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m-exchange NN interaction model with overlapping nucleon foriii factors
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The nucleon-nucleon (NN) interaction model includes a m-exchange and takes into account the
first excited state dt(1232) of the nucleon. It is supplemented by a short-range repulsion which has

been derived from the nucleon form factor (rms radius b~) combined with the three-quark wave

function (rms radius bq). The optimization of the model on empirical scattering phase shifts below

300 MeV gives, for a minimum J, the root-mean-square radii bI ——bq =0.51 fm and a coupling con-
stant G~/4m =13.

I. INTRODUCTION

It is generally accepted that the NN interaction y.t ener-

gies below 400 MeV arises from one pion exchange at
large distances and from heavy meson exchange at inter-
mediate and short distances. Furthermore, short-range in-
teraction is treated either by high momentum regulariza-
tion' (form factor) or by the introduction of phenomeno-
logical potentials. These models give good quantitative
results, but do contain a certain number of parameters (in
the range of 8). On the other hand, the present under-
standing of the short-range part of the nucleon-nucleon
potential as a residual interaction between quarks offers
some interesting results, but still remains qualitative.

Confronted with such a situation, we think it is still
worthwhile to go on with a conventional approach to the
NN interaction, taking particular account of the
phenomenology of the extended structure of the nucleon
(form factor). In order to do this, we first have to set the
theoretical framework of our model. We limit ourselves
to a ~-exchange interaction model. However, besides the
nucleon in the ground state, we consider the b (1232) exci-
tation as a real state according to the SU(2) fiavor symme-
try. %'e admit that the one pion exchange constitutes,
with the b, isobars, an important part of the intermediate-
and long-range nucleon-nucleon force. For the short
range of the interaction we complete the phenomenology
of the usual nucleon form factor with the wave function
of the two clusters of three quarks. This yields a form
factor depending not only on the position of each nucleon,
but also on the distance between them, and leads to a
description of the overlap of the two extended structures
of the nucleons. The resulting potential shows a strong
repulsion in the odd-parity states and a weak attraction in
the even-parity states. We make up the deficiency of
repulsion on the latter by cutting off the whole potential
with a hard core of about 0.3 fm. Finally, we have to take
into account the relativistic corrections that have a degree
of importance even at energy below 300 MeV. The first
of these wiB be introduced in the coupling constant by an
energy dependence. The second will be given by the spin-
orbit potential which results from the short-range repul-
sion.

The semiphenomenological potential one obtains shall

be adapted to the experimental NN phase shifts. We will
have to optimize five parameters. The first ones are the
root-mean-square (rms) radii of the form factor and the
three-quark cluster. They are defined in Sec. II. The
third is the nN coupling constant. The hard core and the
strength of the spin-orbit potential will complete the set of
parameters. The development of the potential appears in
Sec. III. Numerical results are given and discussed in Sec.
IV.

II. THE NUCLEON FORM FACTOR

In a nonrelativistic static meson theory (relativistic
corrections will be considered later), the interaction of the
nucleon with the ir field P is fixed by the Hamiltonian
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In order to define the function W(R,
~

x —R„~ ), we con-
sider the NN, NA, and hh pairs as a system of six quarks
divided into two clusters of three quarks. Following the

where p is the inverse of the pion wavelength and f the
unrenormalized mN coupling constant. %e denote the
usual spin and isotopic spin operators by cr~, r . The form
factor U(

~
x—R,

~
) represents the spatial extension of

the nucleon localized at R, .
In the NN interaction, the representation of each nu-

cleon with the function U(
~

x—R„~ ), n =a,b, is certain-
ly sufficient when the two nucleons are separated. How-
ever, when they are brought together, the representation
should take into account the overlap of the quark struc-
ture of the two nucleons. We will characterize this
phenomenology by a new form factor, 8'(R,

~

x—R„~ ),
which depends on the relative distance R =

~
Rs —R,

~

between the two nucleons and possesses the following
property:
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cluster model calculation, we assume that this system of
six fermions can be described by the completely antisym-
metric wave function

fact that the nucleon form factor can be interpreted as the
probability density of the nucleon, we use the normaliza-
tion (2.6) to define the new form factor,

I g ( —1)'P [4,(r~, r2, ri)~'i, (r4 rs r6}]
20

X [X,(123)Xs(456)]tP„(R) . (2.3)

8'(R,
~

x—R„~ )=N(R)U(
~

x—R„~ ), n =a,b . (2.7)

The constant c is determined by the boundary condition
(2.2). For U(

~

x—R„~ ) normalized to unity, we take, in
our calculations, the Yukawa function

The I' operators comprise all the possible permutations
between the two clusters. 4,4b designates the symmetric
space wave function, and X,Xi, the symmetric spin, sym-
metric isotopic spin, and antisymmetric color wave func-
tions. The relative motion of the two clusters is represent-
ed by g„(R). With the wave function 4 [Eq. (2.3)] satis-
fying the Pauli exclusion principle, we complete the func-
tion U(

~

x—R„~ ). In order to do this, let us assume a
separation between the quark wave functions and the
wave function P„(

~

R
~

} of the relative motion in the fol-
lowing way:

U(r)= 2 exp —v 6
3 1

2a gf bf
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with bf its rms radius. Starting from a m.-quark coupling,
the m-N form factor can be determined. We justify our
choice by numerical calculations which show that the
phase shifts depend essentially on the spatial extension bf
of U(r) and not on its form.

In the norm N(R), the internal functions 4, and 4s
are taken as Gaussian,
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Moreover, one here admits that I' acts only on the parity
of the spherical harmonics FL,ir Und. er these assump-
tions, one sees that the PLsr part, which is not taken into
account in the dynamics of the two nucleons, can be re-
placed by the normalization factor

y;=r; —Rs, i =4,5,6 (2.9b)

where bs is the rms radius and ri=(~3mb') ~. The
computation of N (R) with the functions (2.9) and the
boundary condition (2.2) gives (see Appendix)

& (~)=c'(WLsr PL,sr} (2.6)

where (, } denotes the scalar product in the configuration,
spin, isotopic spin, and color spaces. Remembering the
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and, for each pair of values (S, r), M (S,T) is given by the
expectation value of the spin and isotopic spin parity
operators. Restricting ourselves to the NN transitions,
one obtains the well known result

repulsion in the odd-parity states and a weak attraction in
the even-parity states.

III. THE NUCLEON-NUCLEON POTENTIAL

(0,0),
M(S, T)= —„, (1,1),

(0, 1) and (1,0) .

(2.12)

The static NN potential is derived classically, starting
from the interaction Hamiltonian

b 3

H, = —&~~—g g e'.",'

~ n=a aj.=]

The new form factor (2.7) introduced into the dynamics of
the two-nucleon system brings about a strong short-range

X Jd'x 8'(R,
~

x—R„~ ) P (x) . (3 1)
Bxj.
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Here we represent the nucleon and the 4 isobar with the
function W(R,

~
x—R„( ) given by (2.7). In order to

describe the NN, Nd, and hh transitions we have re-
placed the ojv operators by the "strong-coupling" opera-
tors e' j' obeying the orthogonality relations'

3
(n) (e)
aj eak ~jk

a=]
3

(n) (n)X ag pi atj
j~]

'n =a,b . (3.2)

These operators have the advantage of fixing all the possi-
ble transitions between the N and 5 states with only one
coupling constant, f„=f /9, satisfying the relations

2 & 2 2 & 2
fNa = zf. faa = 23f. . (3.3)

XIV(R, ix —R„ i
) .

The solution

(3.4)

In the static approximation the equation of motion for the
rt field of the two-nucleon system reads

b 3

(6—j22)P (x)= —3/4m g g e'j~' Bxn=a j=l J

V „(R)is strongly repulsive in the odd-parity states. For
example, given the Yukawa function (2.8), we have

V~„(R)=m ~f„,a—M(S,T)F
(a+1) bq

a=~6/(pbf) . (3.10)

For the first relativistic correction we introduce a spin-
orbit potential. This can be freely chosen since we will
determine its strength by fitting the phase shifts. Howev-
er, we think that an appropriate form can be given by

V~(R)=a~ V „(R)(LS) .l
(3.11)

Such a choice is convenient because it takes into account
the strong repulsion which we encounter in the odd-parity
states. In the even-parity states, we know that the spin-
orbit potential is not very important. We therefore admit
that it results from a weak repulsion with a strength cor-
responding to that of V„„(R). The value of a„will be
essentially fixed by the 'P2-'F2 partial wave. For the
second relativistic correction we attribute to the coupling
constant an energy dependence. We take it from the first
term (the term which remains in the static approximation)
of the nonstatic one pion-exchange potential. " In the
center-of-mass system of energy E, we have

f,'(E, . ) =f„(0) (3.12)
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The formulae (3.7) and (2.12) show that the potential

(3.S)

introduced in the total Hamiltonian of the two-nucleon

system yields the energy Eo. The self-energy of each nu-

cleon is determined by the condition (2.2) and subtracted
from Eo. One obtains the potential

The thus-completed potential (3.6) will be put into the
Schrodinger equation, where the energy of the 5 isobars is
represented by

~"+~'"=(i.(j.+1)+ib(ib+1) ,' ]——
2 3

(3.13)

with E,=300 MeV, and j„jb are the spins of the nu-

cleons and 6,. The Schrodinger equation will be solved ac-
cording to the Rarita-Schwinger prescriptions. This
means that for each partial wave we have to solve a sys-
tem of from four to nine differential equations, and this
poses a great technical difficulty. ' The results are given
in the next section.

IV. NUMERICAL RESULTS
AND DISCUSSION

After inserting our potential into the Schrodinger equa-
tion, we calculate the scattering phase shifts 5( +'Lz)
and compare them to the empirical phases (error bars)
taken from the analysis of Amdt et al. ' We consider
100 experimental phase shifts in an energy range lying be-
tween 2S and 300 MeV. The parameters of the potential
are optimized with the help of a X analysis. In order to
do this we have to consider five parameters: the hard core
R„ the coefficient a of the spin orbit, the rms radii bf
and b~ of the nucleon form factor and the three-quark
cluster, and the pion-nucleon coupling constant f2. A
global optimization gives for 7 =20.7 a coupling constant
f„=0.07 (G /4m. =13), a hard core R, =0.34 fm, and a
spin-orbit coefficient a =0.073. For the two root-
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FIG. l. Curves of the nucleon-nucleon nuclear bar phase shifts (as functions of the laboratory energy EI,h) predicted by the model.
The error bars are taken from the energy-independent analysis of Amdt et al. (Ref. 13).
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APPENDIX

Usmg the simplifiedUrn '
i notation 4=4

L~, the norm (2.6) c res
~ s]sr

p sed by

X (R)= 1 — P}= 1 — P,J 4+K, 1 — P-.
l,J

(A1)

where P;J, & &[123],jr[4566], denotes th e even perm uta-



X. BAGNOUD 34

tions between the t~o clusters and admits the decomposi-
tion

,j, ~ S;J, J.S

The operator 1 —g, P;1 is no longer symmetric in our
function space. %e have then to compute

(@,@)=f ff d', 5 +—

r4+ f5+ r6 R 2+2
3 2

(A4)

g (P,J@XF,Pkl@XF)

In the space of the cluster functions, we define the scalar
product

whereas in the spaces of the spin, isospin, color, and orbi-
tal functions we take the usual scalar product. With the
cluster functions (2.9) one obtains

(PP) 4,P(~&4)= 3
'2

(4,P,'4)=33( —,
'

)
i exp

(P,J+,PkiCI) = ~

r 2

3( —, ) ~exp3 3 3r2
8

'2
33( 3 )3/2exp

i&k or j&l

i &k and j&l .

(A5)

One admits that P J Y- 1; but in the case where i &k and j&1we have to take into account the exchange of the two clus-
ters by introducing the factor ( —1) . Then

N'(R) = 1+9X 3' —2X 9 X 3'( —)'"exp —— 'M (S,T)—
5 q

—4X9X3 ( —, ) exp3 3 3/2 9 R
8 bq

,'M(S, T)—

2

+( —1) + + 4X9X3 (
—„) exp —— ,'M(S, T)— (A6)

I

The factor , M(S, T) com—es from the mean value of P36 on the symmetric spin and isotopic as well as antisymmetric
color functions. By determining c with the boundary condition (2.2), we obtain the result (2.11).
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