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The static properties of the skyrmion and the skyrmion-skyrmion (SS) interaction are investigated
within a modified Skyrme model in which the symmetric quartic and the ar-coupling terms are both
included. We approximate the latter term by the infinitely large limit for the u-meson mass. The
model is considered to be an effective Lagrangian of pions at low energies. A good agreement of the
static properties of the nucleon is obtained using the coupling constants to fit the n.m scattering data.
The SS interaction potential is expressed by means of the generalized spin and isospin operators. As
a result, the potential is easily projected onto the potentials for NN, Nd, and hh states with definite

spin and isospin. It is shown that the SS potential has a good correspondence with the one-boson-

exchange potential of the ~ and p mesons at large distances. The symmetric quartic term, which is

necessary to achieve agreement with the S- and D-wave mm scattering data, has been expected to
give rise to an "o-meson"-like attractive contribution at the intermediate range of the central poten-
tial. There exists, however, no such contribution, even if the strength of the symmetric quartic term
is increased. This is because we must also increase the co-coupling term to stabilize the skyrmion.
We need further study of this problem.

I. INTRODUCTION

The Skyrme model' is now considered to be a candidate
for low-energy effective theories of mesons and baryons,
which may be derived from the large N, limit of QCD.
The model is essentially a nonlinear sigma model and in-
volves a fourth-order derivative term W4z called the
Skyrme term. One needs the term to stabilize the soliton
solution identified as the nucleon (N) or the delta isobar
(4). The static properties of the nucleon can be ex-

plained by the model up to an error of 30%.
The NN interaction has also been investigated' by

means of the Skyrme model, and the skyrmion-skyrmion
(SS) interaction potential has been shown to possess
characteristics of the NN interaction: The long-range
part of the SS potential is quite similar to that of the onc-
e and -p exchange model with reasonable values of the
coupling constants g N~ and g&~N, and its inside part has
a repulsive core of the order of the nucleon mass. There
exists, however, no attractive contribution at the inter-
mediate range of the central potential. This means that
the model shows no "a.-meson" exchange in their interac-
tion.

With a view to remedy the above defect, Jackson et al.
proposed a modified Skyrme model in which the sign of
the Skyrme term was inverted and a new stabilizer, which
is a sixth-order term, W6, of the field derivative, was in-
troduced. The term is just the co-meson coupling term of
Adkins et al., but with the infinitely large limit of the co

meson mass. Although the modified model predicts such
an attractive contribution, the negative sign of the Skyrme

term does not agree with the mw scattering data.
It is known that there exist two independent quartic

terms in the chiral symmetry limit of ineson Langrangi-
an. ' One is the antisymmetric term, just the Skyrme
term, and the other is the symmetric term denoted by
&4s. Donoghue et al." showed that both quartic terms
are necessary to reproduce the mm scattering data at low

energies, by examining the D-wave scattering lengths of
I=O and 2. Following the analysis, the Paris group'
showed that the symmetric quartic term yields a contribu-
tion of the "o-meson" exchange into the SS central poten-
tial. The term is, however, known to destabilize the soli-
ton solution, so that we need a new stabilizing term in ad-
dition to the Skyrme term. For this purpose, we may use
the to-coupling term or the W6 term.

In the present paper we examine the SS interaction
within the modified Skyrme model in which both the
quartic terms, &4„and &4S, and the sixth-order term,
W6, are all included. The coupling constants in the
model are chosen so as to reproduce the experimental mm

scattering data for the D waves and to achieve overall
agreement between the static properties of the nucleon. In
addition to this, we also consider the case without the
&4s, for clarifying the role. The Paris group' and
Eisenberg et a1.' recently investigated the SS interaction
by including the co-coupling term. In the analyses they
employed an additive ansatz for the to field. We found
that the ansatz is not good in predicting the short-range
part of the potential. Instead of including the co-coupling
term, we decided to use the W6 term and calculate all the
contributions from the term. The calculated SS potential

1559 1986 The American Physical Society



OTOFUJI, SETO, YASUNO, KURIHARA, AND KANADA

is projected onto the NN, Nb, and hh channels by using
an SO(4) tensor decomposition technique. We also
develop a method of decomposing the interaction poten-
tial into terms with different asymptotic forms and 6
parities. This decomposition is very convenient for the
discussion of what ingredients are involved in the poten-
tial.

The organization of this paper is as follows. In Sec. II
the effective Lagrangian of our model is introduced. In
Sec. III we describe a general form of the SS potential.
The interaction potential is then projected onto those for
the physical states of the nucleon and the delta isobar by
means of generalized spin and isospin operators. Also,
the asymptotic property of the potential is discussed. In
Sec. IV we determine the coupling constants of the effec-
tive Lagrangian in conjunction with the irir scattering
data and calculate the static properties of the nucleon.
The calculated radial dependence of the SS potential is
given in this section, and its detailed structure and the G-
parity dependence are discussed. We compare the result-

ing potential with a one-boson (n and p mesons) exchange
potential and extract the coupling constants and the
masses of the "exchanged m and p mesons. " In Sec. V the
summary of this paper and discussions are given.

II. MODIFIED SKYRME MODEL

We start with the following Lagrangian, considered an
effective Lagrangian of @CD at low energies:

~2+ ~4A+~XSB+~4S+~6 ~ (2 1)

where &2, W4z, and WzsB are the kinetic, Skyrme, and
chiral symmetry breaking terms, respectively:

p2
Tr(LqL" ),

W4g —— TrI [L„,L„]2j,1
(2.2)

[Tr(a„Ua U')]'.
8e

(2.3}

m+
WzsB= Tr(U —1}.

8

Here, U is the SU(2) chiral field, and we used the nota-
tions for the left- and right-hand currents as
L„=Uta„U=tr, L„' and a„=Ua„Ut =ir,Z„'.
denotes the pion decay constant, m the mass of pion,
and e the coupling constant of the Skyrme term.

In Eq. (2.1), &4s is the symmetric quartic term:

1

3(hre F
To reproduce the experimental values of the scattering
lengths, me obtain 0. 1 (y &0.2. Recently, Pham et
al. ' ' used a dispersion theoretic approach to determine
the mn scattering and obtained y-0.28—0.34 to fit the
S-wave mm scattering. %e see that the coupling constant

y is uncertain but not necessarily zero. The Paris group
interpreted the &4s term as a limit of a scalar meson
coupling term for the infinitely large mass of the meson. "

The &6 term in Eq. (2.1) is the infinitely large mass
limit of an to-coupling term:

&6————8 8"6
p (2.5)

~here 8& is the topological baryon current

8&= et' ~Tr[L„L~L ] .1

24' (2.6)

Fc& 3+ (2.8)

where 5=e F e6/16tt . Numerically, y, is smaller than
the value expected from the right hand side of Eq. (2.8).

Following the Skyrme ansatz, we write the static soliton
solution as Uo ——exp[iF(x)r'R] for the chiral field U in

Eq. (2.1). The solution with the unit baryon number is
obtained by imposing the boundary condhtion on the
chiral angle: F(0)=n and F(oo)=0. To describe the
classical soliton as a quantum particle, we use the collec-
tive coordinate method introduced by Adkins et al;2 the
physical solution is given by U—=AUSA, where A is at

time-dependent but spatial-independent SU(2) matrix
(A =ao+ia r with g,. na; =1). The canonical quanti-
zation gives that the skyrmion can be quantized as the
states with J=I=—,', —,, . . .. The spin J and isospin I
operators are described using the collective coordinates a;:

The parameter e6 iii Q. {2.5} is related to the co-meson

coupling constant g„by

e6 8n.(g„/——4n )/m „. (2.7)

The term &6 plays a role in stabilizing the soliton solu-
tion when we include &4s with large coupling constant
y. There exists a critical coupling constant y, of the term

&4s such that we have no stable solution when y p y, .
We can find an upper limit of y, as follows

' 1/2

As showil by Gasser et al. and Donoghue et al.,
~4S term is necessary to reproduce the low-energy mm

scattering data: The scattering lengths at of the n~
scattering are given by

l
Jk ———ak

2 Bao

8
Ik ———a0

2 BQk

a—a0
~ak

—~kl~~l 7

~&m

8
~klm ~l

Ba

{2.9)

0Q0=
7ptl ~

32@I'~

1 (y+-
30ne2F

(2.4}

The spin and isospin structure of the skyrmion is
represented by the SO(3) matrix D;1( A ), where
DJ(A)= Tr[r,.ArJA I/2. The commutation relations of
D;J with the spin and isospin operators are given as fol-
1ovrs:
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[Ji~Dkl ]=i &ilmDkm ~ [Ii~Dki] i &ikmDml . (2.10)

Thus, the first index of D,I denotes the isospin index,
while the second denotes the spin index. Since these D;J's
commute with each other, D;~'s satisfy the same Lie alge-
bra of the group as that for a symmetric pseudoscalar-
meson theory in the strong coupling limit. ' ' %'e

describe this point in detail in Appendix A.

Integrating the Lagrangian in Eq. (2.1), we obtain

L= f ~dx= —M+A, Tr[AA ], (2.11)

where the terms higher than the second orders of the time
derivatives are neglected because the skyrmion is assumed
to rotate slowly. In Eq. (2.11), M is the classical soliton
mass:

M= — dr r F' + +4s +2F' 4yr—F' +0 ~2 ~2r r T
k

+25 F' +2P r (1—c)
r

(2.12)

where r =eF r, P=rri~l(eF ), s = sinF, and c = cosF. In Eq. (2.11), A, is the moment of inertia of the rotating skyr-
mlon:

2m
r drs 1+4 F' + S~r F'—+ +45 F'

3 0 T
@asar 2 r T

-2 (2.13)

The chiral angle F(r ) is the solution of the following Euler-Lagrange equation:

2—+2(l —2y)s' —6yr 'F'+5, F"+ ——25, F'—
r2 2 r3

S C 2$ c+ 2(1 2y)sc+—25 F' 4yrF' (1——4y) —— r s =0 . (2.14)
T

III. SKYRMION-SKYRMION INTERACTION

A. Definition of the SS potential

For a two-skyrmion system, we assume a product form
for its chiral field as follows:

U(x;Xi, X2) =A i Up(x —Xi )A iA2 Up(x —X2)A g,
(3.1)

where X& and X2 are the coordinate parameters denoting
the centers of two skyrmions, and Ai and Az are the col-
lective coordinates to describe their spinning motions.
Substituting Eq. (3.1) into Eq. (2.1), we obtain the follow-
ing Hamiltonian:

4 (x;Xi,xq, A &,A2) =A, (x;X„Ai )+~i(x;X2,A~)

+m;«(x;X, ,X,,A „A,), (3.2)

where P, is the Hamiltonian of the two skyrmions, and

A;„, denotes the rest interpreted as their interaction part. .
From now on we neglect the time-derivative terms in
A;«, since the rotation of the skyrmions is considered to
be slow.

The SS potential is obtained by integrating A;« in Eq.
(3.2). The resulting potential is written as the sum of the
contributions from the respective terms in the effective
Lagrangian in Eq. (2.1) as follows:

where up and u; are defined by

Up(x —X, )=up(j)+ir;u;(j), j lor=2 (3.4b)

and D;i is the SO(3} representation matrix of the
argument A &Az as follows:

D ij =D~i(A iAp) . (3 5)

Throughout this paper, the repeated indices mean the
summation over l, 2 and 3. The kinetic term has only
the V2 component,

2

V2(r)= f dx[(RL}+(RL)],
216

(3.6)

where Viz, Vz, V4&, V4s, and V6 denote those from the
terms Wzsa, &2, W4z, &4s, and W6 in Eq. (2.1),
respectively. Each V; (i=aSH, 2, 4A, 4S, and 6} has the
three components which are asymptotically those of the
one-, two-, and three-pion exchange potentials, and are re-
ferred as V~~, V;, and V~~ ', respectively. The potentials
are explicitly written as follows: The XSB term yields

2 2m~„
rsvp( ) = dx u;(1)D;iui(2),

(3.4a)
2 2

Vzsz(r) = — f dx[up(1) —1][up(2) —1],
4

V= f dxA;«(x;Xi, X2,Ai, Aq}

= ~ySB+ ~2+ ~4~+ ~4S+ ~6 (3.3}

where the parentheses in the integrand means
(AB }=A&8&, and the following notations Rk and LI, were
used for brevity's sake:



1562 OTOFUJI, SAITO, YASUNO, KURIHARA, AND KANADA

RJ, —:TrIT; Uo(1)L}kUl](1) I l(2i),

Lt, = Tr IT; U(](2)L}kUo(2) I /(2i ),
where Uo(i) (i =1 and 2) stand for Uo(x —X;). All the
expressions involve only the above combinations; that is,

X~ appears through the right-hand current and X2
through the left-hand current. In Eq. (3.6), we have also
used the following:

P
D lj 27 (BTij + ss5ij }

(3.13)

(1) (1) (2)DijD kl ~ij 5kl+~k! 5ij +Hik 5jl

+H,',"5,,+H,',"5,„+8,'j"5,, +5,,5„G'"

+5k;5jIG' ]+5kj5~IG' ',
R'-=R Dk; and L'=D;kL. .

The Skyrme term W4z yields

V]„(r)= r f dr[(RRRL)+ILLLR)],

(3.8)

(3.9a)

where H and G are expressed in terms of the SO(4) spin-

isospin irreducible tensors 6 and 6' as follows:

(2) 4
Ij 189 (BT lj +BTij )

V '„(r)= f dx[(RRLL )+(RLRL )+(RLLR )],
2e

(3.9b)

„', (6e'„,+13e„., ),
Z7O (36ss+ 56ss»

(3.14)

where we have defined

(ABCD)=AjB&CkDk AjBk—Cj'Dk .

The symmetric quartic term Wss gives

Vgg ——— x RR RL + LL LR

(3.9c)

(3.10a)

(6,', ) and BT;j (O'T;j) denote the zeroth-
(second-) rank irreducible tensors, respectively, and are
given by

Vgg ———
~ f d x[2(RR )(LL )+(RL )(RL )] .

The co-coupling term &6 gives
'2

V6(r) =6 E6

24m'

(3.10b)
ess (D kkD II D kk

BT,) ——9(3D,j 5;jD kk ),—
1

BT, 'j 9(3D 'j 5jD kk)(D II+'2 } ~

(3.15)

L

X f dx[(RLL )(LLL ) +(LRR )(RRR )], (3.11a)
'2

V6'(r) =3
24m

X f dx[(RRR)(RLL)+2(LLL}(LRR)

+3(LRR )(LRR ) +3(RLL )(RLL )],
(3.11b)

VIH(r)
24

X f dx[(RRR)(LLL}+9(RRL)(LLR)],

=A(B],B I )A(B2,B2)(&;)](&,)2(T T2), (3.168)

where 8; denotes the N or 6 state, and S and T are the
generalized spin and isospin operators, respectively.
A(B,B') is a kind of reduced matrix element in the
SU(2)XSU(2) matrix, and can be obtained using the
strong coupling relation' ' as shown in Appendix A:

A(N, N) = ——,, A(N, b ) =A(b„N) = 1j~2,
A(a, a)= ——,'„A(a, —,')=v 3j2.

(3.16b)

The matrix elements of D;j between physical states are
calculated as follows:

&B,B, ~D,,(A', A, ) ~B,B;)

where we have defined

(ABC) =kijkeI „AI~Bj~C—k .

(3.11c)

(3.12)

SQInIDarizlng the above, one can write the static poten-
tial between skyrmions in terms of a general operator
form as follows:

V(r;A], Ag)= V, (r)+essV„(r)+BTVT(r)

B. Tensor decomposition

+B,', V,', (r)+BTVT(r), (3.17a)

(3.17b)
In order to project the SS potential onto that for the

physical nucleon and/or delta isobar states, we decompose

the terms D;J and D;~DkI in the above expressions ap-

pearing through R or L into those of the SO(3) irreduci-

ble tensors:

with r=X& —X2 the relative coordinate between the skyr-
mions. Referring to Eqs. (3.15) and (3.16a), one notices
that B„and BT are the (cr o)(T T) and S]z(T.T) terms for
the NN potential, respectively. 6,', and 8T denote the
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tensors consisting of the second-rank spin and isospin
aperators for each skyrmion. These tensors are thus only
effective for the Nh or hh states and not for the NN
states. The existence of the higher-rank tensor terms were
noted by Yabu et a/. independently.

and

Z(x)= 1+—+ Y(x) .
3 3
X

(3.22)

exp( m—r)
F(r)~X at r~oo,

m r
(3.18}

where the proportional factor X is associated with the
pseudoscalar coupling constant g NN as

X=(3/4n)(m /MN)(g NN/F ) . (3.19)

Using this asymptotic form of F(r ), one obtains
T

Vi~ Do)(A i )Dos(A2)B(Bs(e
' /r ) .

(3.20)

From the matrix element given by Eq. (3.16a), we have
the Sugawara —von Hippel form~2 for the potential:

XTi T2[Si SqY(m r)

+Si2Z(m r)], (3.21)

with

e
—x

Y(x)=
X

C. Asymptotic form of the SS potential

From the above tensor decomposition of the potential,
we notice that the V potentials involve only the e„and
er dependences because they are linear in D;J. On the
other hand, the potentials V" and V'" involve all kinds of
dependences that appeared in Eq. (3.17a}. Now, let us see
the asymptotic behavior of the V' potentials. The chiral
angle F(r ) behaves, in the asymptotic region, as

Using Eqs. (3.16b), (3.19), (3.20), and (3.21), we obtain the
following relations between the coupling constants:

g~Na /gsNN 3/~2 and gehh/gs'NN (3.23}

The relations are just those derived from the strong cou-

pling theory.

D. 6-parity and SS potential

Now let us consider the skyrmion-antiskyrmion (SS)
potential. For this purpose, we make a 6-parity transfor-
mation to one of the skyrmions; for example, we replace
Uo(x —X,} in Eq. {3.1) with Uo{x—Xi}. For such a
transfarmation, Rt (1) defined by Eq. (3.7) becomes
Lk(l), where the argument "1"means Uo(x —Xi) to be
the argument. After this replacement, we obtain the SS
potential. However, we must symmetrize the result with
respect to the particle coordinates, since the potential is
linearly dependent on the relative coordinate; otherwise,
the parity conservatian is broken.

The G-parity structure of the SS potential can be seen

easily from the above SS potential. In the expression of
the SS potential, we can replace Lk(1) in terms of Rk(1)
using the identity Lk (1)= —R; (1}.We then note that the
symmetric part of R;" in the suffixes i and k has an
asymptatic form of the one-pion-exchange tail, and the
antisymmetric part has that of the two-pion-exchange tail.
Hence, if we consider a long-range behaviar of the poten-
tial, the G-parity structure is determined by the powers of
R~ in the expressions (3.6) and (3.9a)—(3.11c),because the
symmetric part is anly responsible for that behavior.
Thus, V'and Vii'are odd in the 6 parity, and V is even

in the 6 parity This .m~s that Vi and Vum hm the
character of the n or co exchange, while V" has that of
the cr or p.

TABLE I. Calculated static properties of the nucleon.

Quantity

(MeV)
e
y2
g„/4n.
MN (MeV)
Mg (MeV)
&r') JQo {fm)
&r')J~, {fm)
&r )m, l-o {fm)

pp
Pn

Is,/s. I

g~NN

ga

Case I

120
10.0
0.0

10.0
input
input

0.76
1.07
0.98
2.24

—1.44
1.55

14.5
0.84

Case II

125
12.0
0.1

10.0
input
input

0.74
1.04
0.94
2.12

—1.33
1.59

12.9
0.80

Case III

186
3.4
0.0
0.0

2131
2294

0.58
0.93
0.82
3.03

—2.73
1.11

14.3
0.57

Experiment

186

938.9
1232.

0.72
0.88
0.81
2.79

—1.91
1.46

13.5
1.23
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IV. NUMERICAL RESULTS

A. Static properties of the nucleon

Our model involves the parameters I, e, y, and e6.
F is the pion-decay constant, and e and y are determined

by the nv D-wave scattering lengths in Eq. (2.4}. e6 is re-
lated to the ~-meson coupling constant g„ in Eq. (2.7}.
To achieve overall agreement with these data, we choose
the parameters within the following:

1.0

0.5

Case I

Case II

Case III

F =120—186 MeV,

y =0.12—0.2,
e =3.4—12,

(4.1)

2(frn}

2

=5.0—10.0 .
4m

As stated in Sec. II, the experimental data are very uncer-
tain, so these values of the parameters should not be taken
seriously. To reproduce the !=I=0 scattering length of
the muscat. tering in terms of the chiral symmetry break-

ing term Mrs', we must reduce the value of F consider-
ably. This may not be so when we include the term &4s.

Within the above ranges of the parameters, we attempt
to reproduce the masses of the nucleon and the delta iso-
bar. We adopt the following two cases: Case I is for
F =120 MeV, e =10.0, y=0.0, and g„l(4n )=10; case
II is for F~ = 125 MeV, e = 12.0, y =0.1, and

g /(4m) =10. Case I was chosen for the case without the
term Wqs (y =0}. In choosing case II (y&0), we tried to
solve the differential equation in Eq. (2.14), but could not

get any solution for the chiral angle F(r) for y p 0.1. As
mentioned in Refs. 15 and 16, the term Wqs works as a
strong destabilizer, so that y must be smaller than a criti-
cal value. It can be shown that the inclusion of the term

gives rise to an instability of multiskyrmion systems. ' In

t

{bj neutron
I Case 1

--—Case II

——Case III

(Crn 3

I

2

FIG. 2. The charge distributions of the proton and the neu-
tron: (a) and (b) are for the proton and the neutron, respectively.
See the caption of Fig. 1 for details.

this meaning we prefer case I, but as a phenomenological
model we used the value y =0.1 in case II. Later we dis-
cuss the case for large values of y.

The static properties of the nucleon are calculated for
the above two cases and are listed in Table I. For a refer-
ence, we also showed the case of the pure Skyrme model
with y=e6 ——0 (referred to case III), where F is taken to
be the experimental value 186 MeV, and e is chosen so as

se I

se 9

se I

FIG. 1. The radial dependence of the calculated chiral angle
F(r ): The solid, dotted, and dashed curves are the solutions for
cases I, II, and III, respectively.

I I

5
q (fm 2)

FIG. 3. The calculated charge form factor of the proton in a
comparison with the experimental data (Ref. 23). See the cap-
tion of Fig. 1.
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to reproduce the nucleon pion coupling constant g NN.
From Table I one notices that the calculated static proper-
ties for cases I and II are in good agreement with experi-
mental data. In Fig. 1 we show the radial dependence of
I'(I ). The figure shows that the chiral angles I'(r) for
cases I and II swell in the intermediate range in compar-
ison with that of case III. This effect is due to the co-

coupling term W6. Comparing case I with II we see that
the effect of the &4s term shrinks E(r ). The charge den-
sities of the proton and neutron are shown in Fig. 2. The
results for cases I and II are slightly shifted toward the
outside region compared with case III. Figure 3 displays
the calculated charge form factor of the proton in a com-
parison with the experimental data. ~3 The agreement of
the results for cases I and II is rather good at the low-
momentum transfer region, although it is poor at high
momentum. On the other hand, the result for case III is
in good agreement with the data at the high momentum.

S. Skyrmion-skyrmion potential

Following the prescription described in Sec. III, we cal-
culate the SS (SS) potential. Figures 4(a), 4(b), and 4(c)
show the calculated central V„spin-spin V„, and tensor
Vr potentials for case I, respectively. In the figures the
upper parts are for the SS potential, the lower for the SS

potential. Similarly, the higher-rank spin-spin V,', and
tensor VT potentials are shown in Figs. 4(d) and 4(e). The
solid curves show the net contributions of the potentials.
Each component is also displayed in the figures when its
contribution is large: The long-dashed, short-dashed, and
dotted curves display the contributions from V6, V6, and
V6, respectively. Also, the dotted-dashed curve denote
that from V2, and the double-dotted —dashed and triple-
dotted —dashed curves denote those from the V&sz and
VrnsB terms, respectively. The contributions from the
Skyrme term, V4&, are rather small for case I, so the con-
tributions are not shown in the figures.

For the central potential in FilI. 4(a), we see that V6'

has odd G parity, and V6 and Vz'sa have even G parity.
This can be seen from the comparison with the potential
for the SS interaction in the lower part of Fig. 4(a). Thus,
Vsn' has a characteristic of the co-meson exchange poten-
tial and is the main contribution to the short range part.
The potential V6 has a simple structure; as seen from Eq.
(3.10c), one can write for the central potential

V6n'(r) =eq f dx80(x —Xt)80(x —X2), (4.2)

where 8 (x—X;) (i =1,2) denote that baryon densities
around the centers X;. Equation (4.2) shows that the cen-
tral part of V6 is just the folding of the baryon densities
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FIG. 4. The skyrmion-skyrmion (upper part) and skyrrnion-antiskyrmion (lower part) potentials calculated for case I. (a), (b), and
{c)are the central, V„ the spin-spin, V„, and the tensor, VT parts, respectively. (d) and {e) are the spin-spin, V,'„and the tensor, VT,
parts of the higher rank, respectively. The solid curves are the net contributions. The dotted, dashed, and long-dashed curves denote
the contributions from the terms V6", V6', and V6, respectively. The dotted-dashed, triple-dotted —dashed, and double-
dotted —dashed curves show the contributions from the terms V2, Vz», and V~», respectively.
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of the skyrmions. This is because we used the infinitely
large limit of the co-meson mass for the co-meson coupling
term. On the other hand, V&'sq and V6' give the o-
meson-like exchange contributions. The former has a
correct sign, but is small, and the latter has the incorrect
sign.

For the spin-spin potential displayed in Fig. 4(b), we
note that the contribution from V2 dominates in the in-
side region, while that from V6 dominates in the asymp-
totic region. (Note the breaks of the curves at r =2 fm.
The scales of the vertical axes are the same at r & 2 fm as
for the upper and lower graphs. ) Both contributions have
odd 6-parity structure in the outside region (r & 2.0 fm).
Compared with the previous result, we note that the role
of the Skyrme term V&„ in the pure Skyrme model has
been replaced by that of the c0-coupling term V6 in this
case, and the net result is very similar to that of the pure
Skyrme model.

For the tensor potential displayed in Fig. 4(c), V6,

Vzsz, and V2 are the main contributions in the asymptot-
ic region. in the same way as the spin-spin interaction,
the G-parity structure of each component is clearly seen
in comparison with that of the SS potential. Although
each contribution is different, the net contribution is also
similar to that of the pure Skyrme model.

For the potentials of the higher rank tensor, V,', and

Vz, shown in Figs. 4(d) and 4(e), we note that each com-
ponent is rather large, while the net becomes small. We,
however, discuss the contribution of Vr to the potential
between the Nh states later.

C. Effect of the symmetric quartic term

Figures 5(a), 5(b), and 5(c} show the central, spin-spin,
and tensor parts of the SS potential calculated for case II,

respectively. In this case, the contribution Y4s from the
symmetric quartic term, W4z, is included, and is depicted
by the thin solid curve. Figure 5(a) shows that the &4s
contributes attractively, but is not sufficient to overcome
the repulsive contribution from the co-coupling term. The
net result is purely repulsive, so that there is no sign of the
o-meson exchange in the intermediate region. For the
spin-spin and the tensor part in Figs. 5(b) and 5(c), the
contribution of the &4@ term is rather small.

D. Comparison with the OBE potential

To facilitate comparison with a one-boson-exchange
(OBE} potential for the NN interaction, we calculate the
ratios of the present results to those of the OBE potential:

Vz (r) YJ+(r)
RJ (r)= . , RJ+(r)= . (j=T or ss), (4.3)

V~~(r ) V~&(r )

where V and Vz denote the one-m and -p exchange po-
tentials, respectively, and V& ( VJ ) is the 6-parity odd
(even) component calculated from the SS and the SS po-
tentials. If the calculated result is the same as that of the
OBE, then the ratio Rz-/R,+, is independent of the cou-
pling constant of the OBE potential. The calculated ra-
tios for case I are shown in Fig. 6. From the figure one
sees that the ratio for the G-parity odd part is very close
to unity for r & 2.5 fm, with the pion mass 140 MeV for
the OBE. On the other hand, the 6-parity even part is
roughly fitted with the p meson mass 430 MeV in the re-
gion r &2.5 fm. Hence, the asymptotic form of the SS
potential has the character of the one-m and -p exchange
potential. Using these results, we obtain the coupling con-
stants of the OBE potential predicted by the Skyrme
model:

V~(BB) VT(BB)

FIG. 5. The skyrmion-skyrmion potentials calculated for case II. (a), (b), and (c) are the central, V„ the spin-spin, V„, and the
tensor, VT, parts, respectively. See the caption of Fig. 4 for details. The thin solid curves are the contributions from the term V4z.
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E. Transition potentials between NN and NLL states

The SS potential can be projected onto the NN, Nh,
and hd potentials and also onto the transition potentials
between them. These are calculated from the generalized
potential in Eq. (3.17a) using the matrix elements of the
operators e's. The explicit expressions for the matrix ele-

ments of these operators are summarized in Appendix B.
Figure 7 shows the transition potential VNN Nr, (r) calcu-
lated for case I: The solid curves in Figs. 7(a), 7(b}, and
7(c) display those between the 'D2(NN) and S2(Nb, ),
F3(NN) and P3 (Nb, ), and '64(NN) and D4(Nb, ) states,

respectively. For the sake of comparison, we also show
the transition potentials calculated for the one-m and -p
exchange potential by the dashed curves. Here, the
dipole-type cutoff was used to calculate them. One can
see from the figures that the prediction of the Skyrme
model is very similar to that of the one-boson-exchange
potential. It can be said that the Skyrme model automati-
cally includes a kind of cutoff function and also the con-
tribution from the n. and p exchanges in the asymptotic
region.

Here, we mention the contribution from the higher rank
tensor terms in the potential. These terms contribute for

-30

(c)
2 (fm) 4

(~)

FIG. 7. The calculated transition potentials: (a), (b), and (c)
are those between the 'D2(NN) and 'S2(NA), 'F3(NN) and
P3 (Nd ), and ' 64( NN ) and D4( Nh ) states, respectively. The

solid curves show the calculated resu1ts, and are compared with
the phenomenological one-m and one-p exchange potentials (Ref.
24) shown by the dotted curves. (d) is the transition potential
between the 'P2(NA) and F2(Nd ) states, where the solid curve
shows the calculated transition potential with all the com-
ponents but the dashed curve the potential calculated without
the higher-rank tensor component Vq.

the states involving the b, isobar, since the operators are
the second-rank tensors of the spin and isospin operators.
The terms are usually small, but may contribute a large
effect for some states. For example, the value of the ma-
trix element of e'z. between the P2(Nb, ) and F2(NE)
states is much larger than that of eT. As a consequence,
the V~ part becomes comparative to the VT part. In Fig.
7(d} the solid curve shows the potential between the
P2(NE) and F2(NE) states calculated by including all

the contributions, and the dashed curve shows that
without the VT part.

Finally, we show an effect of the channel coupling in-
cluding the NN, Nb„and b,h states for the scattering
phase shifts. For the 'D2(NN) state, for example, the cal-
culated phase shift is increased by 3 deg at 50 MeV and
by 13 deg at 250 MeV by the channel-coupling effect.
Hence, the channel coupling contributes an attractive but
not so large effect to the interaction.
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V. DISCUSSIONS AND SUMMARY

In this paper we examined a modified Skyrme model in
which the symmetric quartic term W4s and the co-

coupling term W6 are both included in addition to the
terms of the pure Skyrme model. The term W6 is the in-

flnitely large limit of the co-meson mass in an co-coupling
term, which was introduced by Jackson et aI. %e studied
the static properties of the nucleon in this modified
Skyrme model. The coupling constants of the model were
chosen so as to reproduce the mm scattering data and the
static properties of the nucleon as well as possible. Two
kinds of parameter sets were chosen; one of the sets (case
I) is obtained without the &4s, and the other with it. It
was shown that the static properties of the nucleon are
well reproduced for both cases; the model nicely repro-
duces the magnetic moment, the charge form factor, and
also the axial coupling constant gz compared with those
of the pure Skyrme model. 2

We next investigated the skyrmion- (anti-) skyrmion (SS
or SS) potential within the above model. It was shown
that the potential can be written by means of the general-
ized spin and isospin operators. The resulting potential is
easily projected onto those for the physical states with a
definite spin and isospin configuration. Hence, we obtain
the NN, Nh, and hb, potentials and the transition poten-
tials between these states from the SS potential.

We found that the SS potential has a good correspon-
dence with the one-boson-exchange (OBE) potential of the
m and p mesons in the long distance region (r p2. 5 fm).
We extracted the effective coupling constants and the
masses of the mand p m. esons. They are consistent with
the phenomenological ones and also with the previous re-
sults of the pure Skyrme model without the term W6.
This means that the asymptotic form of the SS potential
is almost independent with what an effective Lagrangian
has been employed. As for the central potential, one has a
repulsive core about the nucleon mass. The contribution
from the W6 term is the main part of the central potential
in the short-range part and is given by the folding of the
baryon densities. Its 6-parity structure is odd and is like
an e-meson-exchange potential. However, the central po-
tential shows no attraction at the intermediate region,
where the phenomenological potential possesses an attrac-
tive contribution due to the O.-meson exchange. The
&4S term was expected to give rise to such a contribu-
tion, but the absence of the "o-meson" exchange seems to
be independent of including the term or not; actually, the
contribution from the &4S term is attractive, but not
enough to compensate for the repulsive contribution from
the W6.

As shown in Ref. 13, one could increase the value of
the coupling constant y of the &4S term by also increas-
ing the co-coupling constant; the 2'4S term is a destabiliz-
er while the W6 is a stabilizer. In such a case we may
have a sufficient attraction for the central potential. We
tried a calculation with the parameter set e = l0, F = 130
MeV, y=0.35, and g„/4m=30. 0. The result shows,
ho~ever, no attractive part. This may be considered to be
in contradiction with the calculation in Ref. 13, in which
a strongly attractive contribution to the potential was
found. However, an additive ansatz was used for the co-

APPENDIX A: THE STRONG COUPLING
RELATION

In the strong coupling theory of a meson-baryon sys-
tem, the Lie-group G is the semidirect product of the
nine-parameter Abelian group T9 and the spin-flavor
SU(2)gXSU(2)1 group. ' ' D„, in Eq. (2.10) can be in-
terpreted as the meson currents in the theory because they
transform like the regular representation under the
SU(2)z X SU(2)I as follows:

[J+,D„,]=&(l+p, )(2+@)D„+,~,

[~$&DpT] OD+1'
[J+,D„,]=&(1+~)(2+r)D„,+i,
[I„DN,]=rD~, .

(Al)

The strong coupling relation is given by the commutation
relation

[D„„D„y]=0.

Following Singh, ' let us denote the isobar states by P „
where j is the spin and m and t are the third components
of the spin and isospin, respectively. Then, using Eq. (A 1)
and the %igner-Eckart theorem, we obtain

meson field. We see that the component V6' from the W6
term has been completely neglected by this ansatz. V6' is
very large in the intermediate region of the central poten-
tial and masks the attractive contribution from the &4s
term. Therefore, the "o-meson" contribution cannot be
explained by including the &4s.

Here, we comment on the role of the &4s term. We
have the inequality [given by Eq. (2.8)) of the coupling
constants to obtain a stable solution of the unit baryon
number. Increasing the baryon number, however, the al-
lowed value of y becomes smaller and smaller: For exam-

ple, for the case F =130 MeV, e =10.0, and
g„/4m=10. 0, the critical y, is OA3, 0.15, and 0.06 for
the baryon numbers n =1, 2, and 3, respectively. There-
fore, the inclusion of the Wqs term creates a serious prob-
lem. The term may be considered a large mass limit of a
scalar meson coupling term, ' but such an instability
problem for a multiskyrmion system cannot be avoided by
introducing a finite mass effect of the scalar meson.
When we consider, in the skyrmion physics, that an effec-
tive Lagrangian of mesons should support stable soliton
solutions, we face the problem of how the S-wave rem.

scattering is consistently described in the meson Lagrang-
ian without throwing gut stable soliton solutions. We
may need to abandon the product ansatz for the two-
skyrmion field. When we include the co-coupling term,
the effect of the deformation from the spherically sym-
metric hedgehog solution may become large. Here, it
should be noted that a finite mass effect of the co-meson
mass will instead smooth out the potential obtained from
the contribution. Thus, the range of the repulsive core be-
comes large, the situation being worse. It is, on the other
hand, interesting to study the role of vector mesons such
as the p and A

&
mesons in the SS interaction.
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(J'I IDI IJ)=J'J (A4)

where we normalized the element by noting that D„, is an
orthogonal matrix in the Cartesian representation. Using
(A3) and (A4), we finally obtain Eq. (3.16b).

(J~ I u IJ'~')V+ I I trav I
1'I')O'I IDI il}.2j'+1

(A3)

8y using Eq. (A2), the reduced matrix element is given by

APPENDIX 8: MATRIX ELEMENTS
OF e, eT, O', AND eT

In this appendix we give the matrix elements of the
spin-isospin operators e, er, e~, and e'r between the
NN, Nh, and Ab, states, which appeared in the
skyrmion-skyrmion interaction potential in Eq. (3.17a).
The operators 8 and eT are the same as the usual
S ST T and tensor operators, where S and T are the gen-
erahzed spin and isospin operators. The matrix element
of e~ is written as

( (81($1ti)82($2t2) j($3t3) I e„
I [81($1ti)82($2t2) j($2t2)) =9A(81,8'1)A(82,82)

X(($1$2}$3
I
S S

I
($1$2}$3&&(tit2}J3 IT T

I (tlt2)13&

(81)

where 81($1ti) denotes an isobar with the spin $1 and isospin ti (note $1 ——ti ); $3 and t3 are the total spin and isospin in
the state. The A(81,81)'s are the reduced matrix elements given by Eq. (3.16b). The matrix element of e,', is given by

& (81( t }82( 2t2 }j( 3t3) I

e'
I
(8' ( iti }8'( 't2) j( 3t'3 }&

=225 g A(Bi»i }A(Bi»i)A(82»2 }A(82»2}«illSllti' &'«i IISllti &'«2IISllt'2' &'«2 IISllt2 &'
gll gll1I 2

2 t2 t2 2
X „„'(($1$2)$3

I

S' 'S'
I
($1$2)$3)((tit2)t3 IT T

I
(tit2)t3) (82)

For er we find

( jB,($, t, )8,($,t, }j($,t, }u
I e, I

{8',($', t', )8,'($,'t,') j($,'t,')A, 'J)

=9A(81,81)A(82,82)((($1$2)$3' jJ I S12 I
f($1$2)$P,'jJ)((tit2)t3 IT'T

I (tit2)t3), (83)

where A, denotes the relative orbital angular momentum and J=A, +s3 the total. For e'T we find

( t81($1ti)82($2t2) j($3t3)u I eT I lB, ($,t', )82($2t2) j($3t3)A,'J)

3222= —9X53 '

1 1 1

' g A(81,81')A(8 1',8'1 )A(82,82')A(82', 82)
gll g II

1l 2

In the above, me have

I '2
El l l 2 f2 t2 2

x &tillSlltV &'«1'IISllti &'&t2IISlltz'&'«2'IISllt2 &'
1

r

X([($1$2)$3'jJ IS12 I
(($1$2)$3', jJ)((t,t2)t3 IT 'T

I
(tit2)t3) (84)

r

Sl $2 $3
(($1$2)$3 I

Si'1 Si 1

I ($1$2}$3)=S,( —} ' ' ' '
~ ~, &$i I

IS"
I
1$', & &$, (85)

( j($,$2)$3zjJ IS'12'
I
f($i$z)$3' jJ&

-- X'2A k 2A'
'3v30$$3$8~'

() (} (} ~ $i $2 $3 ($1lls"ll$i)&$2lls"'ll$2)
S3 J $3

2

(86}
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where

& sells'"llsi &
= &si fl~llsi &

&s, llSlls, &= 2v l5

2, otherwise .

The same formulas apply to the T"T"term.

T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962); E. %'itten, ibid.
8223, 422, 433 (1983).

2G. S. Adkins, C. R. Nappi, and E. %'itten, Nucl. Phys. 8228,
552 (1983); G. S. Adkins and C. R. Nappi, ibid. 8233, 109
{1984).

A. Jackson, A. D. Jackson, and V. Pasquir, Nucl. Phys. A432,
567 (1985).

4R. Vinh Mau, N. Lacombe, B. Loiseau, W. N. Cottingham,
and P. Lisboa, Phys. Lett. 1508, 259 (1985).

5V. Vento, Phys. Lett. 153$, 198 (1985).
6H. Yabu and K. Ando, Prog. Theor. Phys. 74, 750 (1985).
7T. Otofuji, T. Kurihara, H. Kanada, S. Saito, and M. Yasuno,

Nagoya University Report No. DPNU-85-26, July, 1985 {un-
published).

A. Jackson, A. D. Jackson, A. S. Goldhaber, G. E. Brown, and
L. C. Castillejo, Phys. Lett. 1548, 101 (1985).

G. S. Adkins and C. R. Nappi, Phys. Lett. 137$, 251 (1984).
' J. Gasser and H. Leutwyler, Phys. Lett, 125B, 321 (1983).
'~J. F. Donoghue, E. Golowieh, and B. R. Holstein, Phys. Rev.

Lett. 53, 747 {1984}.
' M. Lacombe, B. Loiseau, R. Vinh Mau, and %. N. Cotting-

ham, Phys. Lett. 161B,31 (1985).

'3M. Lacombe, B. Loiseau, R. Vinh Mau, and %. N. Cotting-
ham, Phys. Lett. 1698, 121 (1986).

'~J. M. Eisenberg, A. Erell, and R. R. Silbar, Phys. Rev. C 33,
1531 (1986).

~5T. N. Pham and T. N. Truong, Phys. Rev. D 31, 3025 {1985).
' M. Mashaal, T. N. Pham, and T. N. Truong, Phys. Rev. Lett.

56, 436 (1986).
'7T. Otofuji, S. Saito, M. Yasuno, H. Kanada, and T. Kurihara,

Nagoya University Report No. DPNU-&6-05, April, 1986
(unpublished).

'ST. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Lett. 15, 35
(1965).

' V. Singh, Phys. Rev. 144, 1275 (1966).
2oJ.-L. Gerais and B. Sakita, Phys. Rev. Lett. 52, 87 {1984);

Phys. Rev. D 32, 1795 (1984).
2'K. Bardakci, Nucl, Phys. 8243, 197 (1984).

H. Sugawara and F. von Hippel, Phys. Rev. 172, 1301 (1968).
23E. E. Chanbers and R. Hofstadter, Phys. Rev. 103, 1454

{1956).
24T. Otofuji, K. Sakai, H. Kanada, S. Saito, and M. Yasuno,

Prog. Theor. Phys. 73, 703 (1985).


