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Three-pion correlations in relativistic heavy ion collisions
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%e report the results of three-pion interferometry for two streamer chamber data samples: 1.8
GeV/nucleon Ar on Pb and 1.5 GeV/nucleon Ar on KC1. The fitted pion source parameters are

consistent with previously reported results of two-pion interferometry. The effect of three-pion in-

terference on the pion source parameters obtained from two-pion interferometry is also studied. The
distortion becomes a serious problem in the data analysis only when the pion source has a small ra-

dius and low temperature.

The space-time structure of a pion emitting source can
be studied through the correlation of the emitted like-pion
pairs. ' Such interferometric studies have been fruitfully
utilized in relativistic heavy ion central collisions.
Many effects, such as final state interactions, nuclear sha-
dowing, and averaging over different impact parameters
and event topologies, can affect the interpretation of the
pion interferometry results. It is therefore important to
test the assumption that the enhancement of the correla-
tion function in the low relative momentum region comes
solely from Bose-Einstein statistics, and to verify the ade-

quacy of the phenomenological Gaussian model' used to
describe the pion emitting source in relativistic heavy ion
collisions. With increasing statistics, the measurement of
multipion correlations, especially three pion correlations,
becomes possible. If the above-mentioned assumptions
underlying two-pion interferometry analyses are not valid,
it is unlikely that completely independent three-pion anal-
yses will yield consistent results.

The data samples for this investigation comes from two
streamer chamber experiments at the Lawrence Berkeley
Laboratory Bevalac, in which the systems 1.8
GeV/nucleon Ar on Pb30~, and 1.5 GeV/nucleon Ar on
KCl were studied. In the case of Ar on Pb304, a central
collision trigger was used, resulting in the suppression of
events corresponding to collisions of Ar on oxygen.
Table I provides details of the available statistics for each
data sample. A momentum cut p~,b&100 MeV/c has
been imposed to remove the effects of multiple scattering
in the target, and possible eltx:tron contamination of the
m sample.

For multiparticle interferometric studies, it is con-
venient to use a graphical technique to obtain the correla-
tion function. ' Biyajima" derived the general form of
the three-pion correlation function and introduced both
coherent and incoherent emitters to describe partially
coherent sources. He showed that Bose-Einstein statistics
for two-pion and three-pion correlations may be con-
veniently represented by Mueller-like diagrams. Figure 1

shows the two-pion correlation function C(p&,pt) for a
chaotic source. The diagram in the denominator
represents the background. The numerator in ~'ig. 1 is
composed of the background and the interference term of
the two negative pions. If a wavy line is introduced to
represent a'pion emitted by a coherent emitter, it is easy
to extend the Mueller-like diagrams to describe the two-

pion and multipion correlations for a partially coherent
source. For the two-pion correlation, Fig. 2(a) represents
the background. Figure 2(b) represents the interference
terms required by Bose-Einstein statistics for two negative
pions. Here we neglect correlations from the simultane-
ous emission of both quanta by a single emitter. ' Be-
cause there is no Bose-Einstein interference between
coherent quanta, ' ' no permutations between coherent
lines are performed in constructing the interference dia-
grams in Fig. 2(b).

The contribution of a given diagram is the product of
all the factors corresponding to all the lines in that dia-
gram. The factor corresponding to a straight line is the
sum of the Fourier transforms of the incoherent pion emi-
tter characteristic functions, ' and the factor correspond-
ing to a wavy hne is the Fourier transform of the coherent

TABLE I. The number of events, average multiplicity
(M ), and number of three-pion correlated entries, N, , for

a kinematic selection pi, b & 100 MeV/c. 1 2

) ( )
1 2

Total events

1.8 GeV/nucleon
Ar on Pb

3463
9.28

259 192

1.S GeV/nucleon
Ar on KCl

384S
4.52

30243 FIG. 1. The two-pion correlation function for a chaotic pion
emitting source.
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FIG. 2. (a} The background for tvvo negative pions. (b} The
interference effect of Bose-Einstein statistics for two negative
plons.

respectively, where n;„(n, ) is the average pion multiplici-
ty from the incoherent (coherent) emitters, qj =p; —pj
aild q ~p =E —EJ are the momentum and energy differ-
ence between the pions, and i and j are the starting and
ending labels on the line.

The correlation function, i.e., the ratio of the correlated
to the uncorrelated density distributions, is obtained by di-
viding the sum of all diagrams by the background. For a
partially coherent Gaussian source, the two-pion correla-
tion function is then given by

C(pi,p2)=1+A, exp( —q1202/2 —q12R /2),

emitter characteristic function. " In the Gaussian model,
these factors are

n;„exp( —q; 02/4 —q"R /4)2 2 2

and

& =(1+ 2y)/(1+ y)'

y=ne/"in .

(2)

and

n, exp( q;, o~/4—q;, R /4—),2 2

Similarly, Fig. 3 gives the Mueller-like diagrams for the
three-pion correlations for a partially coherent source.
The three-pion correlation function can be written as

C(pi p2 p3)=1+A, exp[ —(q12or +q12R )/2]+(2 —3)+(3—1)

+2k xp I [('q 120 + 'q 230 + 'q 310 )~+ ('q 12 + 'q 23 + 'q 31 )R (3)

where

g=(1+3y)/(1+ y)',
and (i —j) represents the cyclically permuted form of the
second term.

It is impractical to experimentally observe three pion
interference in the six-dimensional manifold

q =
I qi2 q23 q31~q12o~q230~q310) .

In the following analysis, we will use the variables

2=2 2 2
Qo =q 12o+q23o+q31o

Q =M (3m. ) —9m„,

where M(3m ) is the invariant mass for the three-pion sys-
tem. The variable Q was first suggested by Goldhaber. '

Using Eq. (3), the correlated density distribution for three
like pions, integrated over all variables other than Q and

Qp, is given by

Cor(Q, QO)= I 1+2/exp[ —Qor /4 —(Q +Qp)R /4]JUncor(Q, QO)

+A+exp( —q1202/2 —q, 2R /2)Uncor(q, 2,q, 20, Q, QO)

+A+exp( —q2302/2 q23R'/2)Uncor(q23 q230 Q Qo)

+A +exp( —q»02/2 —q 3 1R '/2)Uncor(q31, q 310,Q, Qp ),

where Uncor(Q, Q11) is the background density distribu-
tion for three uncorrelated pions, and

Uncor(q12 q12o.Q, Qo),

Uncor(q23 q230 Q Qo)

Un«r(q31 q31o Q Qo)

are subsets of the uncorrelated density distribution for a
given set of values of their arguments. Experimentally,
the correlated density distribution is constructed by select-
ing three like pions from the same event, while the three
pions for the uncorrelated density distribution are each
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where Two, z(g, gp) Twozz(Q Qo), and Two»(g, go) are
the correlated density distributions for the three pion
pairs. To construct the distributions Two;J. (g,go), we
select a correlated pion pair from the same event, then
combine it with another pion from a different event with
the same multiplicity. In the Gaussian model, from Eq.
(5),

Trt( Q» Qo ) /Uncor(gi Qo )

=~kexp[ —Qo~/4 —(Q'+Qo N'/4] .

123 123
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The Coulomb correction of the final state is very im-
portant for extracting meaningful estimates of pion source
parameters from the data. The exact form of this
correction for three pions requires the exact solution of
the three body problem. As an approximation, we pro-
pose that the Gamow factor G for three pions can be ex-
pressed as the product of three Gamow factors, one for
each pion pair:

123
132

123 123 123
321

123 G =6 (t) iz)G ( t)z3)G ( r13i )

CR R) C RR)
123
132

2 3

C RR)
123
321

(RR )
FIG. 3. (a) The background for three negative pions. (b) The

interference effect of Bose-Einstein statistics for three negative
pions.

3

selected from a different event with the same multiplicity.
The integrated three-pion correlation function is

C(g, g&) =Cor(g, go)/Uncor(g, go) .

In general, the correlated density distribution for three
pions contains contributions associated with pion-pair in-
terference. To isolate the contribution from the pure
pion-triplet interference, Tri(pi, pz,p& ), we use the general
formula"

Trt(p i,pz, p3 )

Uncor(p i,pz,p z )

(b)

—[«pl pz)+«pi p3)

+&(pz pz)l+2.

I I I I I I I I I

150 300 450

Tri(g, go), the pure pion-triplet correlated density distri-
bution integrated over all the variables other than Q and
Qo, is given by

FIG. 4. The observed correlation function for 1.8
GeV/nucleon Ar on Pb, integrated over Qo: (a) for three corre-
lated pions; (b) for pure pion triplets.
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TABLE II. The fitted results, uncorrected and corrected by a Gamow factor, for 1.8 GeV/nucleon
Ar on Pb and 1.5 GeV/nucleon Ar on KC1. The values of )I, and g are calculated from the fitted value

of y, using Eqs. (2) and (4).

Source

parameters Uncorrected

Gamow

corrected

1.8 GeV/nucleon

Ar+ Pb

Uncorrected corrected

1.5 GeV/nucleon

Ar+ KCl
Gamow

Three-pion

analysis

6.08+0.45

0.82+0 ('2

0 61+ol27

5.65+0.49

0 95+0.05

5.00+0.97

0 76+0.24

0.51+,",',

5.51+0.86
00+0.00

Pure pion-triplet

analysis

Two-pion

analysis

R (fm)

5.14JO.80

0 55+0.39

5.58+0.42

0 76+oO. i'02

5.80+0.75

1 00+0.00

5.53+0.45

0.99-o.'24

4.02+0.46

0 98—o.48

5.10+0.35
100+'~

4.06+0.49

1 00—o.36
+0.00

4.72+0.30
1.00 0'34

+0.00

where

G(hajj)=2nnJ/[exp(2nrjJ ) 1], —

7/$J eieJ /f1cPfJ cx/P/J

and a is the fine structure constant; p is the magnitude of
the relative velocity of the two pions. This expression for
the Gamow factor is symmetric under the exchange of
any two of the three pions, and reduces to the appropriate
two-pion Gamow factor when one of the pion charges is
switched off. It is correct to first order of a. The
Gamow factor G represents the effect of the relative
Coulomb repulsion between the three pious in the final
state, which leads to a suppression of events with small
relative Q. Weighting the background events to account
for this suppression, we obtain the Gamow corrected re-
sults for three-pion analysis.

Figure 4 shows the observed correlation function, in-
tegrated over Qti, for correlated sets of three pions and
pure pion triplets, for 1.8 GeV/nucleon Ar on Pb. Table
II shows the fitted pion source parameters for the two

da, ta samples under consideration. The results of two-

pion and thtee-pion analyses are quite consistent with
each other within statistical errors. This fact indicates
that at the present level of accuracy, the Gaussian model
is a self-consistent phenomenological description of a pion
emitting source in relativistic heavy ion collisions. The
agreement is also consistent with the assumption that the
enhancement solely comes from Bose-Einstein statistics.

When we carry out two-pion interferometry, the corre-
lated pions are selected from each event in which pion
multiplicity )2. When we apply two-pion analysis to
like-pion pairs selected from events with multiplicity 3,
we actually exclude the last term in Eq. (3), which
represents the correlation contribution of pure pion trip-
lets. This exclusion might distort the results of the two-
pion analysis. To study this effect, we used a Monte Car-
lo calculation to generate 500000 correlated pion pairs for
events with multiplicity 2 and an equal number for events
with multiplicity 3, for various combinations of values of
source temperature T and radius R. The fit parameters
are shown in Table III. The data and the fits for the case

3.
TABLE III. Results of Monte Carlo simulations for two-pion analysis in events of multiplicity 2 and

Monte Carlo
parameters

()i, =1, /=1)

Two-pion interferometry
results

[Eq. (6)]

R=3 fm
T=30 MeV

R=3 fm
T=60 MeV

R=5 fm
T=30 MeV

R=5 fm
T=60 MeV

2.53+0.02
2.96+0.03

2.74+0.04
2.96+0.04

4.49+0.06
4.97+0.06

4.74+0. 14
5.01+0.15

1.25+0.02
0.99+0.01

1.07+0.03
0.96+0.02

1.03+0.03
0.96+0.03

1.02+0.05
0.96+0.05

0.17

0.09

0.02
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FIG. 5. Comparison of the simulated two-pion correlation
function for events of multiplicity 3 with that for events of mul-
tiplicity 2 (A, =1.0, /=1.0). The solid circles and dashed lines
are for events of multiplicity 3.

I I l I I I I

4 8 18

R T (10 fm MeV)

FIG. 6. Distortion of the two-pion coherence factor A, vs
R T. The four data points correspond to R T=270 fm MeV
(T=30 MeV, R=3 fm), R T=540 fm MeV (T=60 MeV,
R=3 fm), R T=750 fm2MeV ( T=30 MeV, R=5 fm), and
R2T=1500 fm MeV ( T=60 MeV, R=5 fm).

of maximum distortion, R=3 fm and T=30 MeV, have
been integrated over qo and displayed in Fig. 5.

We can obtain an analytic expression for the distortion
of the coherence factor, b, A,, if we assume that the single
pion inclusive cross section in heavy ion collisions is iso™
tropic, and may be approximated by an exponential distri-
bution

0:exp( E/T) . —

Using Eq. (3) the analytic expression for b, k, is

as=(4v"2/3) g/(3m. R'T+2)'",
where rn is the mass of the pion. ' Figure 6 shows the
differences hA, between the fitted coherence factor A, for
the two-pion analysis in the events of multiplicity 3, and
the input Monte Carlo parameter A, , as a function of R iT.
The solid curve represents Eq. (6).

The distortion in the radius and the coherence factor in-
creases as the temperature T and the radius R of the pion
source decrease. The explanation is as follows: As the
temperature decreases, the phase space contracts; as the
radius R decreases, the coherence length becomes longer.
In either of these situations, the relative correlation contri-
bution from pure pion-triplet interference increases.
Hence, there can be a strong distortion of the distribution
of the correlation function in two-pion analysis. In the
data samples collected thus far, the distortion of the ra-
dius R and the coherence factor A, from pure pion triplet
interference has not been detected, because the size of this

effect is smaller than the statistical errors. The distortion
from higher order multipion ()4) correlations has also
been calculated and is found to be even smaller.

We conclude that three-pion interferometry offers an
independent alternative tool for testing and supplementing
the findings of two-pion interferometry analysis. The fit-
ted pion source parameters from two-pion and three-pion
analyses are consistent with each other for our data sam-
ples. This fact shows that the Gaussian model is a con-
sistent phenomenological model which describes the pion
emitting source in relativistic heavy ion collisions at the
present level of experimental accuracy. This fact also
offers evidence that the enhancement in the low momen-
tum region comes solely from Bose-Einstein statistics.
With increased statistics in future experiments, the three-
pion coherence factor g can be used to determine the ratio
n, /n;„ for the pion source independently of 1,. The dis-
tortion of the pion source parameters in two-pion inter-
ferometry arising from higher order pion interference be-
comes a serious problem only in the situation where the
pion source has a small radius and low temperature, e.g.,
R=3 fm and T=30 MeV. The temperatures and radii
for our existing streamer chamber data do not lie in the
region of significant distortion of the source parameters.
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