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We study the electromagnetic excitation of high-lying nuclear states by means of peripheral rela-
tivistic heavy ion collisions. The present experimental evidence for the excitation of E1 and E2 gi-
ant resonances is discussed theoretically. The multiphonon giant dipole resonance excitation is ex-
plored. Absolute values of cross sections for N-phonon excitations are given using the harmonic os-
cillator model. The role of the damping of the giant resonance states is investigated.

I. INTRODUCTION AND GENERAL
CONSIDERATIONS

The extremely strong electromagnetic fields which
occur for a very short time scale in relativistic heavy ion
collisions (RHIC’s) open up new possible studies (see Ref.
1 and references therein). The electromagnetic excitation
of giant resonances in RHIC’s and their subsequent decay
has been clearly observed and interpreted.>® In these
studies, the fragment formation by means of the nuclear
interaction is also present. An AGS proposal* has been
accepted that aims to study the extreme peripheral col-
lisions in RHIC’s in much greater detail. Of special in-
terest will be the possibility of observation of multiphonon
processes which can lead to the excitation of new states
with possible exotic decay modes.* In view of this propo-
sal it seems to be also of theoretical interest to apply the
harmonic vibrator model of Ref. 5 to the cases which will
now be studied experimentally and extend it further.

The passage of a particle with charge Zpe, velocity v,
and impact parameter b (larger than the nuclear interac-
tion radius) by a nucleus at rest will predominantly cause
a momentum change of the charged constituents of the
nucleus, i.e., the protons. For not overly close collisions
this momentum in the x direction (see Fig. 1) is given
classically by (see, e.g., Ref. 6, p. 619)
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From this we calculate the energy transferred to the nu-
cleus as a whole as

2 ZoZ 2y2
_(ap) =2( pZre”)
ZmA

Ap=2 (1.1)

AE, (1.2)

’
ATmNb2v2

where my is the nucleon mass. For very fast collisions
we can assume the protons to move almost freely; the to-
tal amount of energy transferred to all protons is given by

(1.3)

The difference gives the internal excitation energy of the
nucleus,
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(This amounts to giving effective charges of Ne/A for
protons and — Ze /A for neutrons, respectively.) If the
incident particle is also a nucleus the same Eq. (1.4) can
be used for the determination of its internal excitation en-
ergy by exchanging the indices P and 7. As an example,
we consider the case of relativistic (v~c) 2**U + 2**U col-
lisions with b=15 fm. We obtain

AE ~5MeV, AE,~15MeV, and AE;,,~10 MeV .

This internal excitation energy corresponds to about the
excitation energy of the giant quadrupole and dipole reso-
nances in 2**U. From this simple classical estimate we
can already deduce that there is a large probability for the
excitation of giant resonances in peripheral RHIC’s.

In Sec. II the direct excitation of giant resonances in
RHIC’s is studied (see also Ref. 1). Theoretical calcula-
tions are directly compared to the experimental results of
Mercier et al.’> Nuclear effects are also considered (see
also Ref. 10). One has to envisage two nuclear modes
which lead to fragment formation: direct nuclear
knockout processes and the nuclear excitation of the giant
resonances with subsequent particle decay.

The possibility of multiple excitation of giant reso-
nances, especially of the giant dipole resonance (GDR),
seems to be a unique domain of RHIC’s. In nonrelativis-
tic multiple Coulomb excitation the adiabaticity condition
prevents the effective excitation of very high lying nuclear
states. Nuclear excitation of multiphonon states (see, e.g.,
Ref. 7) will be strongly hindered because the decay time of
these states is much faster than the collision time. In elec-
tron scattering, on the other hand, the interaction strength
is not large enough to allow for appreciable multiphoton
processes. The decay time of a GDR corresponding to a
width of I'=5 MeV is given by

FIG. 1. Projectile with nuclear charge Zp hitting a target Z,
with an impact parameter b. The coordinate system used in the
text is given.
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1'decay'=i210_22 sec . (1.5a)

r
This time has to be compared to the electromagnetic in-
teraction time in a relativistic collision,

Tcouz'”*‘z—s— X 10_.23 sec ,
Yv

(1.5b)
for b=15 fm, where y =(1—v2/c?)~'/? is the relativistic
Lorentz factor. Thus we will have Tgecay> Tcon even for
moderately high values of ¥, and multiple excitation will,
in principle, be possible.

In Sec. III the harmonic vibrator model (see Ref. 5) is
studied in further detail. After a simple classical con-
sideration the multiphoton excitation is studied quantum
mechanically. It will be seen that a purely classical con-
sideration already gives a remarkably accurate insight into
the process. Numerical results are presented for experi-
mentally relevant cases.

Some comments are also made about the expected an-
gular distribution of the fragments, which can be of in-
terest for future precision measurements in the extreme
forward angular region. The influence of damping of the
GDR states on the excitation and decay process will be of
crucial importance. It is discussed in general terms in
Sec. IV. Our conclusions are given in Sec. V.

II. COULOMB AND NUCLEAR FRAGMENTATION
IN PERIPHERAL RHIC’S

A group of experimentalists at Lawrence Berkeley Lab-
oratory® and another at Ames Laboratory and Iowa State
University® have presented clear evidence of Coulomb
fragmentation in RHIC’s. In the latest experiment® one
obtained the cross sections for one-neutron removal of
$Co, 87Y, and "7Au targets due to the irradiation by rela-
tivistic beams of 'H, 2C, 2°Ne (2.1 GeV/nucleon), **Ar
(1.8 GeV/nucleon), and Fe (1.7 GeV/nucleon). From
the data on fragmentation cross sections of the same tar-
gets by means of relativistic proton beams (for which
Coulomb effects are negligible), they were able to deduce
the nuclear contribution to the one-neutron removal cross
sections by RHI beams. A precise theoretical explanation
of these data is complicated by the presence of nuclear
contributions which can arise from a direct knockout of
the neutrons or by means of a two-step process involving
first the collective excitation of a giant resonance in the
nuclei followed by the emission of one neutron. The nu-

clear contribution to this process is peaked at a certain
impact parameter and decreases with increasing distances.
It also decreases when the nuclei come closer together,
since channels other than the one-neutron removal process
become more important.® In this way one can reasonably
assume that the probability of removing one neutron by
means of the nuclear interaction in a RHIC is given by a
Gaussian function of the impact parameter b, such as

—R

> 2.1
5 2.1)

P(b)=Pexp

where 26 is the thickness of the surface area contributing
to that process and S is the maximum probability at an
optimal impact parameter which we set to

R=12(43"+4¢") fm . (2.2)

Such a parametrization has also been found in theoretical
calculations of fragmentation processes at nonrelativistic
energies.” A justification of this surface peaked form is
given in terms of a Glauber model in Ref. 8. The cross
section will be

on=2m [ bP(b)db=2(m)"*R B5 . 2.3)

In order to have an estimate of 36 we set the cross section
given by (2.3) to the experimental values determined by
Mercier et al.> We find the values of 38 as given in Table
I, which are collected in Fig. 2 as a function of Ap+4 A7.
From that one infers an average value of

6B~1.1+0.1 fm . (2.4)

The question now arises about what the value of the max-
imum probability 8 should be. Clearly, there are other
channels for fragmentation, such as, e.g., fission, two-
nucleon removal, etc., in the peripheral collisions with
small nuclear contact. In Ref. 10, a theoretical study has
shown that there is an appreciable contribution to the fis-
sion channel in 28U projectiles (1 GeV/nucleon) incident
on nuclear emulsion. However, since the energy deposit
in such collisions is small, the one-neutron removal pro-
cess must be of greatest probability in most cases. If we
use f~1 we get 6=~1 fm from (2.4). This means that the
nuclear contribution is restricted within a small range of
impact parameters in comparison to a much wider inter-
val for the Coulomb contribution to the same process. In
spite of the smaller energy deposit by means of the
Coulomb interaction in a RHIC, its long range leads to

TABLE 1. The values of 88 in units of fm [see Eqs. (2.1) and (2.3) for their definition] extracted
from the experimental results of Ref. 3 for the various projectile and target combinations used in these

experiments.
Reactions
RHI $Co(RHI, X)**Co Y (RHI,X)%Y 9T Au(RHI X)*°Au
2C (2.1 GeV/nucleon) 1.00+0.08 1.17+0.11 0.95+0.11
Ne (2.1 GeV/nucleon) 1.13+0.09 1.22+0.1 1.00+0.12
“0Ar (1.8 GeV/nucleon) 1.43+0.12 0.93+0.12
%Fe (1.7 GeV/nucleon) 1.02+0.1 1.22+0.12 0.82+0.11
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FIG. 2. The values of 6 [see Eqgs. (2.1) and (2.3)] as a func-
tion of the sum of target and projectile mass numbers, A1+ Ap.

total cross sections which can be even larger than the
geometrical cross section.’

The Coulomb contribution to the nuclear fragmentation
in RHIC’s is a two-step process involving the excitation of
giant resonances followed by particle decay. We can write
the cross sections for it as'!

gc=3, fn,,;,(w)o?‘(w)i@— , (2.5)
A «
where n ., (w) are the equivalent photon numbers with the
excitation energy E,=%w. They are given in analytical
form in Ref. 11. The functions cr;,'k(w) are the photonu-
clear cross sections for the multipolarity wA and the total
photonuclear cross section is given by

o lw)= 2}\ 0;,'7‘(0)) . (2.6)

While, normally, the 7A=E1 contribution to the sum
(2.5) is much larger than the others, it was shown in Ref.
11 that ngy>>ng; for beam energies around 1
GeV/nucleon. This leads to an appreciable contribution
(5—20%) of the quadrupole multipolarity to the total
Coulomb cross section at these energies. It is interesting
to compare the experimental values of Ref. 3 with theoret-
ical predictions based on Eq. (2.5) and on the sum rules
for the photonuclear cross sections.

It is well known that heavy nuclei exhibit an electric di-
pole resonance at approximately 80/4'/*> MeV and a
quadrupole resonance at 62/4'/* MeV. We ascribe all
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strength in the Thomas-Reiche-Kuhn (TRK) sum rule to
the electric dipole resonance

[oEE, )dEYzGO%Z— MeVmb, (2.72)

and in the energy weighted sum rule to the electric quad-
rupole resonance

dE,

[osuE,) )
4

>=0.22ZA4*” ub/MeV . (2.7b)

Table II shows the theoretical values based on Eq. (2.5)
and on the sum rules (2.7). One clearly sees the relevance
of the E2 mode compared to E1. From the ratio between
the experimental data and the theoretical predictions,

expt
r= gc __ Oexpt

= _EI E2 = ’
oc +0oc Osr

(2.8)

we obtain the values gathered in Fig. 3 as a function of
Ap+Ar. On the average, r <1, which is a reasonable re-
sult since osg includes the total strength of the giant reso-
nances which can decay by means other than one-neutron
emission. In principle, one could also use the experimen-
tal photonuclear cross sections o(y,n) to do a more exact
calculation of the one-neutron removal cross section by
means of Eq. (2.5) (see, e.g., Ref. 12). However, the
decomposition of o(y,n) into E1 and E2 (or other) mul-
tipolarities is not exactly known.

The only empirical parameter entering into Eq. (2.5) is
the minimum impact parameter, which we set to R as
given by (2.2). For impact parameters in the interval
R —86<b <R +36, there is interference between the nu-
clear and the Coulomb interaction. By using b, =R —§
in Eq. (2.5), with 6=1 fm, the theoretically estimated
Coulomb cross sections increase by less than 10%. Be-
cause of our lack of knowledge of the nuclear and
Coulomb interference effects, there exists even a greater
uncertainty in the theoretical determination of the frag-
mentation cross section in peripheral RHIC’s. The situa-
tion becomes simpler at higher energies and when both
projectile and target are heavy nuclei, for which the
Coulomb cross sections depend much less on the uncer-
tainty in the minimum impact parameter. In that case the
Coulomb interaction leads to much greater cross sections
than the nuclear interaction and, for practical purposes,
one can disregard the nuclear contributions in peripheral
RHIC’s. Multiple excitation of giant resonances will also

TABLE II. Theoretical electromagnetic excitation cross sections for E1 and E2 giant resonances for various projectile and target
combinations. The incident projectile energy is given in parentheses and the cross section values are given in mb.

Reactions
Co(RHI, X)*¢Co ¥Y(RHI X)®Y 97 Au(RHI, X)**Au
RHI E1l E2 El E2 E1l E2
2C (2.1 GeV/nucleon) 8.70 1.88 15.5 3.39 46.5 10.3
Ne (2.1 GeV/nucleon) 229 4.65 41.1 8.45 124 26.2
“Ar (1.8 GeV/nucleon) 63.0 12.7 114 23.4 354 74.6
%Fe (1.7 GeV/nucleon) 121 24.2 221 45 694 145
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FIG. 3. The ratio of the experimentally determined Coulomb
excitation cross section o, and the theoretical value ogy, as de-
rived from the sum rule model as a function of the sum of the
target and projectile mass numbers, Ar+ Ap.

be of importance at higher energies and in the following
we present a theoretical analysis of it.

III. HARMONIC VIBRATOR MODEL

A. Excitation probabilities

The internal excitation energy of a nucleus by means of
a relativistic charged particle as given by Eq. (1.4) does
not take into account the binding energy of the nucleons,
but we can account for it very easily if we use the har-
monic vibrator model for the nucleus. The energy
transferred to a harmonically bound particle, with charge
e; and mass M;, by a relativistic particle with charge Z,e
is given by (see Ref. 6, p. 623)

e ,'2

M;

1
v2b?

1

x2 —
Y

AE;(b)=2Z}e? Ki+—K3|, 3.1

where K, are the modified Bessel functions as function of
x =wb /yv.

We now apply this result to the excitation of GDR’s in
nuclei. In this case we assume that all nucleons vibrate
with the same frequency w=Egpg/# and, to disregard
the center of mass motion, we use the effective charge of a
nucleon as (e;)g=(N/A)e for protons and (e;)
= —(Z /A)e for neutrons. Summing for all nucleons,

2 2
€i e? Z |N a V4
— _ — + —_—
?[M.J mn igl 4 i=§+l 4
NZ ¢?
=4 my (3.2)
we obtain
AE (b)= Y AE;(b)
2E} ZINZ ¢
_ GD;zaz PNTLT | ¢ _17 K%+—2K(2, ’
myce Ar vy 14
(3.3)

where «a is the fine structure constant.

One can easily see that (3.3) reduces to (1.4) in the limit
x =wb /yv << 1, corresponding to the low frequency lim-
it.

We can also interpret AE(b)/Egpr as the probability
¢(b) of exciting a GDR in a collision with impact param-
eter b, i.e.,

2E ZAN,Z ¢
p(b)y=—CBR pZP7TTT (2 Lga, 1 g
myc Ar 14 Y
(3.4)
By taking Egpr =80 MeV/ 4!/, we obtain
d(b)=aj+al+a*,, (3.5a)
where
ZpV' NI Z g
ao=0.41a " =T | £ | Ky(x) (3.5b)
A% v
and
ZpV'N;Z 2
a4=029a Y ITET ) Ly Gso)
A% v |y

We observe that this purely classical derivation perfectly
agrees with the previous semiclassical and quantal calcu-
lations of Refs. 13 and 11, respectively, where one used
the TRK sum rule to determine the nuclear dipole transi-
tion strength [B(E1) value]. In those references,
a, = |aj; | were identified as the probability amplitude of
exciting a nucleus by transferring to it an amount u# of
angular momentum in the beam direction. Classically,
the amplitude ay corresponds to the action of the parallel
electric field E, (see Fig. 4), which generates vibrations
along the beam direction. These vibrations correspond to
an angular momentum perpendicular to the beam direc-
tion, i.e., u=0. The field E, will generate p= +1 vibra-
tions and the excitation probability by symmetry must be
equally distributed between u= + 1 and —1. Since E,
dominates for ¥ >> 1, the target (or the projectile) will gain
essentially internal vibrations perpendicular to the beam
direction in that limit.

From the dynamics of the electromagnetic excitation
process, the angular distribution of the fragments can be
directly calculated. For the sake of simplicity of presenta-

EZ
wo ¢ 51O
vibrations K= *1
Zo
—@——

FIG. 4. Proton and neutron vibrations induced by the pas-
sage of a relativistic heavy ion.
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tion, we illustrate the essential points for spinless projec-
tiles and fragments. We consider the projectile fragmen-
tation process A—B +C in the system of the projectile.
The transition from the projectile’s ground state,

h=1f (DYl (3.6a)
described by a B +C cluster wave function to the final

state characterized by the relative momentum k; given by
the wave function

e, =2 YI:H(?)YIm(Ef)gl(r’kf)% , (3.6b)
Im
is determined by the excitation amplitude
2ZT€2 . x X ;
4= = xK,(x)Dg; +’7K0(X)Dfi , (3.7)

where x =wb /yv. The x and z components of the nu-
clear dipole matrix elements are denoted Djf; and Dj;,
respectively. As usual, these matrix elements can be
separated into a geometrical part determined entirely by
the angular momentum quantum numbers and an overall
strength factor, which gives the B(E1) value [in the sim-
plified model given here it is determined by the radial di-
pole matrix element R(ks)= fow drgi_(rkprf(r].
One finds, for ay;,

2Zre? ,
ap="7- xK ;(x)(—sinf cos¢)
i —K 0 , 3.8
—Hy o(x)cos Van (3.8)

where 6 and ¢ denote the polar angles of k . The p==1
excitations are proportional to xK;(x), the u=0 excita-
tion of i(x/y)Ky. For x << 1 this leads to a very strong
alignment to the final fragment state, as has already been
seen above (cf. Fig. 4). Because of the phase difference
there is no interference of p= 1 and 0 excitations for the
angular distributions. Averaging over the azimuthal angle
¢, one obtains

7252 2
2 T 4 2
2= < I[R(k
lag | = | o [R (k)]
2
X | x2K3xsin’0+ K 3(x)cos?6 | (3.9)
4

i.e., for x << 1, as will usually be the case, there is a strong
tendency of emission perpendicular to the beam axis.

Let us compare the momentum of the fragment ob-
tained from the decay of the excited resonance state to the
momentum obtained from the Coulomb repulsion of the
whole projectile during the collision. The momentum due
to the Coulomb collision is perpendicular to the beam and
is given by Eq. (1.1). The momentum due to the decay of
the resonant state is given by py=1"2myAE, where AE is
the decay energy and my is the reduced mass of B +C.
As seen above, the main component of p, is also perpen-
dicular to the beam axis. As an example, for Z;=92,
Zp=8, b=15 fm, and v~c, we obtain, from Eq. (1.1),

p1=~150 MeV/c for the momentum due to Coulomb
repulsion of the projectile. If we assume a decay energy
of AE~10 MeV (i.e., excitation energy above the thresh-
old for A—B +C) and a reduced mass mo~1 GeV
(which is about the reduced mass in the case of one-
nucleon emission), then p;~140 MeV/c. Compared to
the incident momentum

Epp

Plab= ~(y—1)4 GeV/c,

the above quantities are only a small percent of it. This
means that a study of the angular distribution of the frag-
ments can only be achieved in very high precision experi-
ments.

Quantum mechanically, (3.4) corresponds to the result
of a first order perturbation theory. If this excitation
probability approaches the value of unity, first order per-
turbation theory will, of course, break down and multiple
excitation occurs. In the exact theory of multiple excita-
tion of a harmonic oscillator (see, e.g., Ref. 14), one ob-
tains a Poisson distribution for the excitation probability
of an N-phonon state

Py=—rd¥e . (3.10)
This result can also be interpreted classically. The proba-
bility Py to excite an oscillator by an energy amount
N #iw is equivalent to the probability to excite N uncou-
pled oscillators from a given ensemble, each by an energy
amount #iw. In the limit that this ensemble possesses an
infinite number of oscillators, Py will be given by a Pois-
son distribution of the probability to excite only one oscil-
lator.”® One interesting feature is that, for the mean exci-
tation energy, we obtain

AE(b)= Y N #fiwPy(b)="iw ¢(b) . (3.11)
N

This means that the energy transfer, calculated in first or-
der perturbation theory, gives the correct value even in the
case where first order excitation calculations are not justi-
fied [e.g., if ¢(b)>1]. This is a special property of the
harmonic oscillator model.

B. Ultrarelativistic limit (y >>1)

As quoted above in the high energy limit y>>1,

ag<<a+; and a good approximation, as long as
b<yc/w,is
Z,V'NtZ
a4 =0.29¢ 2= =T (3.12)
- A7 wb
and (3.10) becomes
1 |.S —S/b?
PN(b)zm -1;7 , (3.13a)
where
ZiNrZ
§=5.45x10"3"2=C"L fm? (3.13b)

A%/S
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The total cross section is obtained by integrating over the
impact parameter, starting from a minimum impact pa-
rameter b;, =R, where nuclear absorption sets in

od'=2r [ bPy(b)db . (3.14)

If we use the approximation (3.13), then for N=1 it is
necessary to introduce the adiabatic cutoff radius
bmax=Yc /o in order to have a convergent integral. For
N >2 the excitation probability decreases fast enough to
ensure convergence. We obtain

(N=1) e '
~ 1 3.15
oc 27S In R (3.15a)
and
(N22)__ 7S 1— _uN_z_l{_’f_ _ mSul¥ !
¢ =NN-1» | ¢ ,Eok! =NN-1)’
(3.15b)

Where u =S/R? and the last approximation is valid for
u << 1, which is generally the case for light ions.

With these values the maximum possible cross section
a(éw can be immediately calculated. The cross sections for
the excitation of relativistic '%0, 328, and 2**U projectiles
in the collision with 2*®U targets are given in Table III
We also show in Fig. 5 the N-phonon Coulomb fragmen-
tation cross sections of '%0 projectiles incident on 2*U as
a function of the laboratory energy per nucleon. The solid
lines correspond to the use of Eqgs. (3.4), (3.10), and (3.14),
and the dashed lines correspond to the approximations
(3.15). As is expected from the increase of S with the
mass, N-phonon states are excited with larger cross sec-
tions with increasing mass. On the other hand, the ampli-
tudes of the collective motion of all protons against all
neutrons are larger for light nuclei than for heavier ones.
This can be readily seen from the simple model adopted
for the GDR. The dipole operator is given by

A A A
p=3 -~ =2%p, (3.162)
i=1 A
where R is the center of mass and
p=L3p-L 3 5 (3.16b)
Z 35 N, 7

is the difference between the center of mass of all protons
with respect to all neutrons. Assuming that the TRK
sum rule is exhausted by the GDR, one obtains

TABLE III. Limiting value (y— ) of total cross sections
for N-phonon GDR excitation of 'O, 328, and **U projectiles
with 2®U as the target nucleus.

N 160 32S 238U

2 3.1 mb 17 mb 128 b
3 22 ub 0.25 mb 0.14 b
4 0.16 ub 4 udb 15 mb

(millibarns)

0_(N)
C

E (GeV/nucleon)
1ab

FIG. 5. The total cross sections o’ for the excitation of N-
phonon GDR states in '°0 + U collisions as a function of the
incident energy E),,. The exact results are given by a solid line;
the dashed lines correspond to the approximation [Eq. (3.15a)]
for N=1 and the limit [Eq. (3.15b)] for N > 2.

PN NZ | # 1
D= D ==
| (¥cpr | D | o) | 4 | 2my | Eopr
, NZ
=0.26 fm R (3.17)
In terms of the collective coordinate p, one has
A 0.51 73
=—"—D=—"F"A4%%fm, 3.18
P=Nz" T VazZ m G.18)

which decreases likes 4 ~'/3 with 4. Thus neutrons and

protons are more effectively separated in low mass nuclei.
However, the excitation cross sections are smaller. For
10 one finds an average p-n separating distance in a
GDR of about p~0.4 fm. It would be interesting to know
about the response of the nuclear system to an N >2 pho-
non state. If we assume a linear dependence of p with
V/N, we would obtain an average p-n separation distance
around p~0.8 fm for N=4, which is quite a high value.
Indeed, the excitation energy of such a state would be
EN=%=4E;pr~127 MeV, which is exactly the energy
necessary to separate all protons and neutrons in 0. In
the simple harmonic model, the maximum separation dis-
tance of the p-n vibrations, i.e., the amplitude of the vi-
bration, is given by d =\/§p, which implies that in an
N=4 state the protons and neutrons would separate
beyond the range of the nuclear forces. Since the cross
sections for excitation of this state by means of the elec-
tromagnetic interaction in a RHIC with a heavy target are
of orders of millibarns, this process could be of great im-
portance for producing neutron-rich fragments, as was
pointed out in Ref. 4.

The possible signatures of the N >2 phonon states
remain speculation, especially regarding what the specific
decay widths and decay channels will be like, and regard-
ing the probability of formation of polyneutrons and other
exotic phenomena, as discussed in Ref. 4. Yet it is in-
teresting and necessary to discuss the influence of the
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damping of the GDR motion on the excitation process in
more general terms.

IV. THE INFLUENCE OF DAMPING:
A DISSIPATIVE QUANTUM VIBRATOR
UNDER EXTERNAL FORCES

The giant dipole state is a very short-lived state. Being
high in the continuum, it couples strongly to other more
complicated states and eventually decays mainly statisti-
cally by particle (neutron) emission. A typical width of
I'=5 MeV corresponds to a lifetime of Tgecqy~10"2? sec
[see Eq. (1.5a)]. The width of the N-phonon (N >2)
GDR states is expected to be even larger. In a situation
where the lifetime of a state is comparable to or even
smaller than the collision time, an essential modification
of the usual description of Coulomb excitation has to be
introduced. This was accomplished by Weidenmiiller and
Winther.!® The nuclear states are divided into bound and
continuum states; direct excitation of continuum states as
well as continuum-continuum coupling is neglected. In
this case, the usual coupled equations for the time depen-
dent amplitudes Cy(?) read'®

(i /ANEy —Epgt

iHiCy (=3 (N | V(1) | M)e Cu (1)
M

+ [ drKyte—r)Cy(r), @.1)

where the function Ky takes the coupling to the more
complicated channels into account (in our example, the
N-phonon states are identified with the bound states of
the nucleus; all the complicated decay channels of these
states correspond to the continuum; which is assumed to
be excited only via the GDR-doorway states). This func-
tion is given in terms of the width I'y(E) by

1 © E
e _ b it —1') -
KN(t—t)—-—47T f_mdwe“‘" Ty o+ Pl
4.2)
For I' y =const, one obtains
Iy
KN(t—t')=—iTS(t—t')
and the coupled equations (4.1) become
iHCy (=S AN | V()| Mye" P EN B C (1)
M
'y
—i—z—CN(I) . (4.3)

Since V(t) is very well known for the Coulomb interac-
tion and the nuclear states | N) are assumed to be solu-
tions of the harmonic oscillator with energies Ey =N fiw,
the excitation amplitudes Cy(#) can be calculated from
(4.3) and the initial condition Cy(— « )=08x¢. To accom-
plish this, more about the values of the widths "y should
be known. Until now we only know that 'y=0 and
I''=TIgpr. The solution for 'y=0 (N=0,1,2,...) was
given in Sec. III.

As a consequence of having I' y0, the total probabili-

ty Piw= 3 n |Cy(2)|? is no longer conserved because
flux is now put into the decay channels. Multiplying Eq.
(4.3) by Cy(2) and its complex conjugate by Cy(z) and
subtracting the results, we obtain, for the change of the
occupation probability Py(t)= | Cy(2) |2,

disN(t) 2

=ZIm | SN |V(t)| M)y EV T, ok
dt # ;
Ly B oo (4.4)
— =Pl :

The first part of the right-hand side of Eq. (4.4) describes
the redistribution of flux in the various channels N during
the collision. If only this term were present, we would
have  conservation of the total probability
P (t)= 3 v Py(t), since V(t) is Hermitian. This term
leads to a change of the occupation probability given by

Gy()==Im | (N | V()| M)
M

RIS

e(i/ﬁ)(EN—EM)t

X Cy(1)Cy(2) | . (4.5a)

The non-Hermitian part of the interaction leads to a loss
out of channel N, given by

Ty -
Ly()=—2Py(1),

4.5b
P (4.5b)
i.e., we have the balance equation

dPy(1)

=Gy(t)—Ly(1) . (4.6)
dt

This equation can also be written as the integral equation

~ t — —t

By= [ e ™G (dt 48y, @)

where we used the initial condition Py(— o0 )=8yo A
further insight into Eq. (4.6) can be obtained by summing
it over all states:

(x,7)
9,07

FIG. 6. The adimensional function g,(x,n) as defined by Eq.
(4.12b). In the limit =T"/Egpr —0, we have g,(x,7)— 1.
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TABLE IV. Cross sections for N-phonon Coulomb excitation of '°O in the reaction '°O + 2*U. The

values corresponding to &2 (o?")) take (do not take) into account the widths of the states (see text).
E,., (GeV/nucleon) ¥ od & o & @
0.5 36 mb 34 mb 013 mb  0.12 mb 0.5 ub 0.43 ub
2 0.14 b 0.13 b 0.81 mb 0.67 mb 4.9 ub 3.9 ub
10 043 b 041b 24 mb 2.2 mb 18 pb 16 ub
100 10 b 10 b 3.1 mb 3.1 mb 23 ub 22 ub
dPy(1) This means that for t— oo there is a probability to find
> P > Ly . (4.8)  the system in the ground state given by Py(w) and a
N N

Defining the flux function
¢ ’ ’ FN t D ’ ’
Fyw= [ Lythdr=—= [ Pytidr', (49
the integration of (4.8) can be written as

1= Py()+ 3 Fy(1) . (4.10)
N N

Due to the exponential decay of the states with N > 1, we
have, for t— 0, the limit Py (o0 )=8yqPo( ) and

1=Py(0)+ 3 Fylw) . 4.11)
N

probability that it has been excited and decayed through
channel N, which is given by Fy(). If the widths 'y
are known, Eq. (4.3) can be solved, and from Eq. (4.9) the
contribution to the fragmentation through channel N can
be deduced.

An approximate solution can be found in the case of
linearly increasing widths with increasing energy, i.e.,
I'y=NT. Following the classical interpretation leading
to the Poisson distribution as discussed in Sec. III, the ex-
citation probability of the states | N) is equal to the exci-
tation probability of N uncoupled oscillators, each having
a decay width of I'. Instead of (3.3), the energy
transferred to a damped oscillator will be given by [see
Ref. 6, Eq. (13.24)]

QK I(Qb /yv)

- ZiNZ !
RE(p)=—2PL_p 27720 1| 1
mmyC At v |y
4
_ZEZGDRaZZIZ’NTZT c| 1
myc? Ar v |y
where
2 o y*K}(nxy)dy
(x,m)=—L1 £ ,  (4.12b)
Butem 7K (x) fo (2—1/9")+y%/4

with x =wb/yv and n=T /fiw=T/Egpr. In terms of
8u(x,m) the excitation probability in first order is, as in
(3.5), given by

db)=ai+ai+a’,, (4.13a)
with
2E ZiN;Z ¢
~2 GDR ,4pINTLT | 2
adgs= — (x,7)K5(x) (4.13b)
0 mch Ar o go'X, NIk
and
E ZiN;Z 4
g1=—2 2T 18 g pKix) . (4130)
my¢ AT v

The functions g, (x,7) are plotted in Fig. 6 for =0.1 and
0.3. When 7—0, then 8, — 1 and we obtain the same re-
sults as given by Egs. (3.5). For 10, then we observe
that g, will have the greater influence, especially for

fm Q*K3(Qb /yv) dn+—‘-f°°
0 (Q2—w?)?+ QT2 /4% y2 Y0 (Q2—w?)?+ QT2 /4%

gl(x,n)K%(xH—%go(xm)K%(x) ,
14

(4.12a)

x << 1. Since, as we saw in Sec. III, ¢y <<a; in the limit
of high energies of collision, we expect that in this limit
the influence of the widths of the states in the cross sec-
tions calculated in Sec. III will be very small. Inserting
Egs. (4.13a)—(4.13¢c) into Egs. (3.10) and (3.14), we find
the results given in Table IV for the reaction '°0 + 2**U
as a function of the laboratory energy. One observes that
the inclusion of the widths of the states modifies appreci-
ably the previous calculations only for low energies and
for large N. In the limit y >>1, the interaction is very
sudden and the widths of the states have practically no in-
fluence on the excitation process. In that limit the
theoretical results of Sec. III are sufficiently accurate for
application in RHIC’s. However, if the widths of the
states are too large, then the experimental detection of
them will be very difficult.

V. CONCLUSION

Rather simple classical and quantal considerations
show the importance of giant dipole excitations in peri-
pheral RHIC’s. The present experimental status is com-
pared to theoretical calculations using a sum rule ap-
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proach for the nuclear states. We find completely satis-
factory agreement. In view of recently proposed detailed
experimental studies of extreme peripheral collisions, the
possibility of multiphonon giant dipole excitations is dis-
cussed. Using a harmonic oscillator model, absolute
values of total cross sections can be obtained with a sim-
ple formula. The cross sections are found to be quite ap-
preciable. Whereas the cross sections for heavy projectile
excitation are larger than those for light projectile excita-
tion, such as '0.or 32§, the separation amplitude of neu-
trons from protons will be larger for the lighter projec-
tiles. This could prove to be a means of producing new
and exotic nuclei, perhaps, e.g., polyneutrons. Finally, we
try to include—in a phenomenological way—the effects of
damping of the giant dipole collective motion in the
theory. A qualitative study indicates that, for the ex-

GERHARD BAUR AND CARLOS A. BERTULANI 34

tremely short collision times which occur in the RHIC’s,
the excitation of these states is still possible. However, we
do not know the actual properties of these new nuclear
states. Our theoretical study has indicated quite safely the
possibility of excitation of such states with appreciable
values for the cross sections, and we are excited about the
future experimental and theoretical developments in this
area.
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