for
the three systems, which are, respectively,

(A3a)

S-'=S, '(1)&, '(2),

If, additionally, Ut=U, then the inverse propagator is

charge conjugation invariant. Note that with U= I V,

this condition is one of hermiticity: V=V. However,
this condition is not necessary.

The transition operator (our convention for the two-

particle transition operator is such that the S matrix for
the scattering of two positive-energy particles is 1+T
rather than 1 —iT, for example) for each of the three sys-
tems satisfies an equation of the Bethe-Salpeter form,

T=U+US(+)T,

whose adjoint equation can be written

S '=S '(1)S '(2),

where the spin- —,
' operator So ' is

T t U t+ U tS(+ }tTt

Using Eqs. (A10) and (Al 1) in Eq. (A13) yields

(A14}
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[CZC '-]=Ut+UtS(+)t[CTC '-].

Comparison of Eqs. (A14) and (A15) yields

(A15) T(qKco, g, I I (i) J ) = T( —q, —K, —co, —g, t 1 '(i) I ),
(A19)

where the C transform of a y matrix is denoted by
(A16)

I"=U, (l t)'U, (A20)
This is the charge conjugation reciprocity relation satis-
fied by T. We note that it is form identical to the time-
reversal reciprocity relation of Eq. (3.17). In fact, the en-
tire development of Eqs. (A2)—(A16) applies equally well
to time-reversal if the charge conjugation operators are re-
placed by the corresponding time-reversal operators of
Sec. III,

When the C operator acts on a free state it reverses the
sign of the energy, the three momentum, and the spin of
the particle. Because C is antiunitary, matrix elements of
Eq. (A16) yield a relation of the schematic form

ere-'=T,
where the unitary operator

(A21)

for each Dirac particle.
The general Lorentz invariant forms for T constructed

in the text by imposition of the symmetries II and W au-
tomatically satisfy Eq. (A19). To relate this to PCT sym-
metry, we use Eq. (A16) in conjugation with Eqs. (3.5)
and (3.20) for the symmetries II and W to obtain

&Fl Tl~&=( —1) &Ie ITlFe& (A17) is the PCT operator. For a single Dirac particle, this
operator is given in momentum-space by

C(eg )C '= —eg, (A18)

so that we must add to C the instruction A"~—A'" in
order for Eq. (All) to obtain. Given ttus, Eqs. (A16) and
(A17) then express a relationship between the scattering of
an antiparticle (positron) for given momenta and spina in
a field A and the scattering of a particle (electron) with
the same momenta and spins in the charge conjugate field
( —A).

Use in Eq. (A16) of the integral representation ex-
pressed by Eq. (2.12) leads to the charge conjugation con-
straint

where
~
I, & denotes C

~

I &, and nf is the number of fer-
mions in either I or F. Thus in the example where

~

I &

and
~
F& represent negative-energy states, Eq. (A17) re-

lates this scattering amplitude to a positive-energy ampli-
tude of reversed three momentum and spin. With the
Feynman interpretation, Eq. (A17) is then a relation be-
tween an antiparticle amplitude [left-hand side of Eq.
(A17)] and a particle amplitude [on the right-hand side of
Eq. (A17)]. This depends only on the assumption that Eq.
(All) holds. In the case of a Dirac particle in an external
(Hermitian) electromagnetic field, for example, U=eg
and Eq. (Ala) yields

8= IIC~ = [) 'P][is'P.K][i)"&'PK]

= «y'P4,

and for a spin-0 particle it is

8= IIC~ =[a][P,K][PK]

=P4 .

For a two-particle system, the PCT operator is

8=8(1)8(2) .

Thus Eq. (A21) for the PCT symmetry becomes

T= [y'P4(1)P4(2) ]T[y'+4(1)P4(2) ]

for the spin- —,
' -spin-0 system, and

T= [y'(1)P4(1)][y'(2)P$(2)]

X T[y'(2)F4(2)][y'(1)P4(1)]

(A23)

(A24)

(A25)

(A26)

(A27)

for the spin- —,
' -spin- —,

' system. With the integral represen-
tation given in Eq. (2.12), the PCT constraint for the

spinor-space scattering operator T immediately follows
from Eqs. (A26) and (A27) and is the result given in the
text as Eq. (3.28).
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