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It is shown that strongly-bound q-nucleus systems, which we term q-mesic nuclei, can be formed
between an g meson and nuclei of mass number A ~ 10. %e show that a distinct experimental sig-

nature for the formation of the g-mesic nucleus can be observed in (m+,p) reactions. The formation
cross sections are predicted. Effects of higher order dynamics on the predicted width of the g-mesic
nucleus are also estimated.

I. INTRODUCTION

There are currently extensive theoretical and experi-
mental efforts devoted towards achieving a better under-
standing of the rl and rl' mesons. As we know, their ob-
served masses cannot be fully explained in terms of the
standard SU(6) model. ' The g-rl' mixing and the isospin
breaking m -rl mixing are also among the many interest-
ing problems pertaining to the eta mesons. %'e believe
that studying g-nucleon interactions can yield additional
important information on the nature of the il meson. Be-
cause it is nearly impossible to produce an g beam, the
nucleus provides a natural laboratory for such investiga-
tions.

In recent years, a significant amount of pion-induced rl
production in He, Li, and ' C at pion kinetic energies
near 500 MeV has been detected at LAMPF. Production
of il mesons has also been observed in proton-nucleus col-
lisions at proton kinetic energies around 1 GeV. Study-
ing iI-nucleon interactions by means of nuclear reactions
has, therefore, become a reality with modern accelerator
facilities. Using a coupled-channel model, Bhalerao and
Liu have shown that pionic i) production on a nucleon in
the threshold region proceeds mainly through the forma-
tion of the N (1535) (Sl 1) resonance and that the iINN'
coupling constant is not small. Their model also predicts
an attractive low-energy gN interaction. A more recent
theoretical study further indicates that this attractive ilN
interaction can lead to the formation of nuclear bound
states of the g meson in nuclei having mass number
A F10. Such a bound system, termed the q-mesic nu-

cleus, is caused by the strong interaction between the q
meson and all the nucleons in the nucleus.

A novel feature of g-mesic nuclei that distinguishes
them from other nuclear bound systems known to date is
that these are bound systems constituted of a meson and a
nucleus. Furthermore, unlike mesic atoms, mesic nuclei
are solely the result of strong interactions. It is worth
mentioning that the existence of a mesic nucleus cannot
be readily investigated with pions or kaons. Owing to the
strong cancellation between the isospin —,

'
and —', mN s-

wave scattering 1engths, the resultant low-energy s-wave
pion-nucleus interaction is weak (and repulsive). Al-
though the p-wave pion-nucleus interaction is attractive,
its strength depends critically on the local pion momen-

turn that theoretical estimates indicate is very small. The
K+ meson is not suitable because the K+N interaction is
repulsive at low energies. Although the low-energy K N
interaction is attractive, the use of a stopped K beam
could be hampered by the presence of large Coulomb in-
teractions that would cause K to form preferentially the
mesic atoms. On the other hand, because of strangeness
conservation, K can be produced in medium-energy nu-
clear reactions only through K+K pair production that
has a very small cross section. Another advantage associ-
ated with the rl meson is that the fundamental nN~rlN
interaction is a two-body to two-body process. This latter
kinematic feature facilitates the search for rl-mesic nuclei
by means of two-body to two-body nuclear reactions. In
this paper, we study one such reaction. %e shall present
the calculated cross sections for the formation of an rl-
mesic nucleus and discuss the associated experimental sig-
nature.

In the past, useful information about hadron-nucleon
interactions has been obtained through studies of hadron-
nucleus bound states. ' Such studies are especially re-
warding for those hadrons from which it is nearly impos-
sible to produce beams in the laboratory. In a similar
manner, the experimental confirmation of the existence of
an i)-mesic nucleus will lead to new possibilities of study-
ing the interaction between a nucleon and the short-lived
( —10 ' s) q meson. For example, because the rl-nucleon
interaction proceeds mainly through the X'(1535) reso-
nance, analysis of the discrete energy spectrum of an g-
mesic nucleus will allow an accurate determination of the
gNN' coupling constant. Additionally, because of the
specific quantum numbers of the i) meson„ i)-mesic nuclei
can be used as vehicles to access many new nuclear states
that otherwise cannot be easily reached. We, therefore,
believe that both theoretical and experimental studies of
g-mesic nuclei may produce interesting surprises and have
an impact on the future direction of medium-energy phys-
1cs.

In Sec. II we briefly review the theory of the q-mesic
nucleus and make an order of magnitude estimate of the
effects on calculated binding energies and widths arising
from various simple medium corrections. We present in
Sec. III a theoretical framework for the calculation of the
formation cross sections of q-mesic nuclei in (m. ,p) reac-
tions. The experimental signature of g-mesic nuclei and
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the physics that can be learned from the angular and ener-

gy dependences of these cross sections is also discussed.
A summary and conclusions are presented in Sec. IV.

II. THEORY OF THE g-MESIC NUCLEUS

A. Covariant q-nucleus optical potential

where V is the il-nucleus optical potential, E =a /2p is
the (complex) eigenenergy of the system, and
@=M„M&/(M„+M„) is the reduced mass. For bound
states, we have Rnc =v—„&0. In spite of its Schrodinger-
type form, Eq. (2.1) is covariant. The three-dimensional
relativistic wave function P and the covariant potential
&k'

~
V

~
k& are defined by'

%e use the following momentum-space relativistic
three-dimensional integral equation'" to study g-nucleus
systems:

Qt 2

y(k')+ f dk&k'
~

V~ k&1$(k) E=y(k )', (2.l)
2p

R (a.„)
g(k) = l([k,k'= W-E„(k)]

R(k2)
(2.2)

(2.4)

where k and k' are, respectively, the initial and final il momenta in the r)-nucleus c.m. frame. In Eq. (2.4), the off-shell
il-nucleon scattering amplitude t„N zN is weighted by the product of the nuclear wave functions pj'pj correspondin to
having the nucleon j at the momenta —(k+Q) and —(k +Q) before and after the collision, respectively. The sj is
the i)N invariant mass and is equal to the total energy in the c.m. frame of the i) and the nucleon j. It is given by

&
k'

I
V

I
k& =~'"«') &k'

I
V[W k' W=E—~(k )k'W=E—g(k)]

~
k&R '"(k ) . (2.3)

W=(Mg+ir ) +(Mg+K„)' ' and R(k')=(M„+M&)/[E„(k)+E„(k)]. The restriction of the zeroth com-
ponent of the four-momenta k and k', respectively, to ko= W E„(k)—and k' = W Ez(k'—) in g and V specifies the
covariant reduction scheme that led to the relativistic wave equation we are using. The main advantage of working with
a covariant theory is that the g-nucleus interaction V can be related to the elementary i)N process by unambiguous
kinematical transformations. '

The first-order r)-nucleus optical potential &
k'

~

V
~

k & has the form

&
k'

I
V

I
k& = g f dQ&k' —«'+Q)

I r(~s, ),w-, N I
k —«+Q) &4J'( —k' —Q)NJ( —k —Q»

J

2

~s, =[)W —Ec,,(Q)]'—Q']'" M„+M, —
I e, /—

c,j g + N

(2.5)

(2.6)

where Ec& and Mc J are, respectively, the total energy and mass of the core nucleus obtained from removing a nucleon j
of momentum —(k+Q) and binding energy

~ ej ~. We note from Eqs. (2.4) and (2.5) that the calculation of Vinvolves
full off-shell kinematics, in which integration over the Fermi motion variable Q is carried out. Further, the basic in-
teraction t„N vN is always evaluated at subthreshold energies, namely, ~sj =—M„+MN —d(

~ eJ ~,Q ). However, be-
cause the thresholds for i)N~mN and rlN~mmN reactions are lower than the threshold for ilN~gN scattering,
t„z „N is still complex.

It is useful to express t„N „N in terms of the scattering amplitude W defined in the ilN c.m. frame:

W( sj,p', p)

(2n) [E„(k')EN(k')E„(k)EN(k)]'~

where p and p' denote the relative momenta in the gN c.m. frame. One can pararnetrize M as6

p 2+@2
(

I
p'I lp I

)'[jj,i i~(p» p ')gJ, i—]~/(z)

—=+(M~, ,p', p) —

iver(p

Xp')G(~s, ,p', p), (2.7)

&pi, = —(~/V ~J )[E„(p')EN(p')E„(p)EN(p)]' ', z=—p ™p,
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The F and 6 are, therefore, the spin-nonflip and spin-flip

amplitudes. For a spin-zero nucleus, the contribution
from the spin-flip amplitude G, when summexi over all

the target nucleons, becomes zero. The J and I are,
respectively, the total and orbital angular momenta of the

gN system. Using the standard angular momentum pro-
jector method, one can show that for J =/+ —,', one has

fJ &

——/+ 1 and gj i =d ldz, and that for J=/ ——,', one has

fJ i —/ and g, t
—— d l—dz Pi. is the Legendre polynomial

of order /. The quantities ~s~, p', p, and p' p can be
calculated from k', k, and Q using the well-established
Lorentz transformations. '

The correct low-momentum behavior of the r/N in-

teraction is ensured by the quantity

(
I
p'Ilp

I
}'(&t(

I
p'

I
~A»i(

I p I
~A}j'"

which, for p'
~

=
~ p ~, becomes the well-known penetra-

tion factor'
~ p ~

tut. As noted in Refs. 6 and 7, for low-

energy qN scattering, only the channels with

( /, J)= (0, z ), ( 1,—,), and (2, —, ) need to be considered.

Furthermore, only one /t/' isobar (labeled a) in each of
these channels is important; they are the N'(1535) (Sl 1),
X'(1440}(Pl 1), and N'(1520) (D13). The quantities Xv,
X and Xz~ in Eq. (2.8} are the self-energies of the isobar
a associated, respectively, with the coupling to the gN,
mN, and enN intermediate states. We refer to Ref. 6 for
the physical meanings of these self-energies and for the
values of the coupling constants g„N, the range parame-
ters A, and the bare isobar mass M .

B. q-nucleus bound states

After partial wave decomposition and angular momen-
tum projection, Eq. (2.1) becomes, in general, a system of
coupled radial integral equations. It is instructive to first
consider spinless nuclei for which the radial integral equa-
tions are uncoupled from one another and each depends

only on the orbital angular momentum L of the r/-nucleus

system. We have looked for bound-state solutions corre-

sponding to ReE &0 for six spin-zero nuclei —' C, '60,
Mg„Ca, Zr, and Pb. The binding energies and

half-widths predicted by the full off-shell calculation,
Eqs. (2.4)—(2.8), are summarized in Table I.' The solu-
tions labeled set 1 and set 2 are obtained with the qN in-
teraction parameters gvN~, M, and A determined in Ref.
6 from the mN phase shifts of Amdt et a/. and the CERN
theoretical fit, respectively. The nuclear wave functions

P/ in Eq. (2.4) were derived from the expermental char e
form factors with the proton finite size corrected for. '

We note from Table I that the number of bound states
increases with the nuclear size. The binding energy and
the width of a given bound state (e.g., the ls or lp state)
also increase with the nuclear size. In Pb, we have
found four bound states, while for ' C only one loosely-
bound state is obtained. For nuclei with mass number
A &10, no bound-state solutions could be obtained. The
fact that a nucleus of sufficient size is required to develop
bound states of r/ that are absent in fewer-nucleon systems
is a direct consequence of basic quantum mechanical prin-
ciples for the existence of bound states. A detailed discus-
sion about this aspect is given in Ref. 7.

We also note from Table I that the states predicted by
set 1 are systematically more deeply bound than those
predicted by set 2. Since the gN interactions that have
led to these two sets of solutions give nearly identical r/N
scattering lengths, ao ——(0.28+0.19i) and (0.27+0.22/)
fm, respectively, we conclude that the difference in the
binding energies reflects the sensitivity of the bound-state
formation to the off-shell behavior of the r/N interaction,
in particular, to the very different range parameters A of
these two sets of r/N interactions.

We have further noted that the exclusion of p- and d-
wave r/N interactions from Eq. (2.7) has negligible effects
on the predicted binding energies and widths. This is a
direct consequence of the correct low-momentum
behavior of the r/N interaction model. This insignificance
of the p- and d-wave interactions greatly simplifies the
theoretical calculation of r/-nucleus bound states for nu-

TABLE I. Binding energies and half-widths (both in MeV) of various g-mesic nuclei given by the

full off-shell calculation.

Nucleus

208Pb

Orbital

1s
2$

1p
1d

Set 1

—(18.46+ 10.11i)
—(2.37+5.82 i)

—(12.28+9.28 i)
—(3.99+6.90i)

Set 2

—(16.23+9.90i)
—(0.67+ 5.26i)
—(9.ss+ s.84i)
—(2.06+6.44i)

907r —(14.80+S.87i)
—(4.75+6.70i)

—(12.59+8.56)
—(2.90+6.01 i }

—(8.91+6.80i) —(6.88+6. 16i)

—(6.39+6.60 i) —(4.62+ 5.94i }

16O —(3.45+5.38i) —(1.87+4.48 i)

12C —(1.19+3.67 i) —(0.09+2.80i)



L. C. LIU AND Q. HAIDER 34

clei with spin. For example, the spin-orbit q-nucleus in-

teraction, which arises from the p- and d-wave i)N in-

teractions, can be neglected in bound-state calculations.

C. Effects of higher-order dynamics

It is known that the second-order, density-squared (p )

dependent pion-nucleus optical potential, arising from
true pion absorption on two nucleons [Fig. 1(a)j, is very
important. In the following, we briefly examine the possi-
bilities of rl absorption in the rl-nucleus interaction. Con-
tributions to the second-order, p -dependent g-nucleus op-
tical potential by true q absorption are illustrated in Figs.
1(b) and 1(c). Figure 1(b) corresponds to an i) absorption
after rlN scattering. Figure 1(c) corresponds to an "in-
direct" i) absorption in the sense that the i) is first con-
verted to a high-energy (=3M ) pion that is subsequently
absorbed. The absorption process of Fig. 1(b) is strongly
suppressed by the dynamical effect that the rlNN cou-
pling constant [at the lower vertices in Fig. 1(b)j is ex-
tremely small. (See Ref. 6 for a more detailed discussion. )

The process of Fig. 1(c) is much more complex, and no re-
liable estimates can be made concerning its effects on the
widths and shifts. Detailed microscopic calculation of
Fig. 1(c) is called for in future studies. The absorption of
g by many nucleons may also play some role. However,
we believe that the likelihood of such processes rapidly de
creases with the increase of the orders of multiple scatter-
ing that precedes the absorption. Consequently, we did
not consider g absorption in the present work.

Another q-nucleus dynamics that can lead to a higher-
order density-dependent g-nucleus potential is the nuclear
medium effect on the basic i)N interaction. These medi-
um effects modify the X' self-energies and, thereby, the
rl-nucleus potential V. They are represented in Fig. 2 by
the bubble insertions of the intermediate meson and nu-

cleon lines of the self-energies. While the open bubble on
the nucleon lines can be caused by Pauli blocking as well
as by the scattering of the nucleon from the other target
nucleons, the shaded and filled bubbles on the meson lines
are due mainly to meson scattering from the other nu-

cleons. These rescatterings modify the propagators of the
particles.

To provide an order of magnitude estimate of these ef-

{a)

(c)

FIG. 1. Contributions to the second-order pion-nucleus or p-
nucleus optical potential from two-nucleon meson absorption:
(a) pion absorption; (b) g absorption; and (c) "indirect" q ab-

sorption (see the text).

FIG. 2. Self-energies of N* in the nuclear medium. The
solid, dashed, and wavy lines denote, respectively, the nucleon,
the pion, and the q. The open, shaded, and filled ovals denote
the medium corrections discussed in the text.

fects, we have evaluated Pauli blocking effeqts on X'
self-energies by using a Fermi gas model for the nucleus '

and found that they amount to reducing Im( V) by -5%
and cause a very small change in Re( V). We refer to Ref.
7 for the cause of small Pauli blocking effects in the rt
nucleus system. We have also estimated the modifications
of propagators in Fig. 2 by using Eq. {3.1) of Ref. 22. In
these calculations, the forward rl-, ir-, and N-nucleus
scattering amplitudes that are used to "dress" the inter-
mediate mesons and nucleons are obtained from the
respective first-order optical potentials [i.e., Eq. (2.4), Ref.
23, and Refs. 24 and 25]. We have noted that the propa-
gator modifications alone increase Im( V) by —5%.
When both the Pauli blocking and propagator modifica-
tions are included, Im(V) is nearly unchanged, while
Re( V) reduces by less than 6%. Compared to the results
given in Table I, these corrections result in an insignifi-
cant change in the calculated half-widths and a decrease
in the calculated binding energies (by -0.4 MeV in ' C to
-0.6 MeV in ' 0). Consequently, with these estimated
medium modifications, the set 2 interaction will not give
rise to a bound-state solution to ' C.

In summary, our estimates indicate that absorption and
medium effects introduce modifications of the order of
—1 MeV to the binding energies and widths. Although
more elaborate calculations are clearly necessary, micro-
scopic evaluation of absorption and medium effects is,
however, beyond the scope of this paper because it will in-
volve at least a three-body calculation in a finite nucleus.
Such calculations are called for when experimental data
become available. We have, however, noted from our
cross-section calculations (Sec. III) that so long as a bound
state can exist, the calculated results are not very sensitive
to the binding energy of the i). Because the purpose of
this work is to identify the signature for the existence of
the il-mesic nucleus, these higher-order effects will not be
included in the calculations. The readers are, therefore,
advised to regard the values given in Table I as an order-
of-magnitude estimate.

III. FORMATION OF AN g-MESIC NUCLEUS
IN NUCLEAR REACTIONS

As our calculations have indicated, in most cases the q
is bound in low-lying orbitals (Table I). The probability
of having an g in these orbitals is peaked at low momenta.
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FIG. 3. The lowest q momentum produced in the free
m+n~gp reaction as a function of the pion beam momentum.

FIG. 4. Dialram for the formation of the g-mesic nucleus
via the reaction A(a+, p)„B. The pion, the nucleon, the g
meson, the nuclei, and the mesic nucleus are denoted by the
dashed, thin-sohd, wavy, multiple, and shaded lines, respective-
ly. The filled circle is the mN~gN amplitude while the open
circles are the nuclear vertices. The 0's are the wave operators,

Consequently, the production of a low-momentum
meson will favor the formation of an rl-mesic nucleus.
On the other hand, because of the kinematics of the two-
body m N~rlN reaction, a low-momentum i) is necessarily
associated with a high-momentum nucleon in the labora-
tory frame. However, the lowest momentum an il can
have depends strongly on the initial pion energy. %'e il-

lustrate this latter feature in Fig. 3. As in the case of the
KN~Air reaction, there is also in the free m.N-+rlN reac-
tion a "magic" incoming projectile momentum (-900
MeV/c) at which the rl is produced at rest. From the
above heuristic analysis, we conclude that the reaction

&(m'+, p)„8 leading to the emission of a high-energy out-
going proton is favorable to the search for the rl-mesic nu-
cleus. In this reaction kinematics, the g meson is pro-

duced at low momenta. A distinct peak in the outgoing
proton energy spectrum will then constitute the signature
for the formation of the rl-mesic nucleus „B.

A. The A (m+, p)„8 reaction

We consider the reaction mechanism of Fig. 4, which
corresponds to a distorted-wave impulse approximation
(DWIA) to the process

~++zA ~p+ [rl+z(A —1)]=p+„8 .

In terms of the kineinatic variables defined in Fig. 4, the
differential cross sections for the formation of the rI-mesic
nucleus are

4

m+1A+ ~

mdiv

jmsAB

x I dKjqdk' %s' '(KN)4's+'(k' )

x[(2m') (KN, —,tN ———,, ~ m,'; —KN, Tan, Jgvii
~ Av~ ~

k~, 1&~=1;—k' Tg&g, Jgvg )] (3.1)

where the subscript N refers to the outgoing proton in the
(n+,p) reactions considered here. 4" ', 4'+', and Av
denote, respectively, the distorted waves of the proton and
the pion, and the nuclear pionic g production amplitude.
The notation for the quantum numbers of a particle la-
beled i is such that (T,t;) and (J;v;) denote, respectively,
the isospin and its z component, and the spin and its z
component. For the initial (bound) nucleon, we shall
adopt the shell-model notation: (Im&, —,

'
m, )jm~. The z

component of the spin of the final proton is denoted by
m,'. The factor A.

J arises from the antisymmetrization of
nucleons and is equal to the number of bound nucleons in
the shell j of the target nucleus. For a closed shell, we
have W) ——2(2j+1).

The total c.m. energy of the pion-nucleus system is

given by

~'=[(M +M ) +2T~ M ]' (3.2)

[ k. [
=,[ I

W' —(M.+M„)']

and

x [ w' —(M.—M„)') ]'~'

1
~

KN
~
=,[ I

8" —(M~+Ms )z)

(3.3)

x I
~' —(MN Mg J ) j ]' ~2 . —(3 4)

The initial and final relative c.m. momenta are, respec-
tively,
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In Eq. (3.4)

=Mc +M„—
~
ReE„~ (3.5)

where Mc J is the mass of the residual nucleus obtained
after removing a j-shell nucleon from the target nucleus,
and

~
Rez„~ is the binding energy of the rl. Consequent-

ly, KN depends on the particular shell from which the nu-

cleon is ejected. (For brevity, the j dependence of KN will
not be written explicitly. ) The reduced "masses" appear-
ing in Eq. (3.1) are defined as

p =E (k )E~(k )/W'

pN EN——(KN)Eg(KN)/W' .

The nuclear transition amplitude Av in Eq. (3.1) is a
functional of the off-shell m.N~gN t matrix
t(~sj. ) N vN, where ~sj. is defined as in Eq. (2.5) with

g replaced by Q' (see Fig. 4). We refer to the Appendix
for details of the cross section calculations.

If one measures the outgoing protons with an energy
resolution better than or equal to I „(the width of the
mesic nucleus g), one can then isolate experimentally the
contributions to do/d0 from the neutrons belonging to
the shells whose binding energies differ from one another
by more than I „. Consequently, only a few values of j
need to be included in the summation in Eq. (3.1). One
further notes that for spin-zero (J„=O) target nuclei, the
cross section [Eq. (A4)] is simply given by

(2i+1)v~ I KNI ( IF I

'+
I
G

I

'»n'6))
I
(2l +1) ' 'IL, I, I

'
j lm(Lm~

(3.6)

and 54 pb. In these calculations, the s-, p-, and d-wave
mN~qN interactions were all included. As can be seen
from the figure, the calculated differential cross sections
are all peaked at small outgoing proton angles. This
feature can be easily understood because at this incident
pion momentum, small proton angles correspond to large
proton moments and small g mornenta in the laboratory
frame. As discussed at the beginning of Sec. III, small rl
momenta facilitate the formation of the g-mesic nucleus.
Based on the energy-resolution consideration discussed in
the preceding section and on the half-widths of the mesic
nuclei given in Table II, we included in our calculationsB. Calculated g-mesic nucleus

formation cross sections

where sin 8= 1 —(p p '), and the quantities Ii and 6, and
I are defined, respectively, in Eqs. (A3) and (A6).
For example, if one chooses ' 0 as the target and has an

energy resolution of 10 MeV [=I („' 0)], then because the
level spacing between the s and p shells in ' 0 is -28
MeV, one can separate the contributions given by the
lp3qz, lp&zz shells from those given by the Is~~2 shell.
One important feature of Eq. (3.6) is that the shape of the
differential cross sections is characterized by the angular
momentum transfers to the nucleus, e.g.,

~

I I.
~

. —

TABLE II. Binding energies and half-widths (both in MeV)
of the g-mesic nuclei relevant to this study.

Nucleus Orbital Set 1 Set 2

In this subsection, we present the calculated cross sec-
tions for the reactions ' C(m+, p)„"C, ' 0(n.+,p)„' 0,

Mg(m+, p)„Mg, and Ca(m+, p)„Ca. Because the rl is
to be captured into the residual nucleus, we list in Table II
the bindin~ energies and half-widths of the mesic nuclei
z'C, z 0, z Mg, and z Ca. These results are obtained with
the full off-shell calculation, Eqs. (2.4)—(2.8). As we can
see, the weaker set 2 gN~gN interaction does not give a
bound-state solution for „"C, whereas the set 1 interaction
still predicts the existence of a loosely-bound state. For
definiteness, we will use the set 1 interaction in the follow-
ing cross section calculations.

We present in Fig. 5 the differential cross sections at
p~ =740 MeV/c for the reactions ' C(m. +,p)z'C,
' 0(m.+,p)z 0, Mg(~+, p)z Mg, and Ca(m+, p)z Ca. The
corresponding integrated cross sections are 116, 195, 71,

IO

IO

CO

IO

a
ba

IO
0

IO
0

C, ~

I

p =7%0 MeVrc-

~ ~ o

~ ~

50 60 70

l2 +c(~+,p) ~c

~(~ .p) Mg

«(~+, P)z co
I

IO po

ec.m. (d eg )' Ca
Mg

15O
I lC

1$
1$
1$
1$

—(8.48+ 6.57i )
—(5.79+6.23 i)
—(2.65+4.77i )
—(0.46+2.94 i)

—(6.52+ S.96i)
—(4.13+5.59i)
—(1.28+ 3.94i)

no solution

FIG. 5. Calculated differential cross sections for the forma-
tion of the q-mesic nucleus at pion beam momentum 740
MeV/c as a function of the outgoing proton angle in the g-
nucleus c.m. frame.
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the target neutrons of the following shells: j = —', (l =1)
for ' C, j=—', and —,

' (/=1) for ' 0, j=—,
' (I =2) for

Mg, and j=—, (1=2) and j=—, (1=0) for Ca. Be-
cause in the corresponding residual nuclei only the 1s
bound-state of rI can exist, it follows that I.=0 in Eq.
(3.6) and that the orbital angular momentum transfers in-
volved in the formation of these i)-mesic nuclei are,
respectively,

~

l I.—
i
=1, 1, 2, and 2 (and 0). This ex-

plains why the peaking of the cross sections occurs at
smaller angles in C and 0 than in Mg and Ca.

Several factors in Eq. (3.6) can affect the magnitude of
the small-angle cross sections: (a) the distortions of the
incoming pion and the outgoing proton wave functions.
The larger the nucleus the stronger is the attenuation of
the wave functions. (b) The active neutron number
(2j+ 1) which equals 4, 6, 6, and 6 for C, 0, Mg, and Ca,
respectively. This factor explains why the cross section
for „'0 is greater than for „'C. (c) The overlap integral
IE w whose magnitude depends on the momentum
transfer to the nucleus, which in turn depends on the in-

cident pion energy. We conclude from our calculations
that the ' 0 target represents the most ideal case for an
initial search for the r)-mesic nucleus.

In Fig. 6, we show the energy dependence of the total
cross section for the reaction ' O(ir+, p)&O. The solid,
long-dashed, and short-dashed curves correspond, respec-
tively, to cross sections obtained with the (s+p+d)
waves, (s +p) waves, and s-wave irN~i)N interactions in

Eqs. (A3) and (3.6). The differences among these energy
dependences indicate that the p- and d-wave nN~rlN in-

teractions are important at these high energies. The cross
sections are peaked at p" =740 MeV/c corresponding to
a mN invariant mass of about 1520 MeV. This generally
reflects the combined effects of the X*(1520) (D13) and
N'(1535) (Sl 1) resonances. As can be seen from Fig. 5,
at this incident pion momentum the main contributions to
the integrated cross sections come from 8~& 15', which,
according to our analysis, corresponds to a backward g
production angle ( —110') in the r)N c.m. frame. In this
angular region, the sign of the Legendre polynomials in
the production amplitude M [Eqs. (2.7) and (A3)] makes
the sign of the p- and d-wave irN~rlN amplitudes oppo-
site to the sign of the s-wave nN~rIN amplitude. There-

I I I I
~

I I I I
)

I I I I

200—

fore, at p~ =740 MeV/c, the inclusion of p- and d-wave

gN interactions reduces the calculated cross sections. The
kinematics changes for p'„' ~780 MeV/c, where 8~& 15'
correspond to g produced at angles greater than 120' in
the rlN c.m. frame. As a result, the s- and p-wave ampli-
tudes have opposite signs while the s- and d-wave ampli-
tudes have the same sign. This leads to a reversal in posi-
tions of the solid and long-dashed curves. On the other
hand, the kinematics is very different at p ~ =620
MeV/c. At this momentum, 8&&15' correspond to rl also
produced at small angles in the AN c.in. frame. Conse-
quently, the s-, p- and d-wave amplitudes contribute con-
structively.

%e conclude this section by noting that various
energy-dependent factors, such as distortions, the basic
mN~qN kinematics, the X' resonances in the basic
meson-nucleon interaction, and the overlap between the
initial nucleon and final rl bound-state wave functions can
affect the reaction cross section. As a result, the largest
mesic nucleus formation cross section occurs at a pion
momentum much smaller than the "magic" momentum
(-900 MeV/c), as a simpler analysis (Fig. 3) would im-

ply.

C. Signature of the q-mesic nucleus

l50

X
Vl

IOO

Q
50

I I I I
f

I I I

p = 740 MeV/c

The calculated energy spectrum of the outgoing proton
is shown in Fig. 7 for the reaction ' O(m+, p)„O at

p
' =740 MeV/c and a laboratory proton emission angle

8& ——15'. The peak of —10 MeV width (thin solid curve)
at T~' =185 MeV corresponds to the formation of „'0
after the removal of lp-shell neutrons in ' O. The area
between this peak and the background (thick solid curve)
is equal to the differential cross section at 8, —16' in

~ ~ ~ 0

IOO— I I 1 I I

Ioo 200 300

900

(s+ p+ d) - Vfave qN int.

(s+ p}-@(ave qN int.
s- Nave qN int.

0 I I I I j I I I I } I I I I

600 700 80Q
p
'

(MeV/c}

FIG. 6. Integrated cross section for the reaction ' O{m+,p)„O
as a function of the pion beam momentum.

Tp (MeV }
FIG. 7. Calculated cross sections for the reaction

m++' O~p+X at p" =740 MeV/c and 8'„' =15 as a func-
tion of the outgoing proton kinetic energy in the laboratory
frame. The peaks {thin solid curve) correspond to the formation
of the q-mesic nucleus „'O. The thick solid and dot-dashed
curves represent, respectively, the background events due to the
{m+,p)X and {m+,gp)X processes.
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Fig. 5. A nearby second peak (thin solid curve) at a lower

proton energy ( T'„' =157 MeV) corresponds to the forma-
tion of ~150 when 1$ neutrons are remov& from the target.

There are two types of background events. The thick
solid curve in Fig. 7 represents the contributions to the re-
action ' O(n. +,p)X by the reaction processes that do not
involve r) production. These processes are quasi-free
knockout, multiple-pion and -proton scattering, pion ab-
sorption, etc. %e calculated this background using the in-
tranuclear cascade code IsosAR, with the calculated
cross section normalized to the total reaction cross section
obtained from the pion-nucleus optical potential. Our cal-
culations yield a smooth background of -32 p,b/sr MeV
at T~' =185 MeV. Since the height of the peak that is
due to the formation of „' 0 is -35 pb/sr MeV, we have a
signal-to-background ratio of -1. Indeed, at small pro-
ton emission angles the protons of large momenta cannot
be caused by direct quasi-knockout. (The probabihty of
finding such a high-momentum nucleon in the nucleus is

very small. ) Consequently, these h1gh-momentum protons
are due mainly to multiple scattering, and the cross sec-
tions for these events are low. More interestingly, this
lowered background is coupled with an enhanced signal
because the g production is peaked in the kinematic re-
gion associated with small emerging proton angles. Our
analysis indicates, therefore, that detecting protons at
small angles is preferable. In Fig. 8, we present this
signal-to-background ratio as a function of the pion beam
momentum.

The dot-dashed curve in Fig. 7 represents the back-
ground contribution given by the reaction ' O(m+, rip)X
that involves g production but not the formation of the
ri-mesic nucleus. For any given shell of target neutrons,
because of the overall energy-momentum conservation,
this background contribution becomes zero at a proton en-
ergy that is smaller than the position of the corresponding
mesic nucleus peak by an amount equal to the q binding
energy. The full background contribution can be obtained
by summing the cross sections given by the thick solid
and the dot-dashed curves in Fig. 7. It is easy to check
that the full background contribution does not mask the
existence of both &sO peaks in the proton spectrum.

IV. SUMMARY AND CONCLUSIONS

We have shown that rj-nucleus bound states (the r)-
mesic nucleus) can be formed in '50 and heavier nuclei.
Our calculations also indicate that whether or not an q-
mesic nucleus can be formed in the border line case with
"C depends critically on the details of the basic gN in-
teraction. On the other hand, we have also noted that so

I r
I

l I I I
I

l t I I

600
l l l ~ l

700 800
p'~b (MeY/c)

900

FIG. 8. Dependence on the pion beam momentum of the
signal-to-background ratio at 8~ =15' for the formation of „"0
associated with the removal of 1p neutrons.
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long as an q bound state can exist, the calculated
A(rr+, p)„8 cross sections are insensitive to these interac-

tion details. Because of this feature, we believe that the
predictions given in Sec. III represent a reliable guide to
the search for the formation of the rI-mesic nucleus in the
'60(m+, p)„' 0 reaction.

In spite of the simple free mN~rIN kinematics which
favors the use of p" 900 MeV/c, our calculations indi-
cate that p

' =740 MeV/c leads to a maximum cross sec-
tion as well as an optimal signal-to-background ratio (Fig.
8). The fact that the maximum of the cross section occurs
at this incident pion momentum is a result of the
N*(1535) (S11) resonance and the favorable overlapping
between the nucleon and ri bound-state wave functions in
this energy region.

Finally, we emphasize that experimental confirmation
of our predictions will enable an effective investigation of
the g-nucleus dynamics. In particular, an accurate deter-
mination of ri binding energies will yield useful informa-
tion on the g-nucleon interaction.

APPENDIX

The nuclear transition amplitude A„ in Eq. (3.1) can be expressed in terms of the off-shell rrN~gN t matrix
(rvrN gN) as

( KN~ 2 rN 2 ~ T~si KN T8r8~JBv8
I ~vn I km~ 1 w 1~ n~ 3 3 ~JAvA ~

~ J du V,'.,(a+PK.)~.i.,(e+ k.')
ylnl m

JCvC I.mL

x ( —(KN+q');KN, —,
'

tN ———,', —,'m, '
~
r(~SJ) N „N ~

k'; —(k'+q'), —,
'

rN ————,', —,'m, ), (Al)
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where P=Mc J /(M„+Mc J ) and a=(A —I)/A. The f and P are, respectively, the bound-state wave functions of the q
and the initial nucleon, with L and mL denoting the ri orbital angular momentum and its projection in the mesic nucleus
8. For simplicity of notation, the isospin variables of the m+ and the ri have not been written explicitly and we have also
introduced the shorthand notation

in Ter~ I iy2J J JcJ~ I. JcJa
&=C-i/z~, ~„c. . .C,,„C,,g(}' J'cTc» (A2)

with f(y;JcTc) denoting the coefficient of fractional parentage (cfp). The Clebsch-Gordan coefficient C»z, , re-1/2 Ta Tw

minds us that only the neutrons in the nucleus A are contributing to the zA (m.+,p)&8 reaction.
The parametrization of t N „N is similar to that for t„N zN in Eqs. (2.6)—(2.8), with the proviso that the c.m. ampli-

tude W in Eq. (2.6) be replaced by

M(~sj, p', p}=E(~sj,p', p) —in(p Xp')G(~sj, p', p) . (A3)

The F and G are analogous to F and G in Eq. (2.7) except that: (a) in the expression for Ar(~sj. ) [Eq. (2.8)], the cou-
pling constant gvN~ should be replaced by v'2/3g„N~g N~, where the factor v'2/3 is due to isospin transfer; and (b) the
A associated with the initial meson-nucleon c.m. momentum p should be replaced by the corresponding range parameter
for rrNa coupling.

Since we are dealing with a high-momentum incident pion and outgoing proton, the use of eikonal distorted wave
functions for 4' ' and 4'+' represents a good approximation. Because of the basically forward peaking of the particle
propagation at high energies, one can also assume that k' and KN peak around their asymptotic values k and KN,
respectively. It is, therefore, a good approximation to factorize t N „N out of the Q integration and evaluate it at an
average (Q') = —ak and at an effective interaction energy (vs ) =[(M +MN)+2T" MN]'/ —5. The above choice
of (Q') and (v s ) is based on the considerations that at these high energies, the momentum of the target nucleon can be
neglected with respect to the pion momentum. Consequently, we can use the above (Q') which corresponds to a fixed
nucleon. However, because the rrN interaction is strongly energy dependent, the dynamical effects of the Fermi motion
and nuclear binding should not be neglected. To account for these latter effects, we use a shift of 5=30 MeV.

With the above-mentioned eikonal distorted-wave (EDW) approximation, Eq. (A 1) becomes
dn (2n. ) P~ 1/2 EDW

dn
=

(2JA+ m'v vsan ylmr m S

Lmg Jcvc
2

X[(2~)'& —«N+&Q'&) KN r2 2m'l«~s)~N gNlk~' —«~+&Q'&» 2
—

2 2m. &] (A4)

IL.m&, Imr
= N ~ +KN KN Lml + N elm& + @k„ (A5)

has the meaning of a distorted-wave overlapping function in the eikonal approximation. For computational convenience,
it is useful to transform Eq. (A5) into a coordinate-space integration involving cylindrical coordinates. This can be done
following the method described in Ref. 28. The result is

IL I,—(2m)exp[ i(mi mi—)P- ](i)—
X f bdbdzJ, (p[ K)Nbins-8)exp[i(a)k

(

—p(KN(cos8- )z]
N N

XDN( ( KN ~,cos8-,b,z)D (
~

k ~!,b,z)pr'[(b'+z )' ]p„r[(b'+z )' ]

+ )(2L + ) ~ ' r '
p l[ /(b2 2)1/2]p L[ /(bz 2)1/2]

(4m } (L +mL)!(1+mr)!

with

aIld

PN ce

DN(
~
KN ~,cos8-,b,z) =exp i — VNs(L N, z +s cos8- )ds

N
(A7)

z
D (

~

k ~,b, )=zexp i — V „(b,z')dz' (A8)

In deriving Eq. (A6}, we have used the relations QL~ (x)=QL (x) FL (x) and P„r~,(x) =P„i(x)Fl, (x). In Eqs. (A7) and
(AS), VNs and V~& stand, respectively, for the nucleon-nucleus and pion-nucleus optical potentials. The J ~ is
the Bessel function of order mi —Mr and LN is an averaged impact parameter of the outgoing proton. We refer to the
Appendix of Ref. 28 for the derivation of LN and the geometry used for the eikonal distortion calculation.
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