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%'e present a new momentum space approach to the two-body problem in partial waves. In con-

trast to the usual momentum space approaches, we treat the bound state case with the help of an in-

homogeneous integral equation which possesses solutions for all (negative) energies. The bound state
energies and corresponding wave functions are identified by an additional condition. This procedure

straightforwardly leads to a nonsingular formulation of the scattering problem in terms of essential-

ly the same equation and thus unifies the descriptions of both energy regimes. %e show that the
properties of our momentum-space approach can be understood in terms of the so-called regular
solution of the Schrodinger equation in position space. The unified description of the bound state
and scattering energy regimes in terms of one single, real, and manifestly nonsingular equation al-

lows us to construct an exact representation of the two-body off-shell T matrix in which all the
bound state pole and scattering cut information is contained in one single separable term, the
remainder being real, nonsingular, and vanishing half on-shell. Such a representation may be of
considerable advantage as input in three-body Faddeev-type integral equations. %e demonstrate the

applicability of our method by calculating bound state and scattering data for the two-nucleon sys-

tem with the s-wave Malfliet —Tjon III potential.

I. INTRODUCTION

The nonrelativistic two-body problem is probably one
of the best-investigated problems in quantum mechanics
(see, e.g., Ref. 1 and references contained therein).
Nevertheless, we want to add to the already existing ap-
proaches of solution by presenting here a formalism
which in its essential aspects takes a new look at one of
the two main parts of the two-body problem, namely the
bound state problem.

It is the other part, the scattering problem, which is
often thought to be the more difficult of the two. We do
not share this point of view. Of course, we agree that the
scattering problem looks technically more complicated
than the bound state problem because of its more complex
boundary conditions. However, from a conceptua/ point
of view, it is the bound state problem which is more diffi-
cult. The reason is that the energy plays quite a different
role in both problems. In the scattering problem, the en-

ergy is merely a continuous parameter which can be
chosen arbitrarily according to the prevailing external cir-
cumstances (experiment, etc.). The problem as such, how-
ever, can be solved regardless of its precise value. This is
not so in the bound state case. There the very soluability
of the problem depends on choosing the correct value for
the energy, i.e., the bound state energy. In other words,
for the bound state problem one needs an additional algo-
rithm for the determination of the bound state energy. It
is this aspect of the bound state case, i.e., that it requires
the simultaneous determination of the unique discrete
binding energies and the corresponding wave functions,
which makes it in our opinion so much more difficult
conceptually. Of course, there exist a number of very effi-
cient numerical algorithms for tackling this problem, and
this is presumab1y the reason why many people do not

view this conceptual difference between the bound state
and the scattering problems as being essential.

The approach for solving the two-body problem we re-

port on here is a partia1 wave momentum space method.
It makes use of the aforementioned conceptual difference
by first removing it: Instead of the usual homogeneous
Lippmann-Schwinger (LS) equation for the bound state
problem, we solve an auxiliary inhomogeneous equation
(to which we refer as the W-matrix equation) in which the
energy has the same function as in the scattering case, i.e.,
it is a free continuous parameter and it can be given any
(negative) value Simila. r to the inhomogeneous LS equa-
tion of the scattering problem, our new W-matrix equa-
tion possesses unique solutions for all of these energies.
The desired physical solutions —the discrete bound state
energies and the corresponding wave functions —are then
determined by imposing an additional condition on the
solution of the auxiliary W-matrix equation. This for-
malism is introduced in Sec. II.

As wi11 become clear in Sec. III, this procedure has
some very interesting and immediate consequences on
how to proceed in the scattering case. In particu1ar, it
will turn out that the formulation of nonsingular scatter-
ing equations is a natural consequence of such a treat-
ment of the bound state problem. As a matter of fact, we
will show that —taken at the appropriate (positive) ener-

gies and after a slight modification —the bound state W-

matrix equation wi11 also solve the scattering problem.
We have thus found one single inhomogeneous integral
equation which completely determines the two-body prob-
lem in the bound state as well as in the scattering energy
regimes. Since our 8'-matrix equation is real and mani-
festly nonsingular even at scattering energies, we feel that
it is particularly well suited for numerical applications.

It seems obvious that this unification of the bound state
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and scattering problems in terms of one single momentum

space integral equation cannot be accidental and must
have its counterpart in the more traditional configuration
space approaches found in most textbooks. This is inves-

tigated in Sec. IV and it is found that the properties of our
F-matrix equation are intimately connected to the so-

called "regular" solution of the Schrodinger equation. '

Among other things, this connection will allow us to con-
clude that the F-matrix equation can be solved by itera-
tion under only very global constraints on the potential.
Furthermore, it will become clear that with the W matrix
one can find a very simple integral representation of the
Jost function. This representation (which has also been
given in Ref. 3) in terms of but momentum space quanti-
ties is also immediately seen to be easily applicable in
practical calculations.

In Sec. V we present an off-shell generalization of the
W-matrix equation analogous to the off-shell Lippmann-
Schwinger equation for the T matrix. With its help, we
then write a representation of the off-shell T matrix en-

tirely in terms of the W matrix. Its structure is very simi-
lar to the Noyes-Kowalski representation. However, ow-
ing to the fact that the W matrix, by construction, is free
of any singularities at negative energies, our representa-
tion remains well defined in this energy regime, quite in
contrast to the Noyes-Kowalski representation. This
feature of our representation makes it particularly well
suited as an input in Faddeev-type formulations of the
three-body problem, where the negative energy domain of
the two-body T matrix forms an important part of the re-

quired input.
In Sec. VI of this paper we report on some numerical

test calculations performed with the local Malfiiet-Tjon
potential. In particular, we show that for this potential
the 8'-matrix equation can be solved by iteration with a
very rapid rate of convergence. We conclude this section
by giving a summarizing assessment of our approach.
Furthermore, in the Appendix we prove the existence of a
certain integral necessary for the derivation of our bound
state 8 -matrix equation.

Throughout this paper we use natural units, with the
nucleon mass being equal to unity.

of the Fredholm determinant of Eq. (2). For any other
energy Eq. (2) has, of course, no solutions, and this is a
direct consequence of the fact that it is a homogeneous in-
tegral equation.

For reasons which will become apparent below, we pro-
pose now to replace Eq. (2) by an inIiomogeneous integral
equation. To this end, we first note that, for reasonable
potentials V, the momentum space partial wave matrix
elements Vi(p, q) behave as q' for vanishing q (similarly
for p). The (unsymmetric) function Ui(p, q), defined by

Ui(p, q) = Vi(p, q)q
' (3)

therefore, does not vanish for q =0. With this technical
detail, we now define Wki(p, k; —a ) by the integral equa-
tion

Wki(p, k; —a )= Ui(p, k)

2 Ui(p, q) Ui(p, k—)
+ dqq q0 —A' —g

X Wki(q, k; —a ), (4)

Theorem: If and only if the energy E = —a is chosen
such that the corresponding solution of Eq. (4) satisfies

f i Wki(q, k; —a )
Gg' g (5)

0 —Q —q

then a =a„, i.e., it is equal to one of the binding energies,
and the corresponding bound state wave function is given
by

where k is a free parameter momentum. The definition
(3) ensures that the inhomogeneity of this equation does
not vanish identically even if k is chosen as k =0. [The
double occurrence of k in the notation Wki(p, k; —a ) is
necessary in order to have notational consistency with the
generalizations given in Sec. V.]

Equation (4) is the desired inhomogeneous integral
equation; we shall refer to its solution as the bound state
8' matrix. Its relevance in the bound state problem is es-
tablished by the following.

II. THE BOUND STATE FORMALISM

In momentum space, the partial wave bound state func-
tions f„i(p) may be written as

Wki(p, k; —a„)
f„i(p)= i i C„i,—Q —P

where C„I is an arbitrary normalization constant.

(6)

g.i(p)
—(X —P'

where the a„are the binding energies enumerated by the
index n The for.m factors g„i(p) are determined as the
nontrivial solutions of the homogeneous LS equation,

g.i(p) = ~q q'I'i(p»q)
0 —0,'~ —q

which is completely equivalent to the Schrodinger equa-
tion for the bound state case. In the context of the LS
equation (2), the usual algorithm for the determination of
the binding energies a„ is to search for the zeros in energy

The proof is straightforward and will only be sketched
here. In one direction, one simply notes that, with condi-
tion (5) satisfied, Eq. (4) reduces to Eq. (2), and since the
latter has unique solutions, a =o.„and Eq. (6) follow im-
mediately. The constant C„I takes into account the fact
that Eq. (2) leaves the normalization of g„i(p) free,
whereas the inhomogeneous equation (4) fixes the normal-
ization of Wi,i(p, k; —a„). For the other direction of the
proof, we start from Eq. (2) and replace Vi(p, q) in its ker-
nel by the identity

Vi(p. q) = Ui(p k)q'+[Ui(p, q) Ui(p k)]q', —

which yields
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, , g.((q}
g»(p)=Wk((p k a—.} dqq q'

0
(9)

Note that this result shows explicitly that the bound state
solutions W(,((p, k; —a„) of Eq. (4) are independent of the
choice of k, as they must be, of course. The condition (5),
for a =a„, is now obtained by simply integrating the re-
lation (9). From Eq. (9) it also follows tcf. Eqs. (1) and
(6)] that the normalization C„( in Eq. (6) is represented by

g„((q)C»=
0 —n —q

= f, dqq'q'4»((q). (10)

This completes the proof.
The relation (9) shows explicitly that solving Eq. (4) for

energies for which the condition (5) holds is equivalent to
solving the homogeneous LS equation (2). Both solutions
differ only by the constant C„(, but since the normaliza-
tion of g„((p) is not determined by Eq. (2), it can be ad-
justed to give C„I any desired value. However, in writing
Eq. (9) or Eq. (8) we have made the basic assumption that
the integral (10) exists. In view of the factor q in the in-
tegrand, this seems to be nontrivial, especially for higher
partial waves, but in the Appendix it is shown that this is
indeed the case. In fact, it is proved there that the ex-
istence of the integral (10) is the momentum space
equivalent of the usual coordinate space regularity condi-
tion at the origin, satisfied, of course, by the correspond-
ing transform of i}(„((q).

Clearly, in contrast to Eq. (2), the inhomogeneous in-
tegral equation (4) possesses solutions for any (negative)
value of the energy E = —a2. Among these solutions the
bound state solutions corresponding to Eq. (2) are identi-
fied by the condition (5), which allows one to determine
the binding energies a„within the context of Eq. (4). The
relations (4)—(6), therefore, establish a complete, self-
contained alternative to the usual approach to the bound
state problem. In Sec. IV we shall point out some proper-
ties of our method which are of importance in practical
applications.

III. THE SCATTERINGr FORMALISM

In contrast to the usual approaches, we have treated in
the preceding section the negative energy domain by an
inhomogeneous integral equation. Such a treatment is
usually associated only with the scattering problem at pos-
itive energies. Since, by construction, we may continuous-
ly vary the energy parameter E=—a in Eq. (4) for all
energies E(0, it seems natural to expect that Eq. (4)
remains of significance if we allow F. to become positive.

g„,(p) = U((p, k) dq q q0 —Q~ —g

U((p, q) U—((p, k)
+ f dqq 2 &

qg, ((q) . (8}
0 —Q,' —g

By comparing this with Eq. (4), we then find that
Wk((p, k; —a„) is related to g„((p) by

It develops now that this result represents a special case of
a nonsingular scattering equation Its. solution, referred
to here as the W matrix, is real and completely determines
the partial wave half on-shell T matrix.

This is easily seen by starting from the LS equation for
the T matrix at the energy E =k,

T((p, k;k +iO)= V((p, k)

f V((p q)+ d ig g

)& T((q, k;k'+i 0}, (12)

and replacing the potential matrix element V((p, q) by the
splitting (7). With the definition (3), one then obtains

T((p, k;k +i 0)= U((p, k)
I

z U((p, q) —U((p, k)
+ Ggg

k —q

x T((q,k;k +i 0), (13)

where the function F((k) is defined by

(T((q,k;k +i 0)—(
q q2q(=1+k ' d (14)

Note here the great structural similarity between Eqs. (8)
and (13) (see also the Appendix). And just as Eqs. (8) and
(4) led to the representation (9) for the bound state forin
factor, we find now, by comparing Eq. (13) with (11), that
the half on-shell T matrix may be written as

k
T((p, k;k +iO)=Wk((p, k;k ) (15)

Using this result in Eq. (14), this then allows one to recast
F((k) in a representation in terms of Wk((q, k;k ),

2 ( Wk((q, k;k )
F((k}=1—f dq q q'

z z
(16)

k +iO —q

This completes the demonstration that the partial wave
half on-shell T matrix is completely determined by the
solution of the nonsingular W-matrix equation (11).

Equation (11) is not new. As noted above, it is a special
example of a wide class of nonsingular formulations of

In doing so, however, we find that the kernel of Eq. (4)
acquires a singularity at q =E (~0). The simplest way
of removing this singularity now is to choose the previ-
ously free parameter k as k =E. The singularity is then
cancelled by the zero of the difference U((p, q) —U((p, k)
at q =k, and Eq. (4) becomes well defined also for posi-
tive energies:

Wk((p, k;k ) = U((p, k)

, U((p q) U((p—»k) (+ Ggg
k —q

&& Wk((q, k;k ) .
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ViV»q) = Vi(Ji, k)ri(k, q)

+[Vi(J,q) Vi(J, k}}i«-, q» (17)

will produce similar results provided the function yi(k, q)
is chosen such that all integrals involved converge and it
satisfies the constraint

y, «,k) = I . (18)

In our particular case [cf. Eq. (7)], we have

ri(k q) =(q~k~'. (19)

This choice is distinguished by the following properties:
It cancels the k threshold behavior of the potentials
Vt(Ji, k) [cf. Eq. (3) and discussion there], and provides the
q factor that allows one to relate the existence of all
relevant momentum space integrals to the coordinate
space regularity condition at the origin (see Appendix).
Obviously, Eq. (19) is the simplest choice with these two
features. Furthermore, and most important, it is the only
choice which allows one to make contact —in a direct
way —with well-established results of the traditional coor-
dinate space treatment of the two-body problem. This
will be the subject of the next section. As an example, we
mention already here that, if the underlying interaction is
local, the function Fi(k) of Eqs. (14) and (16) is the Jost
function (see also Ref. 3).

the two-body scattering problem in momentum space.
These investigations were initiated by the works of Noyes
and Kowalski, and it was later realized that all of these
momentum space approaches are closely related to a coor-
dinate space method by Sasakawa. Within the context of
nonsingular scattering equations, Eq. (11) has been inves-
tigated by Blasczak and Fuda. The equation as such,
however, had been given already in 1963 by Brown eI; al.
[Ref. 8, Eq. (17)]. These authors were interested in appli-
cations to complex angular momenta and do not seem to
have realized the significance of their formulation in
terms of a nonsingular momentum space equation for the
scattering problem. Nevertheless, to our knowledge, they
were the first to write down such an equation.

What is new, as far as we know, about our approach
described here is the finding that the nonsingular formula-
tion of the scattering problem is obtained as the natural
extension of our particular way of treating the bound state
problem in terms of an inhomogeneous integral equation.
The IV-matrix equations for the bound state problem, Eq
(4}, and the scattering problem, Eq. (11), provide a very
convenient unified description of these two problems.
This unification was arrived at here in a constructive way;
in the next section we shall investigate the mathematical
reason behind it.

Of course, the unified description of the bound state
and scattering energy regimes as given here is not unique.
The essential step in deriving Eqs. (4) and (11}was the re-
placement of the potential matrix element Vi(p, q) by the
splitting (7), but it is clear that any splitting of the general
orm

IV. THE COORMNATE SPACE APPROACH

In this section we want to relate the momentum space
formulations of the preceding sections to the more tradi-
tional configuration space approach found in most text-
books. Since most mathematically rigorous results in the
nonrelativistic two-body problem have been derived under
the assumption of a local potential V(r) that is the same
in all partial waves, we shall also adopt this assumption
for the purpose of the following comparison. Without go-
ing into details here, we shall further assume that this po-
tential is such that all of the formal manipulations per-
formed below are meaningful. Details, and more back-
ground information on the textbook results quoted below,
may be found, e.g. , in Ref. 1.

Following closely the conventions and notations of Ref.
1, let us first recapitulate some well-known definitions of
the two-body scattering theory. In terms of a local poten-
tial V(r), the momentum space partial wave potential ma-
trix elements read

00

Vi(p, q) =—I dr r j i(pr) V(rj)i(qr), (20)

where the ji(p) are the spherical Bessel functions. The
half on-shell T-matrix elements at the energy F. =k are
given as

Ti(p, k;k +i 0)=—I dr r ji(pr)V(r)$'ik'(r), (21)

with it i k'(r) being the partial wave scattering wave func-
tion. This physical solution of the Schrodinger equation
is, of course, regular at the origin, and its normalization is
determined at infinity by the usual boundary condition.
However, for the sake of a more concise presentation,
both of these conditions may be cast formally into one
single expression by requiring that the physical solution
behave as

ji(kr}
Elk ( ) F(k) (22)

The regular solution Pi k(r) is real and is, in general, as we

at the origin, where Fi(k) is the Jost function. This as-
sumes, of course, knowledge of the latter, and that is why
this is only a formal way of writing the boundary condi-
tions for the physical solution, because to know the Jost
function means that one has practically solved the scatter-
ing problem.

Now, in addition to the physical solution, one often
considers the so-called "regular" solution P~@tr) of the
Schrodinger equation which is related to itj'i k '(r) by
separating out the Jost functi'on, viz. ,

, +, pik(r)
Ark (r)= (23)

I

Of course, both 1( ik' and Pi k are regular at the origin,
but the latter derives its name from the fact that its nor-
malization is also fixed at the origin by relating it toj i(kr)
only, i.e.,
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A. The scattering 8' matrix

We claim now that the W matrix of Eq. (11) is related
to this regular solution by

Wki(p, k;k )k =—f dr r ji(pr)V(r)PI k(r); (26)

that is, in much the same way in which the T matrix is
related to the physical scattering solution. [The factor k'
on the left-hand side of (26) occurs here because Wki of
Eq. (11) is determined not in terms of the potential Vi, as
the T matrix in the LS equation (12), but in terms of the
reduced quantity Ui.] The proof of (26) is relatively
straightforward; all we have to show is that, with (26) as
the basic definition, we can reproduce Eq. (11): Using the
completeness of the spherical Bessel functions and the for-
mula

k +i0—q

one first immediately verifies that the Jost function (25)
may indeed be cast into the momentum space representa-
tion (16) if one uses Eq. (26). We had already anticipated
this finding by using the same notation Fi(k) in both Eqs.
(16) and (25). [Within the context of their investigation of
Eq. (11), the lost function representation (16) has also
been given in Ref. 3.] In the next step, employing Eq. (23)
in the T-matrix definition (21) then yields Eq. (15); and
using the latter representation to replace the T matrices in
the LS equation (12), this obviously leads finally to the
W-matrix equation (11) if one multiplies the LS equation
by Fi(k) in the form (16).

The result (26) means, of course, that many of the es-
tablished features of the regular solution Pik(r) may be
used in investigating properties of the W-matrix equation
(11). For example, it is well known that the (inhomogene-
ous) coordinate space integral equation solved by QI k(r) is
of the Volterra type and one can show (see, e.g., Ref. I)
that the series for Pik(r) obtained by iterating this in-
tegral equation converges for a local potential of arbitrary
strength, provided only it satisfies

f Zr
~

rv(r)
~
( ~ . (28)

Clearly, this implies that, if (28) holds true, then also the
W-matrix equation (11) can be solved by iteration, since
the integration over QI k according to (26) does not alter
the convergence proof in any essential way. The numeri-
cal examples presented in Sec. VI show that the rate of
convergence of the iterative solution of Eq. (11) may
indeed be very fast.

shall see, a much simpler function to work with than
p'I k'(r) .Its knowledge completely determines the right-
hand side of (23) because also the Jost function is given
via Pi k as

Fi(k)=1+k f dr r hi+'(kr)V(r)QI k(r), (25)

where hI'+'(p) is the Hankel function with outgoing wave
asymptotic behavior. In other words, if one knows

pi k(r), one has solved the scattering problem

The condition (28) for the convergence of the iterative
solution of the W-matrix equation (11) was arrived at here
by simply looking up well-known results quoted in text-
books for the regular solution. Et was shown by Coester
that, if the underlying interaction is local, the condition
(28) is sufficient for the convergence of the iterative series
for any nonsingular equation obtained from a splitting of
the potential matrix elements of the general form (7). As
was pointed out by Coester, the reason behind it is that in
coordinate space all of these equations correspond to
Volterra-type integral equations, similar to the one for the
regular solution. Unfortunately, no general convergence
criteria are known for nonlocal potentials.

8. The bound state 8' matrix

The connection (26) between the regular solution Pi k(r)
and the W matrix, which was established here for scatter-
ing energies E=k & 0, now also provides an alternative
derivation of our bound state method. It is well known'
that the coordinate space bound state wave function iti„i(r)
[cf. Eq. (Al) in the Appendix] is obtained, up to some
constant, from Pi k(r) by analytically continuing the latter
in the on-shell momentum k to the pure imaginary value
k =I'a„(a„)0):

P„~ (r) =i'D«g«(r) .

Here, we have used the fact' that the proportionality con-
stant may be written as a factor i' times a real constant
D„i. With this relation, and Eqs. (Al) and (20), we then
find from (26) that

(29)

Wia I(I Ian an)(an) Dnl f ~9 0 VIV Q)f«(g)

(30)

(31)

whence
2W~„IV»Ia. —a. ) (a„)'

=it.r(p)
an —P

This result is very similar to Eq. (6); it differs only
inasmuch as the free parameter k of our bound state W-

matrix equation (4) is now fixed at k =t a„, in accordance
with the consequent analytic continuation of Eqs. (26) and
(11). However, as was pointed out in Sec. II after Eq. (9),
the bound state solutions Wki(p, k; —a„) of Eq. (4) do not
depend on the choice of k; what matters is only the
correct choice of the bound state energy F. = —a„.
Therefore, the W inatrices of Eqs. (6) and (31) are identi-
cal and we find that

(a„)'
D„)—— (32)

which relates the constant D„I of Eq. (29) with the in-
tegral (10).

In order to obtain the bound state function P„i(p), Eq.
(31) suggests that the parameter k in Eq. (4) ought to be
chosen as k =i a. Ho~ever, as mentioned above, we know
from the findings of Sec. II that this is not necessary. It
is quite instructive to investigate in a little more detail in
the context of the relation (26) why this is not the case.
To this end, let us regroup the terms in Eq. (4) and write
it as
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, , W(,((q, k; —a'), U, (p, q)
Wk((p, k; —a )=U((p, k) 1 —f dqq q + f dqq q'Wk((q, k; —a ) .

0 —a —q —CX —g

The only place where k enters this equation as input is in
the function U((p, k), which multiplies the expression in

the large square brackets. If we now set k =ia, this equa-
tion is the consequent analytic continuation of Eq. (11),
and of Eq. (26}. The important point to note then is that
(for k =ia) the term in the large square brackets is the
value of the Jost function [cf. Eq. (16)] at ia, F((ia)
Hence, because of the well-known one-to-one correspon-
dence between the positions of the bound states and of the
roots of the Jost function, ' we know then that the large
square brackets (for k =ia) vanish if and only if a =a„.
However, if a =a„, and if therefore the expression in the
large square brackets vanishes, then the function
U((p, k =ia„), which multiplies it, may be replaced by
any (nonpathological) function, since the product is zero
anyway. In particular, we may relax the requirement that
k =i a„ in U((p, k) and allow k to become a free parame-
ter. As long as we do not change the energy a =a„ in
the denominators of Eq. (33), we obviously will not
change its solution, and therefore the relation (31), by this
procedure. But this is precisely the way in which Eq. (4)
differs from a consequent analytic continuation of Eq.
(11). We thus have arrived here independently at the re-
sults of Sec. II, starting from Eq. (26) as the basic defini-
tion. Moreover, we see that the eigenvalue condition (5) is
very closely related to the properties of the Jost function.

The fact that, in order to treat the bound state case ac-
cording to Eqs. (4)—(6) we are not required to consider
pure imaginary values of k, is of obvious practical advan-
tage: the functions U((p, k) are much more readily avail-
able for real k. [It is worth noting in this context, howev-
er, that even for pure imaginary k =ia, the functions
U((p, k) are real, which was one of the reasons for intro-
ducing them. ] A further convenient feature in numerical
applications is that for real k the bound state equation (4)
may be solved by the same computer code as the scatter-
ing equation (11}by changing only a few parameters.

However, the most important advantage of being al-
lowed to choose k real in Eq. (4) will only become ap-
parent in the considerations of the next section: As we
shall see, this feature will help us avoid the so-called
dynamical singularities originating from the analytic con-
tinuation of the potential matrix elements V((p, q) to pure
imaginary momenta.

To conclude this section, let us finally emphasize that
the results of Secs. II and III are, of course, valid irrespec-
tive of whether the potential is local or not. As stated at
the beginning of this section, the local potential V(r) was
chosen here solely for the purpose of comparison.

V. THE OFF-SHELL GENERALIZATION

Since the half on-shell T inatrix completely determines
the physical scattering wave function [cf. Eq. (A5)], the
W matrix of Eq. (11) provides, of course, a complete solu-
tion of the scattering problem via Eqs. (15) and (16).

However, for those applications in which the fully off-
shell two-body T matrix is required, it will be advanta-
geous to work with an off-shell generalization of Eq. (11).
The specific application we have in mind concerns the use
of the two-body T matrix as input in Faddeev-type for-
mulations of the three-body problem. The particular
kinematical situation in which the two-body T matrix
enters the three-body equations requires the knowledge of
the off-shell T-matrix elements T((p,p';E+i 0) for all
real momenta p and p' and for all energies E ranging
from a given three-body center-of-mass energy all the way
down to minus infinity. 5 As we shall see, the smooth
transition from the positive to the negative energy domain
as afforded by our approach makes the W matrix particu-
larly well suited in dealing with such a situation.

To this end, we need an off-shell generalization of Eqs.
(4) and (11). In analogy to the off-shell T matrix [cf. Eq.
(38)), we therefore define the off-shell W matrix at the en-

ergy Eby

X Wk((,qp'; E), (34)

where the parameter k is subject to the following con-
straints:

k =E for E&0,
k arbitrary for E ~0. (35)

With these choices, the off-shell generalization (34) is real
and nonsingular at all energies; obviously, for p'=k we
recover the bound state equation (4) for E &0 and the
scattering equation (11) for E & 0.

Furthermore, in order to be able to choose k different
from ki=E at negative energies, we also need an ap-
propriate generalization of the Jost function (16). If we
define

( Wk((q, k;E)
Fk((E+i 0}=1—f dq q q'

E+iO —q
(36)

this function obviously is identical with the Jost function
at positive energies,

Fk((k +i 0)=F((k),

and at negative energies, where k ~E, this function is
real and it is zero if and only if E= —a„. In other
words, its inverse 1/F(,((E+i 0) contains all the informa-
tion on the scattering cut and possible resonances, and it
contains all bound state poles.

The relevance of Eqs. (34) and (36) for the off-shell T
matrix is established by noting that the off-shell LS equa-
tion,
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Ti(p,p';E +i 0)= Vi(p,p')

Vi(p q)
dq q Ti(q,p';E+i 0)~

F. +i0—q

is solved in terms of the W matrix of Eq. (34) by

Ti(P P"E+i0)= Wki(P P "E)P'

Wki(p, k;E)
+

Fki(E +i 0)

2 i Wki(q, p';E)
dqqq p' .

(39)

ready given explicitly in terms of the zeros of Fki and the
corresponding bound state form factors Wki(p, k; —a„)
[cf. Eqs. (5) and (6)]. The second term on the right-hand
side of (42} is real and nonsingular for all energies and it
vanishes if either p or p is equal to k, which means, in
particular, that it vanishes half on-shell for scattering en-
ergies E &0.

For positive energies, the representation (42) is very
similar to the one obtained by Noyes and Kowalski in
their nonsingular formulations of the scattering problem.
The main difference, in our notation, lies in the way in
which the function b,ki of (43) is written. Whereas we
write it essentially in terms of the function Fki (which, at
positive energies, is identical to the Jost function), Noyes
and Kowalski write it as (E =k & 0)

This equation is obtained from (38) after some algebra
with the help of the splitting (7). It implies, in particular,
that

T((k,k;k +i 0)
Ski(k +iO)=

[Wki(k, k;k )]~
(45)

Ti(p, k;E+i 0)= Wki(p, k;E) k

Fki(E+i0)

At positive energies E =k, this relation is identical to the
half on-shell result (15), of course. At negative energies,
however, it is different because k may be chosen real and

Fki is then no longer the Jost function. Now using Eq.
(40), we find, after some more algebra, from Eqs. (34) and
(38), that the integral in (39) may be expressnl as

, , Wki(q p 'E},,
2P

Wki(p', k;E) i Wki(k, p', E)
(41)

where we have used Vi(p, p') = Vi(p', p).
Now inserting (41) into (39), this finally leads to

Ti(p p E+iO) —Wkl(p k E)~kl(E+i 0)Wkl(p

+~ki(p p' E»
where

(42)

and

b,ki(E +i 0)=
Wk[(k, k;E}Fi,i(E +i 0)

~k((p»p' E)= Wki(p p'E)

Wki(p»k *E)Wk«k P"E)
Wki(k, k;E)

Equation (42} is the central result of this section; it pro-
vides a representation of the off-shell T matrix which is
well defined at all energies and has several attractive addi-
tional features: The first term on the right-hand side of
(42), which is separable in the momenta p and p', contains
all the scattering cut information via Fki(E+i0) in Eq.
(43}. Furthermore, with the help of the bound state for-
malism of Sec. II, it is very easy to extract the behavior of
the T matrix around the bound state poles because it is al-

i.e., in terms of the on-shell T matrix Ti(k, k;k +i 0) [cf.
Eq. (15)]. Of course, this is only a technical difference at
positive energies. At negative energies, however, the ana-
lytic continuation of the on-shell T matrix acquires the
so-called dynamical singularities (i.e., the left-hand cut
familiar from dispersion relations}, ' which originate from
the corresponding analytic continuation of the potential
matrix element Vi(k, k) to pure imaginary momenta
k =ia (a &0). This fact makes the Noyes-Kowalski rep-
resentation of the T matrix impractical as an input to the
three-body problem, because there the negative energy
domain of the two-body T matrix constitutes an impor-
tant and indispensable part of the required two-body in-
put.

Obviously, this shortcoming does not arise for our rep-
resentation (42) because at negative energies, as we have
shown, we no longer need to impose the on-shell condition
k =E, but rather allow k to be chosen freely. As em-
phasized above already, our representation of the off-shell
T matrix is free of any unwanted singularities at all ener-
gies; it only possesses the scattering cut and the bound
state poles. In other words, it has, for all energies, only
those singularities which are present already in
Ti(p,p', E+i 0), and no additional artificial ones.

In view of all these properties of Eq. (42), we feel that it
provides a practical representation of the required two-
body input for three-body calculations. In this context,
one of the most attractive features of (42) is that all of the
dominant scattering and bound state information is con-
tained in one single, separable term, which, if used as the
lowest order two-body input in three-body calculations,
would greatly simplify such calculations. The remainder
Ekh may be taken into account perturbatively, or perhaps,
it may even be neglected.

VI. NUMERICAL EXAMPLES AND CONCLUSIONS

Before we give a summarizing assessment of our ap-
proach, let us present briefly the results of some numeri-
cal test calculations.
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A. Numerical results

In order to test the practical applicability of our
method, we have used the s-wave projection of version III
of the local Malfiiet-Tjon potential (MT III) as an input
to our W-matrix equations.

In the bound state case, we have solved Eq. (4) for a
wide range of negative energies E=—a and various
choices of the parameter k. We found that the bound
state condition (5), which corresponds, of course, to a zero
of the function Fki( —a2) of (36), allows one a very accu-
rate determination of the binding energy, which is at least
as reliable as the usual search for the zero of the
Fredholm determinant of Eq. (2). In general, our experi-
ence is that the inhomogeneous integral equation (4) al-
lows for a more stable numerical solution by standard in-

version routines than the homogeneous equation (2).
Since the local MTIII potential satisfies the condition

(28), Eq. (4) may be solved by iteration for this case. Fig-
ure 1 shows the rapid convergence of Eq. (4) for the
bound state wave function according. to Eq. (6). These
calculations were done with k =0, and our numerical in-

vestigations suggest that this is generally the best choice
in order to achieve rapid convergence when iterating Eq.
(4}. Without going into details here, we mention that this
finding is intimately connected to the fact that the bound
state wave function P„r(p) has a pole for pure imaginary

p =ia„[cf.Eq. (1)], and k =0 is the real value closest to
this pole position.

For scattering energies, the W-matrix equation (11)—
being nonsingujar and real —is obviously much easier to
solve numerically than the LS equation (12). As a matter
of fact, changing a few parameters, Eq. (11) can be solved
by the same computer code, and with equal ease, as the
bound state equation (4). In terms of the solution of Eq.
(11), the scattering length a and the phase shifts for s
waves are given by (index kl omitted}

and

1+ q 8' q002 1

a n. W(0,0;0)
(46)

tan5(k) =
——kW(kk'k )

q2W(q, k;k ) —k W(k, k;k )
0 k —q

(47)

respectively. The numerical results for the MT III poten-
tial obtained in this way were found to be in perfect agree-
ment with those of a variable phase method' calculation.

Furthermore, we present in Fig. 2 the plots of the itera-
tive solution of Eq. (11) for the MT III potential. Again,
as in the bound state case of Fig. 1, the third order itera-
tion of Eq. (11) is already indistinguishable from the exact
result. [A point worth noting in this context is that, since
the W matrix is real, the T matrix remains unitary even if
Wki in Eq. (15},or also in Eq. (42), is replaced by an ap-
proximation. ] This particular calculation was done at an
energy of 25 MeV; in Fig. 3 we compare the bound state
solution of Eq. (4) at the deuteron energy of —2.27 MeV
with two solutions of the scattering equation (11) at 25
and 50 MeV. As can be seen, these plots look very similar
in structure and seem to differ essentially only by an
overall (energy dependent) normalization factor. We be-
lieve that this finding actually explains at least
partially —the success of separable approximations of the
two-body T matrix, because in the dominant first (separ-
able) term on the right-hand side of the T-matrix repre-
sentation (42) these overall factors largely cancel.

Summarizing the numerical aspects of our approach,
we think that it indeed provides a reliable and practical al-
ternative to the traditional methods of solving the two-
body problem. We have demonstrated here that with our
approach the scattering case is technically not more diffi-
cult than the bound state case.
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FIG. 1. The bound state wave function according to Eq. {6)
using iterations of Eq. (4): exact result (solid line), zeroth {dot-
ted), first (dashed), and second {dashed-dotted) order iterations.
Higher orders are indistinguishable from the exact result.
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FIG. 2. The iterative solution of the scattering 8'-matrix
equation (11). The notation is the same as in Fig. 1.
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FIG. 3. Comparison of the bound state IV matrix [Eq. (4}]at
—2.27 MeV (solid line) with two solutions of the scattering
equation (11)at 25 MeV (dashed line) and SO MeV (dotted line).

8. Conclusions

We have treated here the bound state problem by a
method which is usually associated only with the scatter-
ing problem, i.e., by an inhomogeneous integral equation.
This allowed us to make a smooth transition between the
bound state and scattering regimes and enabled us to shaw
that nonsingular scattering equations arise naturally in the
context of such a formulation. This is the new unifying
aspect brought about by our treatment of the two-body
prablem. The finding that both of these regimes can be
handled with the same equation, the W-matrix equation
(34) (or its variants as given in Secs. II and III), is interest-
ing not only from a purely formal point of view, but has
also some very practical consequences, most of which
have already been discussed in the course of the presenta-
tion of our method.

Let us emphasize here once again that in our opinion
the most important of these practical consequences is the
fact that the representation (42) of the off-shell T matrix
is also applicable at negative energies (in contrast to the
similar Noyes-Kowalski representation) and that it may
therefore be used as an input in three-body calculations.
Preliminary test calculations in the three-nucleon problem
indicate that the first (separable} term of Eq. (42} is indeed
an excellent approximation to the T matrix over a wide

range of off-shell momenta.
Again on the more formal side, let us add that our for-

malism is, of course, particularly well suited for the inves-
tigation of resonance phenomena: these are intermediate
between bound and scattering states and are therefore best
treated by a method which does not distinguish formally
between these two regimes.

In summary, we think that the method presented here is
both formally appeahng and practical. Moreover, our
whole approach suggests that, for many investigations
which traditionally are done in configuration space, the
momentum space is actually to be preferred. As a case in
point, we recall the integral representation (16) for one of
the most important tools of the potential scattering
theory, the Jost function Ei(k). This representation is not
only simple, but also practical, because the integral equa-
tion (11)can be solved very easily numerically.

Note added in proof Th.ere exists an approach to the
bound state problem by Adhikari and Tomio (Ref. 10)
which is similar to the one presented in Sec. D. These au-
thors employ the splitting (17) to arrive at their equations,
hawever, with a yi(k, q} rather different from the present
choice (19}. We emphasize that it is just this chaice which
provides the connection with the well-known coordinate
space results (cf. Sec. IV and Appendix) and which, in
particular, leads to the important generahzation (36) of
the Jost function.

APPENDIX

For the proof that the integral (10}exists, we note that
the coordinate space transform of the partial wave bound
state function P„i(q),

1T' I(r) = f, dq q'i i(qr)f. l(q) (Al)

is, af course, regular at the origin; in other words,

lim r 'P„i(r) exists . (A2)
r-+0

Also, the spherical Bessel functions ji(qr) are regular at
the origin, and one has

I

r 0 {2l+ 1)!!
lim r j'i(qr) =

Hence,

lim r 'p„i(r)= lim r ' dqq j i(qr)g„i(q)= f dqq [ lim r j'i{qr)]&„I(q)= f dqq q p„i(q) exists .
r~O r~O O O r~O (2i+ 1)if 0

(A4)

The interchange of the limit and the integration here is
permitted because the Fourier transform (Al} is well de-
fined for all r and the limit (A3) is valid for all q.

We thus see that the existence of the momentum space
integral (10) is equivalent to the coordinate space regulari-
ty condition at the origin of the partial wave bound state
function.

In fact, the existence of momentum space integrals of
the type given in Eq. (10) is not restricted to the bound
state case, but also holds true far the scattering wave
function.

In terms of the partial wave T matrix the momentum
space scattering wave function at the energy E=k is
given 88
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vugh ence

g(q k) T!(q,k;k +!0)

k +&0—q
(A5)

2 !T!(q,k;k +i 0)
kl 1 k-1 dqq2q/

2 2
. A6

k +iO —q

According to Eqs. (14), (16), and the results of Sec. IV,
this means that this integral is given essentially by the
Jost function Ft(k):

This finding makes the similarity between Eqs. (8) and
(13) even greater, because in both cases the inhomo-
geneities are multiplied by integrals over the correspond-
ing wave functions: by the integral (10) for the bound
state equation (8) and by (A7) for the scattering equation
(13). And again, the existence of the integral (A7) is pre-
cisely equivalent to the regularity of the coordinate space
transform of gI k '(q),

4i, k (r)= I dqq q Jt(Ã)A, k (q) (AS)

because from Eq. (22) it follows that

f k'
dqq'q'el, k'(q)= F k0 ! (A7)

I

I o ' (2l+1)!!F!(k)
(A9)
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