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A general method is developed for constructing on-shell equivalent transformations which elim-

inate the energy dependence of coupled channel equations with nonlocal linearly energy-dependent

potentials. Our derivation shows that such transformations are not unique because of ambiguities of
the half-off-shell t matrix compatible with the original Hermitian on-shell equivalent Hamiltonian.
A class of such transformations for single and coupled channel cases is explicitly constructed. Our
method is applied to a constituent quark-cluster model for nucleon-nucleon scattering.

I. INTRODUCTION

In many cases of the scattering problems involving
composite particle systems, microscopic formulations lead
to two-cluster coupled channel equations with effective
optical potentials which are both energy dependent and
nonlocal. Some examples are formahsms including
resonating group methods' (RGM's) for nuclear reactions,
generator coordinate methods (GCM's), extended optical
potential models, various integral equation methods, and
recently the RGM equations applied to quark™cluster
models.

In this paper, we present a general method for con-
structing explicitly a class of on-shell equivalent transfor-
mations which eliminate the energy dependence of two-
cluster coupled channel equations with nonlocal linearly
energy dependent potentials. In case of the RGM coupled
channel equations, the energy dependence of the corre-
sponding potentials indicates the fact that the microscopic
channel spaces are not orthogonal to each other. ' Because
of this, and since the Hamiltonian with energy dependent
potentials is non-Hermitian, it is desirable to look for on-
shell equivalent transformations which transform the
non-Hermitian Hamiltonian into an energy independent
Hermitian Hamiltonian by eliminating the energy depen-
dence. Such transformations are also very helpful in
studying the channel coupling potentials and related phe-
nomena, such as threshold behavior, inelasticities, and res-
onances in the framework of a familiar Hermitian poten-
tial model.

A transformed Hermitian Hamiltonian is needed for
generalizing the two-cluster formulation to the three-
cluster or multicluster case, since an appropriate continua-
tion of a two-cluster t matrix to negative energies needed
for the latter cases can be done uniquely with a Hermitian
two-cluster Hamiltonian. Furthermore„ investigation of
such on-shell equivalent transformations can provide us
with a deeper understanding of short-range nodes in wave
functions generated from the coupled channel RGM equa-
tions with linearly energy dependent effective potentials.
The nodes in the wave function at short distances have at-
tracted much attention in the past ' and most recently

in the framework of the nonrelativistic quark-cluster
coupled-channel model for the nucleon-nucleon scattering
probl em

In Sec. II, after briefly describing the single-channel
method proposed previously by one of us ( MO. ), 2owe re-
move some of the constraints used for the construction of
the off-shell transformations derived in Ref. 20. We show
that for a general case we can construct a class of off-shell
transformations which turns out to be infinite in both its
continuous and discrete parameters. Transformations of
special interest of this class are discussed in more detail.
In Sec. III the method of determining off-shell transfor-
mations which lead to on-shell equivalent Hermitian
Hamiltonians is generalized to coupled channel equations.
The role of coupled channels as compared with a simple
channel is discussed. In Sec. IV our method is compared
with a recently proposed recursion method ' for the RGM
equations. We also discuss the nature of the nodes in the
wave function at short distances. A brief summary and
concluding remarks are presented in Sec. V.

II. SINGLE CHANNEL CASE

In this section we show how we can remove some of the
restrictions imposed in Ref. 20 on the on-shell equivalent
transformations which eliminate linear energy dependent
potentials.

In Ref. 20 it has been shown that one can explicitly
construct a class of off-shell transformations which
transform an energy dependent Hamiltonian,

(h +EIV —E)X=0, (2.1)

Here, 8' is a compact operator,

h (r, r') = [K,(r)+ U(r)]5(r r'}+V(r, r'), —

h(r, r') =[Kt(r)+ U(r)]o(r r')+ V(r, r'), —

to a Schrodinger equation with energy-independent in-
teraction,

(2.2)
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Ei(r) being the kinetic energy operator. The potentials
V(r, r') and V(r, r') are supposed to be Hermitian and
compact, or Hilbert-Schmidt operators. The wave func-
tions X and 7 are interrelated by the transformation T,

(2.3)

striction that y; &1. We consider now that a finite
number of yq &1. Note that only a finite number of
yk y1 is allowed; otherwise the Hilbert-Schmidt norm

II IVIIHs of the operator W will diverge (the asterisk is
merely symbolic and does not represent complex conjuga-
tion):

where

(2.4)
IIIVIIHs= Xr,'

1 /2

(id denotes identity) with

+i i i )
1/2 (2.5)

It is sufficient to demonstrate our method for one y' & 1,
since the corresponding eigenstates are orthonormal to
each other for all y's. We consider the following
Schrodinger equation with an energy-dependent potential:

izii2) = 1 + ( 1 —'Yi')' (2.6)

I w; & and y; are the eigenvectors and eigenvalues of the
Hermitian operator W, i.e., IV= g I w; &y; (w; I, with

( w; I wj &
= f w;(r)wj(r)r dr =5~ .

It is seen from Eq. (2.5) that for y; & 1 the energy depen-
dent Hamiltonian (2.1) cannot be transformed to an

energy-independent Hamiltonian h = T 'hT
We now discuss a method for removing the initial re-

(h +E
I

u
' &y'(u *

I
E)$=—0 .

Let us now define a transformation

U=I;„—Iu" &P'&u'I .

The inverse operator U ' is then given by

U '=I;z+
I
u'& „(u'

I
.

U ' exists for all p'&1. Hence we have

(2.8)

(2 9)

(2.10)

U '(h+E lu*&y" (u'
I

E)U '=—U 'hU '+E lu'& y'+(y' —1),2
(u"

I
E. —"(2—*)

(1—P') (2.1 1)

We have to determine p' such that

I =r"+(—r' 1)—'(2 — ')
(1—P')

(2.12)

It can be seen for any finite p' the inequality (2.12) is
equivalent to y' & 1, but this is in contradiction with our
assumption y' & 1. This means that for no finite p' will

I &1. However, one observes that

P'(2 —P')
(1 —P')'

for all finite p' and is equal to —1 for p'~ao. In this
limit I is independent of y and is I =1. In this limit

U '=I;4 —
I

u'&(u' I,
and the transformed Hamiltonian reads now

U-'hU-'+E
I

'&& *
I

.

(2.13)

(2.14)

As it is well known from the Kukulin method,
I

u*&
is a forbidden or spurious state, which can be present in
the wave function with any weight. An on-she11
equivalent Hamiltonian which does not depend on the en-

ergy is then given by

U 'hU '+ lim I,
I
u*&(u*

I
.

A ~ oo

(2.15)

The nature of the forbidden state explains why the
transformation U=lid

I
u*&p'&u*

I

diverge for p'~oo. It is seen from Eq. (2.14) that the

corresponding Hamiltonian is well behaved and deter-
mines X uniquely, except for the arbitrary admixture of
the redundant state u'. This property has been studied
extensively within the RGM (Ref. 1) and related
models. 2z 2 An alternative to the energy-independent
Hainiltonian (2.]5) is the Saito Hamiltonian, given in
our context by

U 'hU ' —
I
u'&(u*

I
U 'hU (2.16)

or by its symmetrized form.
%'e see thus that the original condition y; & 1 can be re-

moved for a finite number of eigenvalues yk & 1, because
the corresponding Hamiltonian can be transformed into a
Hamiltonian for which

I
uk & become forbidden states and

which can be treated by the Kukulin or Saito method
in order to make the Hamiltonian energy independent.
Based on this finding, we can generalize the definition of
a (Pauli) forbidden state: Any eigenstate of the kernel W
with an eigenvalue larger or equal to 1 is a forbidden state
with respect to the corresponding wave function.

It is useful to reca11 at this point the definition of the
forbidden or spurious or redundant state. The forbidden
states are the relative states between two clusters (t)i and

P2 which give a null norm under the full antisymmetriza-
tion. As a result they enter into the RGM—or related
equations of the form (2.1) with arbitrary admixture.
Therefore they are also called redundant or spurious
states. Let uo be a forbidden state. Then, we have

(2.17)
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where A denotes the antisymmetrization operator of the
entire system. Equation (2.17) can be rewritten as follows

=&uoiuo&-&uoi Wiuo&

=&uo
~
uo&-g &uo) u, &

We now transform Eq. (2.20) and obtain

(8 'h8 '+EW —E)X=O,

where X=HX and

A,;(2—A,;)W=$ ~w;) y;+(y; —1} (w;
~

.
(1—A.; )

(2.25}

(2.26)

X A,; (u; i u() & =0 .
(2.18)

The last two equalities in Eq. (2.18) have been obtained by
integration over the cluster-internal coordinates. The
operator W here denotes the so-called RGM norm kernel.
Obviously, in order to fulfill the above equation, u() has to
be one of I u; j with an eigenvalue A,; = 1. From Eq. (2.18)
it can be seen that the radial wave function X is not
unique because we have

~
I 0)42X&=~ I NA2(X+~uo) & (2.19)

(h +EW —E)X=0, (2.20)

with W=g
~

w; )y;(w;
~

and y; & 1 with no loss of gen-
erality as demonstrated above. We are considering arbi-
trary off-shell transformation 8 of X. Any such transfor-
mation can be represented by

8=I,,—y (w, &X, &w, ).
As a proof, we take an arbitrary X which is asymptotical-

ly equal to X. Since the eigenstates of W form a complete
basis for L (r), we can expand X—X, which is square in-

tegrable, in terms of
~
w;):

(2.21)

for arbitrary a, i.e., uo satisfies Eq. (2.1) irrespective of
the energy and does not determine the on-shell properties.
Therefore the forbidden state is called the redundant or
spurious state.

We wish now to show that aB off-shell transformed
energy-dependent Hamiltonians of the form (2.1) have the
same class of on-shell equivalent energy-independent
Hamiltonians. We consider again

According to our previous discussions, Eq. (2.25) can be
transformed into an energy-independent on-shell

equivalent Hamiltonian if
A,;(2—A,;)

n;=— 'y+(y; —1) 2 & 1 .
(1—)(,()

Note that since y; & l. n; will be smaller than 1 only if

A,;(2—A,;)/(1 —A,;) & —1 .

This is satisfied for any A,;. This means that for y; &1
also m; & 1, irrespective of the transformation 8. There is
one interesting point about the relation (2.27) with respect
to the treatment of the so called almost forbidden states.
An almost forbidden state is such a state whose eigenvalue
is close to l. In fact, the forbidden states are fully forbid-
den states in the oscillator model approximation of the
cluster wave functions. Usually the almost forbidden
states have been treated on the same footing as the forbid-
den states, i.e., they have been projected out. However,
this might be a dangerous procedure, since for any y; we

can choose A,; such as to make n; as close to 1 as we wish.
Therefore, according to the conventional definition, the
corresponding state w; would have to be called an almost
forbidden state, although it would not have been identi-

fied, as such, within the original Hamiltonian given in Eq.
(2.20).

We like to point out that for A,; =2 the transformation
8 is self-inverse, i.e., 8; '=8; and 8; '8;=I;d, where

8;= I;d —
~

w; )2( w;
~
. This is an interesting transforma-

tion for which (w; ~X) = —(w; ~X), X and X being
asymptotically identical.

Our final step is the transformation of the Hamiltonian,

X-X=y ~w, &(&w, ~X&-&w, ~X&) (2.22a) 8 'h8 '+Eg (w;)m;(w; ~, (2.28)

or

X=X—g i w; (&&wi X&—&w; iX)) . (2.22b)

subject to Eq. (2.27), to an energy independent Hamiltoni-
an,

Q.29)

Using Eq. (2.21} and comparing X=8X with Eq. (2.22b),
we find

where

T=T(8)=I;,—g i w;&a;&w; i
(2.30)

A,;=1——
(w; iX)

(2.23)
with two possible solutions for a;,

Thus given an arbitrary X at short distances, Eq. (2.23)
determines the coefficients of the pertinent transforma-
tion. If X is orthogonal to

~
w; ), then

~
w; ) is a forbidden

state and has to be treated separately as mentioned above.
If (w;

~
X)&0, then A,;&I and the inverse operator 8

exists

(2.31a)

(2.31b}

8- =I„+pi,&, "'„&,i. (2.24)
A,;(2—A,;}

ir; =y;+(y; —1)
(1—A,;)

(2.32)
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The overall transformation can be written as

(2.33)

where the signs for both elements are independent of one
another. The nondiagonal solution exists only for the de-
generate spectrum of 8' i.e., k& ——A,2

——A, o in our case:

By writing T= T(8), we indicate that transformation T
depends on the transformation 0. The transformation is

given explicitly by

(a;j)= (2.41)

It is now straightforward to show that

j i(1,2) +i(1,2)(~i~ Yi)+~i (zi(1, 2)(~1~Vi)~i

(2.34) where a is any real number not equal to zero. For the de-
generate case we thus obtain an infinitely continuous class
of off-shell transformations in addition to the discrete
ones obtained above. The inverse operator T ' is given
by

=+i(1,2) ~ (2.35)

where a;(, 2) is given by Eqs. (2.5) and (2.6), or T(8)8=T. —
This identity completes our proof. We have found that all
Hamiltonians 8 'h8 '+EN are on-shell equivalent with
the class of energy independent Hamiltonians (2.20). Fi-
nally, we question whether the chosen diagonal ansatz for
the transformation T in Eq. (2.4) restricts the off-shell
transformations which eliminate the energy dependence of
the Hamiltonian (2.1) to a subclass. In order to answer
this question, we investigate the existence of solutions for
a nondiagonal ansatz,

T= I;d —Q ~
(0( )iz(j ( wj

~

/, J
(2.36)

As it is very difficult to solve Eq. (2.37) for the most gen-
eral ansatz (2.36), here we study some special cases. Con-
sider a rank-2 transformation:

where at least one nondiagonal element a;j (j&i) does not
vanish. We consider the operator equation which must be
satisfied by T,

(2.37)

2

=Iid+ g I i()()&ij (u)j
~

where

(x;j)= kp

kp —1

(2.42)

III. COUPLED CHANNEL CASE

A similar analysis with similar results also holds for the
rank-3 case. Although we have no proof, it can be as-
sumed from the above findings that nondiagonal solutions
exist only for the degenerate spectrum of the operator 8'
for any rank. In that case the class of infinite discrete
off-shell transformations has to be enlarged by an infinite
continuous off-shell transformation of the type (2.41).
For the single channel case in realistic applications, a de-
generate spectrum of W will not occur. However, this
might be the case for coupled channels. (See the next sec-
tion. )

We consider coupled two-body equations of the follow-
ing form,

Then, according to Eq. (2.37), we have to solve

a j3 a P a P
5 5 5 0

L

where

(2.38)
where

+jJ E 6 j+ V 6 J + LYIJ

(3.1)

or, more explicitly,

(2.39)

It can be seen that for jI &kz only diagonal solutions ex-
ist:

(cx;J- }=

and E; represents the kinetic operator for the ith channel.
II;,= ~j, and N;, =N,; [or, more explicitly,
Nj(r;, rj)=Nj, (rj, r;)] are the spatial parts of the energy
independent and energy-dependent channel coupling po-
tentials, respectively. For every channel, the relative ener-

gy E; is given by E; =E—E;]—E;2, where E;] and E;2
are the bound state energies of the two clusters (t);) and p;2
in the ith channel. If E; ~0, we deal with the case of
open channel; if E; &0, the channel is called a closed
channel. Formally, a closed channel with fixed energy
E; ~0 can appear, but in this case it is treated as a distor-
tion. ' It will become clear in the following that Eq. (3.1)
covers both the coupled channel RGM and GCM equa-
tions. In case of the RGM, Eq. (3.1) arises from project-
ing the true microscopic solution 4' onto the model space
(A is the antisymmetrization operator}:
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4'=~'p= +~ IN 142& I . (3.4)

Note that, in general, the channel spaces are not orthogo-
nal to each other:

(~Aldt 2&; .
I ~If 4fz&i)+0 (3.3)

for i&j T. he use of Eq. (3.2} gives rise to the energy-
dependent coupling potentials X;J.. However, the poten-
tials N J in Eq. (3.1) might not be necessarily the ones gen-
erated by the RGM prescription, and therefore Eq. (3.1) is
more general. %e only require that operators ¹Jare such
that they can be approximated by a separable expansion
with sufficient accuracy. We also require that there is
only a finite number of eigenvalues of the operator
N = (N J ) which are larger or equal to 1.

In the following, it will be shown that there are infinite
number of off-shell transformations which transform Eq.
(3.1) into the form

i.e., those transformations which eliminate the energy
dependence in Eq. (3.1) while preserving all on-shell prop-
erties. In view of Eq. (3.4), the elimination of energy
dependence is used as a method for the orthogonalization
of channel spaces in the case of the RGM. Our main re-
sult from the explicit construction of a class of such
transformations indicates that the elimination of energy
dependence (or orthogonalization of channel spaces} is not
unique as far as the behavior of the wave functions at
short distances is concerned. The degree of ambiguity is
defmed by a space of continuous and discrete parameters.

We consider a two coupled channel equation representa-
tively in the following, because the generalization to many
channels is then straightforward. The two-channel cou-
pled equations are given as follows:

(Ti+ Vi —E)Xi+ f [Vi'(ri, ri)+EN11(ri, ri )]Xi(ri )ri'dr'i+ f [IVlz(ri rz)+EN12(ri, rz) p'2(rz)rz'drz ——0,
(~2+~2-~))z+ f ()z'(rz, rz)+~&zz(rz r'z)]Xz(rz)r'zdrz+ f [)Vzz(rz, r'z)+E)dzz(rzr())) z(r z)r,'zdr'z=0',

or, in matrix notation,

(3.5a}

T, +V, +V",'
r

~12 Nl 1 N12 ~1 ~1
ni +ETz+ ~z+ ~z Nzi Nzz gz

(3.5b)

which we write symbolically as

(H+EN E)X=0 . — (3.5c}

V and V;"' are the local and nonlocal energy independent
potentials respectively, for the ith channel. Since N is a
Hermitian operator in the channel spaces, the following
decomposition exists,

Note that for Niz ——Nzi ——0 it holds that (uf1 ~
ufk) =51k

for j=1,2 and
~ u,i)+0. In the case of nonvanishing

coupling, this is no longer true, and
~ ujl ), I =1, . . . , oo,

are not orthogonal and not even linearly independent, in
general. However, the relation

(u; Iuk) =(ul'I ulk)+(uz'I uzk) b~k

N=g (u;)y;(u;~,

where

I
u ii )

)

(r, ~u, , )=u, , (r, ), J=1,2,

(u;
~
u, ) =(u„(u„.)+(u„(uz, ) =6;; .

(3.6) holds always. Note also that the eigenvalues of N might
be degenerate.

There is also an ill-conditioned problem when all ¹J
have the same functional form reflecting hnear depen-
dence of the original cluster channels (in this case the IVlj.

naturally have also the same functional form). In this
case it is sufficient to solve the eigenvalue problem for one
kernel¹.The eigenvectors of N are then given by

/u„)
/ll)=

) )
L J

0
and

~
)

~
u;) and y; are the eigenvectors and eigenvalues of the

operator N, respectively.
For the case in which the couphng potentials vanish, we

can divide the eigenvalues y; in two groups, yI; and yzJ,
where the first group corresponds to the eigenvalues of
N» and the second group corresponds to the eigenvalues
of Nzz, with the respective eigenvector

0

with eigenvalues 2y Here, y„and
~

u ) are eigenvalues
and eigenvectors of the operator N;;.

%e now construct a transformation U:

(3.7)

such that, for large r;,
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(3.8)

U=I,,—y ~u„&a„&u„~. (3.9)

holds. As done in Sec. II, the transformation can be
represented as follows:

(3.16b)

Because of the above two solutions for any index v, we
have constructed an infinite class of off-shell transforma-
tions which lead to an infinite number of energy-
independent (or channel orthogonahzed) on-shell
equivalent Hamiltonians. The transformed Schrodinger
equation reads now

From Eqs. (3.7) and (3.9), one finds

&u„~X& &u,„(x,&+&u,„~X,&
A~= 1 — =1-

&u„~X& &u„~x,&+&u,„~x,& (3.10)

(H E)X=—O, (3.17)

where H=H+H2, H being the original Hamiltonian
without EN, and H2 is given by

The inverse operator U ' exists for a~ 1 and is given by H& = g I
ui & & ui

I
H

1
u„&Xi„&u„I

(3.18)

with

U-'= I;,+ g ~
u„&P„&u„), (3.11)

with

P,=a„(1—a„)
Equations (3.5) are transformed under U into

(3.12)
(+1)„(+1)i—(1—yi)'/ (1—y„)'/

(I y )I/2(1 y )i/2
(3.19)

u )(H+SZ-E)U 'X—=o.- (3.13)

in complete analogy to the single channel case. The last
equation is satisfied if

+1—(1—y„)'
)
1/2

For the coefficients a we obtain two solutions:

(3.15)

In order to eliminate the energy-dependent potential, the
following operator equation has to be satisfied,

(3.14)

The symbol (+1)i means that the sign for the different in-
dices I and «can be chosen independently from each oth-
er. This means that for every A,„i,there are four solutions,
and A,„i=A,i„holds. The diagonal elements A,;; have natur-
ally only two solutions, because for (+1)i and (+1)„the
same sign has to be chosen. If we denote the four solu-
tions of )(.„i,«&I, with l„'&+', )(.„'~ ', A,„'~ +', and )(,„'

we can write for the diagonal elements A, ,';++' and i(,;;
the explicit formula

(3.20)

and

~(+) 1+(1 y )i/2 (3.16a) Similarly, the formula for A,i(++), A,(i+-), A.(i„-+), and
can be worked out. The matrix element

&ui IH I
u„&is given by

& ui I
H

I u. & =&uii I
7'i+ Vi+ Vi I ui. &+ &&~i I IV2i

I ».&+ &»i I IViz I ».&+ &u2i I
T2+ V2+ V2 I u~& . (3.21)

ui&&u„l = (3.22)

Since the dyadic product
~
ui&&u„~ can be written in a

matrix form
one can see from Eqs. (3.18), (3.21), and (3.22) that the
direct terms of the Hamiltonian H depend on the cou-
pling terms of H The couplin. g terms of H depend on all
direct terms of the Hamiltonian H. As an example, we
write down the complete noncoupling channel potential
Vi for channel 1, of the energy independent Hamiltonian:

Vi=Vi+Vi + g4 luii&(&uiil7')+VI+ Vi I&i.&+&ii2il IV2) lui. &

+&uii I
~'iz

I u2. &+&ii2i I T2+ V'z+ Vi"'I u~&)&u). I
~ (3.23)

A similar formula can be derived using the above equa-
tions for the coupling potential Viq. %'e like to stress
that, in practice, we do not need to work out the off-shell
equivalent Hamiltonian, because its solution 7 can be ob-
tained easily be integration from Eqs. (3.7) and (3.9) once
the original solution 7 is known. The above formulae,

I

however, allow one to study how the off-shell transforma-
tion reduces or enhances the strength of the direct and
coupling potentials.

In analogy to the results of Sec. II due to the identical
algebraic structure, we can repeat the proof for the case of
coupled channels, namely that all on-shell equivalent
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Nk'k
I uki & =0 ««'Xk (3.24)

energy-dependent Hamiltonians of the form (3.1) have the
same class of on-shell equivalent energy-independent
Hamiltonians. Our previous findings concerning nondiag-
onal solutions for the off-shell transformation matrix ap-
ply directly to the coupled channel problem.

The forbidden states
~
u; ) with y; =1 (i =1,2, . . . , n)

can be treated by the Saito or Kukulin method for cou-
pled channel equations. One can see that a forbidden
state for a single channel k (Nkk ——g,.

~
uk;)«(.k;(uk;

~

with yi ——J(,k i ——1),
~

uk i ) (which is the kth component of
~
ui )) becomes a forbidden state even for the many chan-

nel case, since

pability of the computer to solve the eigenvalue problem
for general N. If the eigensolutions of N are known
analytically, as in some cases, the method is easily ap-
plied to a large number of channels. For numerical solu-
tions it will be generally restricted to only a few channels.

IV. APPLICATIONS AND COMPARISON

In this section we discuss our method in some detail in
the context of RGM equations and their recent applica-
tions to nucleon-nucleon scattering within a nonrelativis-
tic quark model. We start with a brief derivation of
RGM coupled equations' for two-cluster channels. The
RGM ansatz for the trial wave function is

because 3
~
ski«I)k2uki) =0 and thus also

& '4'lit k'2uk'i I
~

I itik iitik2uk i &

ij'J=~ pit i0 2X =. g~ it iiti2X. (4 1)

for arbitrary j. This has some interesting consequences.
If there is a forbidden state in a single channel, then the
orthogonality condition to the wave function Xk within an
energy-independent Hamiltonian formulation will gen-
erate an energy-independent node in the relative wave
function Xk. Because the corresponding eigenvalue is
equal to 1, there is no off-shell transformation which can
remove this node. Since the forbidden state will remain a
forbidden state even in the coupled channel case [see Eq.
(3.24)], this means that the energy independent node will
be present in this relative wave function even if coupled to
other channels. This holds only for energy-dependent po-
tential N, which is consistent with RGM derivation.

If, however, there is no energy independent node in the
single channel, the coupled-channel system may or may
not introduce nodes in the wave functions, depending on
the off-shell transformation chosen for orthogonalization
of the channel spaces described above. The generalization
of our derivation to many coupled channel equations can
be read off directly from the above derivation by extend-
ing the matrix notation.

As a summary of Sec. III, we now list the advantages of
this method.

(1) We have formulated the off-shell transformations
directly in terms of the eigenvalues and eigenvectors of
the spatial part of the energy dependent potential and in
terms of additional parameters given in Eq. (2.41). Thus,
in order to obtain a transformed wave function at short
distances, it is not necessary to solve the entire systein of
coupled equations, but only to apply the transformation
operator to the previously found solution.

(2) We can study explicitly which off-shell extensions of
the relative wave function X are allowed in order to be a
solution of an energy-independent on-shell equivalent
Hamiltonian. This constitutes a new method of studying
possible half-off-shell extensions of the r matrix once the
on-shell behavior is given within the framework of a Her-
mitian potential theory.

(3} The structure of the transforined direct and cou-
pling potentials can be studied analytically, thus facilitat-
ing the investigation of the role of coupling for threshold
and resonance phenomena.

A serious limitation of the method is the numerical ca-

where A; denotes the antisymmetrization operator be-
tween the constituents of the clusters P; i and P;z, and the
cluster functions «I);i and P;z are supposed to be already
antisymmetrized. The RGM equations are obtained by
projecting the microscopic Hamiltonian H onto the space
of relative wave functions X;:

(5$ ~H E~ g) =—0,
where

5$= g A;4;ip;25X;,

(4.2)

(4.3)

«I); i and P;2 being kept fixed. Equation (4.2) can be writ-
ten more explicitly in the following way,

g ri»J' & ~0i lA 2»; I
H —E

I
JI it, i' 2»J' & & r,' I X, & =o

j=l
(4.4)

for i =1,2, . . . , n Evalu. ating

by integrating over the internal coordinates of cluster
coordinates, we obtain

g (H,, —ENj)Xj=o,
j=1

where

Nij (ri «»J ) —= & itii tits 2»« I
~

I 0, i &,2»J &

=5(r; r)5ij NJ(r;—,rj), —

and

(4.5)

(4.6)

Hii(» »J')= &NiAi2»—i I
~H

I pji~j2»J &

=T;(r; )5(r; —r )5;,.

+ V;(r«, r; )5,J+ WiJ. (r; «»J ) « (4.7)

T, (r; } denoting the kinetic energy operator.
The relative motion energy E„,];=E; is obtained by

subtraction of the cluster eigenenergies [or, in practice,
cluster expectation values (QJ ~

H «;"~'~
~

«))J ) (i = I, . . . , n:
j=1,2)] from the total energy E:
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(4.8)

where the internal Hamiltonians, H~'~' (j =1,2), are de-
fined by the decomposition of the microscopic Hamiltoni-
an 0, H=H ~'+H 2'+0 ~2.

' RGM coupled channel
equations are the form of Eq. (3.1), and therefore our
methods described in Secs. II and III also apply to the
RGM case. Note, however, that in the case of the RGM
the eigenvalues of the (norm) operator N cannot be larger
than 1, because of the projection properties of the an-
tisymmetrization operator A, A =A.

There is a controversy' ' ' as to the existence of a
node in the N-N relative wave function as calculated on
the basis of the nonrelativistic constituent quark model
with the RGM method. ' ' By analogy with a short-
range repulsion between two a clusters, the short-range
repulsion in the quark model N-N potential was expected
to originate from the Pauli exclusion principle between
quarks. ' However, it was pointed out by Faessler
et al. ' that the situation in the quark model is slightly
different from the case of a clusters because of the color
degree of freedom. It has been argued that the totally
symmetric [6] state would be rather unfavored compared
to the symmetry [42] state, because of the spin and color
dependent structure of the quark-quark interactions. If
the orbital symmetry is [42], then the relative wave func-
tion has a node which would simulate a hard core. Re-
cently, it has been found that under certain circumstances
one can construct explicitly on-shell equivalent hard cores
and structural cores. The corresponding wave functions
have different off-shell behavior, but have the common
property that they disappear at some r, which can be
determined explicitly by Bauhoff's ' method rather
than by a fitting procedure of the corresponding phase
shifts. 's Note, however, that the on shell equivalence be-
tween a hard core potential with a core radius r, and a
structural core still persist even in the absence of a forbid-
den or almost forbidden state, or, in other words, even in
the case when the relative wave function does not display
an energy independent (or almost energy independent)
node. ""

Faessler et a/. ' have shown that a projection onto the
[6] orbital symmetry from the two-nucleon system au-
tomatically introduces the so-called hidden color state. '

In RGM calculations by Faessler et a1.' including NN,
b b„and CC (a hidden color channel), the relative motion
function of the N-N channel had a node in the s wave at
approximately r, =0.5 fm. In a recent paper, Spitz and
Schrnid' ' * pointed out that this node is due to a par-
ticular off-shell behavior of the wave function XNN. Ap-
plying their method, ' in which the 4h and CC channels
are orthogonal (in the sense of RGM overlap for different
channels) corrections to the NN channel, i.e.,

(4.9)

a =hA and CC, they have found that this node is no
longer present. Of course, in both formulations the
asymptotic behavior is identical. It turns out' that the
relative wave function XNN subject to Eq. (4.9) is similar

to that obtained from a single-channel approximation.
Spitz and Schmid conclude that, in the one- and three-
channel approximations, the six-quark resonating group
method calculations with energy-independent potentials
do not support the existence of a short distance node in
the N-N relative wave function, YNN. In view of our new
results that there are an infinite number of transforma-
tions which orthogonalize channel spaces, their conclusion
appears to be premature. In the single channel case, and
in the coupled channel case as well, even with energy-
independent potentials (or, in the case of the RGM, for
orthogonalized channel spaces), the behavior of the rela-
tive wave function at short distances is not unique. Since
the method given in Ref. 21 leads to only one specific
off-shell extension, no firm conclusion can be reached.

The question of the existence of a node in the relative
wave function is a matter of the off-shell ambiguity of the
given Herrnitian on-shell equivalent Hamiltonian. Fur-
thermore, there is no compelling reason for emphasizing
on energy-independent formulation of the Hamiltonian,
because the solutions of both the energy-dependent and
energy-independent Hamiltonians are on-shell equivalent
and the off-shell behavior does not correspond directly to
physical observables. From a theoretical point of view,
the investigation of the off-shell behavior could be justi-
fied if the quark-quark forces would be known both on
shell and off shell, and the nucleon cluster functions are
described more realistically and not simply by Gaussian
functions. The fact that the calculations of Faessler
et al. ' display a node, while those of Spitz and Schmid'9
do not, shows that appropriate off-shell transformations
can introduce or remove a node in the wave function at
short distances, reflecting our finding that the orthogonal-
ization is not unique due to the off-shell ambiguity.
There is only one special case in which the energy-
independent node in the wave function can be discussed
consistently within the framework of the RGM. This
case applies to the situation in which, for the single chan-
nel case, a forbidden state exists. This forbidden state
remains forbidden even in the coupled channel case, as
shown in Sec. III. The orthogonality of the relative wave
functions. The fact that the calculations of Faessler
et al. ' display a node, while those of Spitz and Schmid'
do not, shows that appropriate off-shell transforrnations
can introduce or remove a node in the wave function at

It has been suggested by Spitz and Schmid' ' ' that
the node in the s-wave function of the deuteron can be in-
vestigated within a three-nucleon calculation. However, it
is most unlikely that such a calculation will be conclusive
since the different behavior of gNN determines only the
half-off-shell behavior of the corresponding t matrix. The
Faddeev equation, however, requires the knowledge of the
fully-off-shell behavior, which includes the structure of
the left hand cuts of the t matrix. Using different poten-
tials, we are not only changing the half-off-shell behavior
of the t matrix, but also the left-hand structure of the t
matrix. Therefore, two different families of potentials
which introduce a node into the wave function are likely
to lead to conflicting predictions for a three-nucleon sys-
tern, ' and the Faddeev calculation can only lead to incon-
clusive results.
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Finally, we comment on the method devised by Schmid
and Spitz ' to orthogonalize RGM channel spaces. Their
method leads to only one specific off-shell transformation
which eliminates the energy dependence. It consists of re-
cursive elimination of the overlaps between a specific
channel i and the remaining channels in terms of the
eigenvalues and eigenvectors of the operator N;; T.his
method is much more cumbersome than ours, but it may
have some numerical advantages compared to our method
in cases in which the number of channels is fairly large,
the operator N has no analytical solutions, and the over-
laps of only one particular channel are of interest.

V. SUMMARY

The elimination method of linearly energy dependent
potentials given in Ref. 20 has been extended so that a
class of half-off-shell extensions can be explicitly can-
structed for a large class of potential operators. The ex-
tended method is exact and straightforward to apply. Our
method provides a systematic way of studying how large a
half-off-shell variation of a t matrix can be. The class of
allowed off-shell transformations is given in terms of an
infinite number of parameters which can have discrete
and continuous values. There also exists an infinite
discrete subclass of these transformations which leave the

energy dependent part of the original Hamiltonian unal-
tered. This might be helpful in studying the properties of
RGM potentials while preserving the functional form of
the normalization kernel.

The methods derived for the single channel case have
been generalized to the coupled channel two-body equa-
tions. The method for the coupled channel case retains
the same features as in the single channel case. The new
coupling potentials after the transformation can be easily
analyzed, because of their transparent algebraic structure.
The constraints on the allowed off-shell transformations
are determined explicitly. The role of the forbidden state
in the single channel and coupled channel cases has been
investigated and clarified.

We have employed our method to clarify the recent
controversy as to the existence and role of a node in the
nucleon-nucleon relative wave function at short distances
obtained from RGM equations within a nonrelativistic
quark model. %'e have shown that neither the ROM
equations nor their interpretation can provide a unique
conclusion or answer regarding the problem of nodes in
the N-N quark model relative wave function.
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