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This paper is concerned with the reduction of the general deuteron-nucleus collision problem to a
three-body model describing deuteron elastic scattering and elastic breakup. A formally exact reduc-
tion is carried out using an antisymmetrized, multiparticle scattering theory, viz. , the Bencze-
Redish-Sloan theory in precursor form. All effects of the Pauli principle due to the target nucleons

are thus included in the Hamiltonian H3 describing the three-body model. Since deuteron elastic
scattering and breakup have been treated for quite some time via an empirical, three-body model

Hamiltonian H~, the main purpose of this work has been to establish the relation between H3 and

H~. Et is shown that, even with inclusion of the Pauli principle, H3 has exactly the form conjec-
tured some years ago by Austern and Richards using a distinguishable particle ansatz. That is, H3
is a sum of the following terms: the two kinetic energy operators, the neutron-proton interaction

V„p binding the deuteron, the sum of the exact (antisymmetrized) neutron-nucleus and proton-

nucleus optical potentials, each evaluated at an "energy" shifted by the kinetic energy operator of
the other (spectator) nucleon, and a three-body interaction. Contrary to other conjectures, the Pauli

principle does not give rise to a term V„~Q (or QV„~), where Q is a Pauli blocking factor, projecting
off states occupied in the (exact) target ground state. The deuteron in a deuteron-nucleus collision is

thus not hke a nucleon pair in the structure problem described by the Bethe-Goldstone theory. The
three-body interaction 8'„p is sufficiently complicated to necessitate approximate evaluation. Some
relatively simple approximations to 8'„p are described within a multiple scattering type of frame-
work.

I. INTRODUCTION

The standard treatment of deuteron elastic scattering
and elastic breakup--the processes A(d, d) A and
A(d, np)A —is via a model three-body Hamiltonian Ht4.
If n and p are used to label the neutron and proton of the
deuteron, then the form of H~ used in most analyses of
these processes is'

H~ ——Kg+K„p+ V„p+P „+P p,
where E„ is the kinetic energy operator for the relative
motion between the c.m. of the np pair and the c.m. of the
target nucleus A, E„p is the kinetic energy operator for
the relative motion of the neutron and proton, V„p is the
neutron-proton interaction (which binds the deuteron),
and ~„(W~) is an absorptive potential acting between n

(p) and the c.m. of A. It is easy to see that due to the ab-
sorption HM allows only for deuteron elastic scattering
and breakup.

When deuterons collide with a nucleus, the (d,d) and
(d,np) processes are only two among a very large number
that usually can occur. The general deuteron-nucleus sys-
tem is described not by a three-body Hamiltonian but by
an (3+2)-body Hamiltonian Hz+2, which depends on
the labels of the A +2 nucleons forming the collision sys-
tem. HM thus represents one possible reduction of H~+2
to a form describing the elastic events alone. The ques-
tions we pose and answer in this paper concern the general
form taken by such a reduction of H„+2, and how Hst is
related to it. In particular, since we regard the nucleons
in d and A as identical, we wish to determine the effects
of the Pauli principle in such a reduction. %e also wish
to determine if operators occur that correspond to P „and
F~„, and if they do occur, whether (and how) they are re-
lated to the optical potentials describing elastic scattering
of the neutron and proton by A.

An alternate phrasing of these points arises on noting
that the reduction of Hz+2 takes the general form (see
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Sec. III)

Hz+2~Hi ——Ei(+E„~+V„~+U(n, p) . (1.2)

merical procedures used to solve the Schrodinger equation
for the model wave function, viz. ,

The main purpose of this paper is to investigate the points
posed above by studying the properties of U(n, p).

A number of other authors have investigated this
reduction problem, but all of their analyses are essentially
ad ho@, due to the introduction, ab initio, of one or more
approximations. Among such investigations we single out
three of particular interest.

Austern and Richards studied a distinguishable parti-
cle version of this problem and used a coupled channel an-
satz to effect the reduction. They inferred that the correct
reduction would be

H~ +~ =H~ + ~3 (1.3)

where IVi is an unspecified three-body interaction while
the V„(P ~) term in Hz is the neutron- (proton-) target-
nucleus optical potential evaluated at an "energy"
Ed E~ (E—d —E„),where Ed is the incident deuteron ki-
netic energy. A suitable averaging procedure presumably
replaces E~ (E„)by Ed/2.

The use of optical potentials which fit elastic scattering
data already includes some effects of antisymmetry due to
the identity of the nucleons in the deuteron and those in
the target. It was argued by Johnson and Soper and by
Austern and Pong that a further effect of including nu-

cleon identity would be to modify the potential V„~ ap-
pearing in H~ . They drew an analogy between the in-
cident deuteron moving in the interior of the target nu-
cleus and the treatment of a pair of nucleons in a finite or
infinite system via the Bethe-Goldstone equation. As-
suming that the target nucleus ground state is a Slater
determinant of occupied orbitals, these authors replaced
H~ by a Bethe-Goldstone —type Hamiltonian H~

HM Ei( +E——„p+ V„pQ, +&„+F p . (1.4)

where Q, projects off the orbitals occupied in the target.
Thus HEI contains the effects of Pauli blocking directly in
the isolated V„„interaction term.

While the modified interaction V„~Q~, is physically
reasonable and, by comparison with the Bethe-Goldstone
equation might actually be anticipated, it or its analogue
for a non-Hartree-Pock ground state does not occur in the
general Hz +2~H3 reduction. The incident deuteron in a
scattering problem is thus only superficially like the
behavior of a pair of nucleons in the structure problem:
we find no isolated term such as V„~Q, {or Q V„~).
Terms of this latter type will occur as part of more com-
plex terms containing other interactions due to the effects
of the Pauli principle, but no Pauli blocking effects arise
in the isolated V„~ term. Hence, apart from the fully con-
nected, absorptive, three-body interaction IV„~, we find
that U(n, p) of Eq. {1.2) contains only the sum of the an-
tisymmetrized neutron-nucleus and proton-nucleus optical
potentials evaluated at Ed —Ez and Ed —K„, respectively.
Thus, the "leading" terms in H3 are precisely H~, as
originally inferred by Austern and Richards. '

In addition to the structure of H3 [i.e., of U(n, p)], we
are also concerned with other questions, viz. , the meaning
of the model wave function and the accuracy of the nu-

(1.5)

We answer the former in this paper and comment on the
latter in a succeeding article.

In order to carry out the reduction of Hz +2 to H3, we
describe the d + A system using the general, antisym-
metrized, many-particle collision formalism discussed by
Adhikari, Kozack, and Levin, and then apply the cluster
decomposition/connectivity expansion methods used in
an earlier paper in this series. We therefore take account
of the Pauli principle ab initio Th.e A +2 particle col
lision system is assumed to consist of A +2 identical nu-

cleons labeled n, p, 1,2, . . . , A; as in Refs. 6 and 8, isospin
is thus understood to be one of the state labels. Since the
formalism has been described several times before, only a
brief review of notation is given in Sec. II, along with a
statement of the relevant equations. Unlike our earlier
work on multiple scattering type expansions, where the
N-particle collision formalism was the extended Faddeev
theory, in the present case of the coupled (d,d) and (d,np)
processes, we use the precursor form of the Bencze-
Redish-Sloan (BRS) theory'~' in wave function form.
As we shall see, this is a requirement imposed by the in-
clusion of the breakup channel. We note here that the
BRS theory has also been used by Bencze, Polyzou, and
RQish to derive general three-body models of nuclear re-
actions, but for the case in which the particles are
distinguishable. '+

II. NOTATION AND THEORY

The labels n,p, 1,2, . . . , A can be partitioned in a variety
of ways corresponding to possible bound configurations of
the particles n,p, 1,2, . . . , A into clusters. We use the no-
tation b (j ) for an m-cluster partition with particle label-
ing indicated by j. In general, the subscript m will be
suppressed. When m =2, b is replaced by lower case
Greek letters. The canonical labels" are denoted byj =0;
in the present case a(0)=(np)(1, . . . , A) is the incident
partition. Only the set of canonical labels [ b (0) I are
needed in describing collisions involving identical parti-
cles.

Corresponding to b(0) is a partition of the (A +2)-
particle Hamiltonian H ( =Hz+2): H =H(,(p)+ V ' ',

where Hq(p) describes the internal states of the clusters
and their relative plane wave motion. V ' ' is the set of
intercluster interactions in partition b (0), and for simpli-
city, we assume all interactions to be pairwise. The
outgoing-wave, partition-b (0) Green's function G(', (pI is
defined by

Gg(p) = liiii (E +le —Hy(p) )
[+) ~ —1

ego

where E is the total energy. The initial plane wave state
~
4 (p)) is a product of the target and deuteron ground

states times a relative motion plane wave state:

I
~' (p) &

= 14'd(»p)(i' T(1

alid obeys [G (()) ] ~

4 (p})=0.
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In the wave function component approach to multipar-
ticle collisions, the antisymmetrized Schrodinger solution

I
0'"(a) ) is expressed as an antisymmetrized linear com-

bination of partition-labeled components
I pb(0)(a) ), I 40& =

I
~'0&+Go vo I

((('0& (2.8)

tion are given in Ref. 6, and we simply quote the results
here. Equations (2.3) and (2.5) become

I
q'"(a) & =g ~b(0) I A(0)(a) &,

b

(2 1) alld

y BRS+ V BRSG (2.9)
where Ab(o) is an antisymmetrizer. In the present case,
these

I 1tb(0)(a) ) are the solutions of the following set of
coupled integral equations:

Introducing the matrix projector Po, these equations go
over to

I l)'jb(0)(a) & = &ba I c'a(o) &

+Gb(0) g Vb(0)d(0) I
Pd(0)(a) &

(+) BRS

d

(2.2)

Since in this article we are choosing the BRS precursor
formalism as our basic theory, the superscript BRS has
been appended to the exchange effect potential V. It is
given by

Po
I
40&=Po I@'0&+GoPoUo Po

I 40&

Po To Po =Po U o Po+Po U o P060Po To Po

where U 0 is the solution to

U BRS V BRS+ V BRsg G U BRS

with Qo ——Io —Po

(2.10)

(2.11)

(2.12)

BRS ] /2 BRS
Vb(0)d(0) (Nb /Nd ) g ~b(0) b(0)d(k)Pd(k)d(0) ~

k

(2.3)

where, e.g. , Nb is the number of partitions of type bbd(j),
l.e., 0&j &Nb=Nb+I Rb(0) ls the antisymmetriz« for
the internal states in partition b (0), Pd(k)d(0) is the opera-
tor that changes partition d (0) to d (k) and multiplies by
the proper fermion phase factor, and Vb "(0)d (k) is given

b 9, 10

III. FORMAL REDUCTION
TO A THREE-BODY MODEL

( Po )bd =5b (0)d(0)5b(0)a(0)~ ~

where

(3 1)

The restrictions to the elastic channel and to the target
nucleus remaining unexcited mean that Po is given by

BRS rn
Vb (0)d„(k) Cd„vd„(k) (2.4)

m =
I
pr( 1, . . . , A) ) ( tT(()1, . . . , 3)

I

(3.2)

with Cd ——( —) (n —1)!,while Vd is the set of interactions

external to partition b and internal to partition d. ' By
assuming, as we do, that the internal states in all parti-
tions are antisymmetrized, the Rb(0) factors may be set
equal to unity.

Corresponding to the
I lc)b(0)(a)) are a set of antisym-

metrized transition operators Tb"(0) (0), which obey

BRS ~ —BRS (+ )
Tb(0)a(0) V b(0)a(0)+ ~ ~ b {0)d(0)Gd(0)Td(0)a(0) ~

d

and are related to the
I
pb(p)(a) ) via

A BRS
Tb(0)a(p) I

@ (o) & =g Vb(0)d(0) I l(d(0)(a) &

a

(2.5)

(2.6)

I qb(o)(a) & =
I
)p"(a)) (BRS ease) . (2.7)

Since we are interested only in the elastic processes (d,d)
and (d,np), we can restrict our attention to

I f (0)(a)). It
is useful to reexpress (2.3) and (2.5) in vector/matrix nota-
tion and then employ a projection operator to single out
the partition of interest, viz. , a(0). The details and nota-

In a coordinate representation, on-shell matrix elements of
the Tb"(0) (p) are obtained from the asymPtotic form of

I 1{)b(0)(a)); these on-shell matrix elements have been
shown to be equal to the exact, antisymmetrized transi-
tion amplitudes. " Thus, even though

I pb(0)(a)) is not
fully antisymmetric, it yields the correctly symmetrized
amplitudes. We note here that since the BRS formalism
is being used, the components

I 1'(0)(a)) are each equal
to

I
q("(a) ), independent of b (0): '

projects onto the target ground state l(tr) in partition
a(0) =(np)(1, . . . , A). The projected state Pp I fp) thus
becomes

Lo I
%0&= I4T(1 *~)& IO(»p)&,

where

I
W(n p) & = &&T(1 ~)

I 0 (0)(a) )

(3.3)

(3.4)

is a three-body state involving particles n and p and the
c.m. of A. Since

I

q)"(a ) ) is the antisymmetrized
Schrodinger solution, then

I g(n, p)), which is antisym-
metric in n and p, will yield the complete, antisym-
metrized amplitudes for all processes leaving the target
nucleus unexcited, i.e., the antisymmetrized amplitudes
for the processes A(d, d)A and A(d, np)A. This, then, is
the basic meaning of

I
1tj(n,p) ). It differs in an important

way from the analogous state that one would obtain if the
extended Faddeev theory had been used; viz. , in the latter
case, not all of the breakup amplitude would be contained
in the projection of the a(0)-partition component onto m.:
there would also be contributions to breakup from the
continuum portions of the (d,p) and (d,n) channels (see
Sec. IV). Thus the use of the BRS formalism has the ad-
vantage that the model yields the full breakup amplitude.

'Equation (2.10) describes
I 1((n,p) ). The relevant por-

tion of P0U0 Po is
—BRS

«n, p) = (PT(1, , ~)
I Ua(o)a(o) I

gr(1

(3.5)
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(E H3—)
I

i)'j(n, p)) =0, (3.6)

which is the sum of various two- and three-body, com-
plex, nonlocal, energy-dependent effective potentials.
Acting on both sides of (2.10) with Go ' and then project-
ing onto ({))z(1, . . . , A)

I
leads to

as three-particle connectivity, the latter corresponding to
full connectivity for the three-body model. Note that lack
of complete connectivity of the kernel term in (4.1) is no
problem, since we do not solve for n T"(0)a{0}irfrom it.

To proceed further, we use

where
~A ~ ~BRS
~ a(0)a(0) ~ ~ a(0)a(i)~ a(i)a(0) (4.2)

Hi Ki{——+E„p+V„p+ U(n, p), (3.7)

and we have set the target ground state energy e~ equal to
zero. It is evident that (3.7) and (1.3) are the same. Note
that the form of (3.7} follows from the structure of H {0},
viz. ,

BRS (+ )
Ta(o)a(i) I

@a(i) & = Ua(o)a(i) I
C a(i) & (4.3a)

where Ta(0)a(;) is the unsymmetrized BRS transition
operator. The key element in the analysis is the on-shell
relation '

&a(0) =&7+&~ +&op+ ~.p
Va(0)[1+G(+)Va(i)]

I
@ ) (4.3b)

with HT being the target nucleus Hamiltonian acting on
particles 1, . . . , A. Equations (3.6) and (3.7) are the for-
mal solution to the reduction problem, where in the
present notation the Hamiltonian Hz+2 is just the full
Hamiltonian H for the nucleons n,p, l, . . . , A. Our task
is thus to determine U(n, p). We undertake this using a
connectivity expansion, as described in the next section.

IV. CONNECTIVITY EXPANSION FOR U(n, p)

In using a connectivity expansion to evaluate U(n, p),
we follow the same procedure as in Ref. 8. We start with
Eq. (2.11) in the form

A p BRS BRS (+) A~Ta(0)a(0) ~ ~l U a(0)a(0)+ U a(0)a(0)G a(0) ~Ta(0)a(0) ]~ ~

(4.1)

The aim is to obtain a cluster decomposition for U {()},0}
from that of T"{0){0}. Unlike the analogous, pure elastic
scattering situation of Ref. 8, here ir projects onto

I
{()T(1,. . . , A)) and not onto I(()rpd). Therefore

BRS A~ U a(0)a(0)Ga(0)~ra(0)a(0~

is not connected. Hence this latter term will eventually
contribute portions to U(n, p) having two-particle as well

I

wliere U (0) ( ') is the "post" form of the transition opera-
tor'2 and G{+)=lim„o(E+ie H) —' is the full outgoing
wave Green's function. Since T {0}(;} and U'{0'} {;) are
right-half-shell equivalent when acting on an on-shell,
two-cluster state, it does not matter that the theory is to
be used for both two-cluster and thru-cluster (i.e., break-
up) final states. On the other hand, had we started with
the extended Faddeev (EF) theory, then the analogue of
(4.3) that would be required is

EF i ( —)
(@b(i) I Tb(i)a(0) & C b(i) I Ub(i)a{0)

with U' ' being the "prior" form of transition operator, '

and this latter relation holds only when (4b{;) I
is a tu)o-

cluster state. ' Thus, in the EF case we could not use a
cluster decomposition applied to a known expression for
the breakup final state.

As in Ref. 8, to which we refer for details, we write the
cluster decomposition or connectivity expansion of an ar-
bitrary operator 8 as

(4.4)

where a runs over all partitions and [8], has the connec-
tivity of {2. Substituting (4.3b) into (4.2) into (4.1), and
then using (4.4), we find

[ UBRs ] g [ Va(0)(1+G(+)Vu(i)) UBRS G(+) Va{0)(1+G(+)Va(i)) ] P (4.5a)

r gy BRS ~(+) ~A=i~~ a(0)u(0}~ ~~ a(0)u{0}~~a(0)~~ a(0)a(0)~la (4.5b)

where a will, in effect, take on only the values "two-body
contribution" and "three-body contribution. " We consid-
er these types of contributions separately.

V. DETERMINATION OF [U(n, p)j2 ~y

The first step is to identify the two-body or two-particle
terms in

Ta(o)a{o)=g V ' 'I: 1+G'+ ' V "V'a(»a(0} .

To do so ineans finding the portions with connectivity
P(0) =(n)(p, 1, . . . , 3) and y(0) =(p)(n, 1, . . . , 3). Any
fully connected contributions must be eliminated, since
they will yield terms of three-Iyarticle connectivity.

It is helpful to rewrite V ' in (4.5a) as

ya(0) Va(0) + ya(0)
P(0) y(0) (5.1)

which holds due to our assumption of pairwise interac-
tions. Then the two-body contributions to T"(0) (0) are
obtained from

[Ta(0)a(0) ]2 body =g [ V)S(0) ( +G V )]2-body~a(i)a(0) +g [ Vy(0) ( +G V )]2-body~a(i)a(0) (5.2}
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The equivalence class (or channel) a contains four types of partitions a(i), denoted

a(0)=(np)(1, . . . , &),
a(ni)=(ip)(1, . . . ,i —l, n, i+1, . . . , A),

a(pi) =(ni)(1, . . . , i —l,p, i + 1, . . . , 3),

a(ij)=(ij)(1, . . . ,i —l, n, i+1, . . . ,j —l,pj+1, . . . , A),

where we have introduced a new notation for convenience. Since all Va"' involve external interactions, it is straightfor-
ward to determine which of the above partitions contributes to (5.2). None of the partitions a(ij) can contribute, since,
due to the 1r, . . . , P (a,J) (a0)1r factors, they give rise only to three-body portions; on the other hand, a(0) will contribute to
both terms in (5.2). Furthermore, the a(ni) partitions do not contribute to the first sum and the a(pi) partitions do not
contribute to the second sum in (5.2) because in each case the results are fully connected, i.e., are of three-body type. It
thus follows that

[Ta(0)a(0))2-~) = ViiIoI (1+6'+'V ' ')+X(1+6'+'V" ")
)

'

l 2-body

V '0', (1+6(+)V ( 0) )+y (1 +6) (+' V'"'))P (5.3)
2-body

Next, we must isolate the relevant contributions from those terms involving 6'+'. To illustrate the procedure, we con-
sider the first [] term in (5.3). Noting that

6(+ Va' g [6 +)Va ]
d

(5.4)

where a denotes a(0) or a(pi), the two-particle connectivity restriction means that the relevant Fiortion of (5.4) is the
term Gp+(0IV~(0). A similar analysis applied to the second [ ] term in (5.3) leads, in this case, to 6„(()')Vr(0). Hence, (5.3)
becomes

[Ta(0)a(0) l2body VP(0) (1+GP(0) VP(0) )+g ( 1+6)S(0)VP(I)) )Ppi + Vy(0) ~ (1+Gy(0) Vy(0) )+Q ( 1+Gr(0) Vy(0) )Pni

Ta(0)a(0) ~ ~ Ta(0)a(pi)p + ~a(0)a(0) ~ ~a(0)a(ni) ~P0) ~M P(0) p~ + ~ ' y(0) +~ y(0) ~ni
l l

(5.5a)

(5.5b)

where (5.5b) is a definition of the various transition opera-
tors.

These transition operators are straightforwardly inter-
preted. GATI(0)

' 'n corresponds to elastic scattering of
the proton by the target (which contains the nucleons
1, . . . , A), during which the neutron behaves like a free
particle. This is due to the propagator

r

A

6p(()) = E +i 0 I(:x—K„p Hr —QVp, . — —

Hence m. T@0)
' 'm. is the unsymmetrized, proton-target-

nOcleus elastic scattering transition operator embedded in
the ( A +2)-particle Hilbert space. Similarly,
1rT@0I '~"P~;n. describes an "elastic" rearrangement of the

fofiii

i+(1, . . . , i —1, pi +1, . . . , A)~ p+(1, . . . , A),

also embedded in the (A +2)-particle Hilbert space. The
presence of the factor P~; plus the sum over all i&A
means that the first term in curly braces in (5.5b) is just
the properly antisymmetrized, p+ A elastic scattering
transition operator embedded in the ( A +2)-particle
space. The second term in curly braces is the analogous
operator for n + A elastic scattering.

In view of the above comments, it is useful to introduce
two ( A + 1)-particle partition labels: v(0) =(n)(1, . . . , A)
and )o(0) =(p)(1, . . . , A). Then Eq. (5.5b) can be written
as

[~Ta(0)a(0)~l2 body l~T (-0)p(0)(E +n)~+~Tv(0)v(0)(E +p)~I (5.6)

where the shifted energy dependence of and the antisymmetry label A on the new ( A + 1)-particle transition operators is
made manifest.

Returning to Eq. (4.5), we now have, for the two-body part,
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[irU a(0)a(0)~]2 ~y= [~Tp{o)p(0)(E—Kn)~+&Tao)ao)(E —Kp}yr j

+ [TTU a(0)a(o)~Ga(0) I ~Tp(o)p(o)(E K—n }~+~~0)~o)(E—Kp }yr j ]2-body . (5.7}

From the structure of H {0), which contains V„„,it is evident that the product of Ga{0') and the terms in the curly
braces in Eq. (5.7) will contain both two- and three-body contributions. To eliminate the latter, we must replace Ga{0') by

G, (+()) =(E+ KR—K„—
p HT—)

where (2 (0)=(n)(p)(1, . . . , A). To obtain the desired two-body parts, we may iterate (5.7), using G,'{0) in place of G'{0').
It should be obvious that any term in the iteration which will contain as a factor the cross terms

Tp(0)p(0) ~T~Q)~0)

A A~Tv(0)v{0)~Tp(o)p(0) ~

must be eliminated, since these factors are fully connected, i.e., any term containing them will be a three-body contribu-
tion. The right hand side of (5.7) will therefore consist of two infinite series, one involving mTp(0)p{0)m, the other
n.T&0)&0)m, both identical in structure. The result is

BRS A A (+) A[~U a(0)a(0)~]2-body I Tp(0)p(0)~ +Tp(0)p(01&Ga(0)~Tp(0)p(0)~+ j p

A A + A+ I ~Tv(0)v(0)~ ~Tv(0)v(0)~Go(0)~Tv(0)v(0)~+ jn ~ (5.8)

while t j„is the iterated form of
A (+)

m U„Am =m Tgo)go)m —m U„An G, (Q) m Tgo)go)m, (5.10}

where m Upqir and yrUn~yr are defined by (5.9) and (5.10).
Rearranging these latter two equations, we get (restoring
the suppressed energy dependence)

yr Tp{())p(())(E Kn )7r

Equation (5.8) is the desired result. We can put it in a
more recognizable form by noting that each of the two
series is an iterated form of an integral equation. In par-
ticular, [ jp results from iterating

A (+) A
Up+ 1T )TTp(0)p(0)rr yrUpp ITGa (Q) 1TTp{0)p(Q)yr p (5.9)

[)rU a(0)a{0)~]2-body

=
~

{t(1,. . . , A)) [P „(E—K„)+F „„(E—K ) j

X(PT(1, . . . , &) j, (5.13)

which leads to the result

U(n, p) =P pg(E K„)+1"„g(—E Kp)+ W„p,— (5.15)

where W„p is the three-body part. Equation (3.7) thus
takes on the form

[ U( n, P ) ]2 body
——P pa (E K„)+ P—na (E —Kp ) .

Since the remaining contributions to U(n, p) are of a ful-
ly connected, three-body nature, we write

=WUpg(E —Kn)ir[1+ Go{0)yrTp{0)p(0)(E Kn)w]—
(5.11)

H2 ——Kt{+K„p+V„p+ P p~(E K„)—
+W„g(E —Kp)+W„p . (5.16)

With the interpretation of P pz and F „„given above,
we see that H& is in precisely the form of the Austern-
Richards Hamiltonian Hz+2{, Eq. (1.3). When W„p ean
be neglected, 03~H~ and we recover the starting point
of typical d+ A analyses. '

The final task is to determine W„p. An exact deter-
mination is not possible, but low order contributions to it
can be estimated, the analysis of which we undertake in
the next two sections. In particular, we shall show that
W„p does not contain an isolated (three-body) term like
—V„pp(n, p), where )Q(n,p) is the two-particle density in the
target ground state, thus establishing that no combination
such as V„p[l —)Q(n, p)] occurs. That is, the analogue of
the Vnpg~, term conjectured for a Hartree-Fock ground
state [see Eq. (1.4)] is absent.

(5.12)

Tp(Q)p(Q) and TQQ)QQ) are the antisymmetrized p+ A

and n+ A elastic scattering transition operators, then we
can immediately identify

({() (1, . . . , A)
i

U „(E—K„) i(I) (1, . . . , A))

({()z.(1, . . . , A)
i U„g(E —Kp) i PT(1, . . . , A))

as the antisymmetrized, optical potential operators
describing p+ A and n+ 3 elastic scattering, respectively,
at the appropriate shifted energies. We denote these opti-
cal potential operators by P p„(E K„) and—
I „z(E —Kp). We now see that Eq. (5.8) is equivalent to

VI. PAULI BLOCKINCx EFFECTS

Pauli blocking arises when a system contains identical
fermions. The present case is no exception, of course, al-

yr Tv{0)v{0)(E —Kp )7r
A

=71'Ung(E Kp )yr[ 1 +G In7{TQT )
—v{0v({E0)K)~]—
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though, as we show in this section, no such effects are as-
sociated with the isolated V„p interaction: they will occur
only when two or more interactions and, correspondingly,
one or more Green's functions are present in one term.

Suppose Pauli blocking could occur in conjunction with
the isolated V„p potential. Then the matrix element (3.5)
would necessarily contain terms like

M =V (P (1 . . . , »»1)iP ( ) ()iP (1, . ~ . , A))

(6.1)

where i+0 and a(0)=(np)(1, . . . , A). The only type of
I

term in (4.5) that could give rise to (6.1) is the leading one,

viz. , V ' )P
(Q) (;},since all others will contain at least two

interactions and one Green's function. But, V„p does nor

occur in V ' '. Hence, no portion of U„p contains a fac-
tor such as (6.1) and therefore no Pauli blocking effects
are associated with the isolated V„p interaction. It is
therefore incorrect to replace V„p in H)y by a "Pauli-
principle-corrected, " three-body interaction of the form

VnpQ
There are, of course, other Pauli blocking terms associ-

ated with U(n, p) and thus with W„p. The lowest order
Pauli blocking terms that will contain V„p are of the form

Inp=(4'T(1» ' ' ' »~)
I

V Qa(0)Ga(0)VnpPa(i)a(0) I ((T(1» ' ' ' »~)) (6.2)

where

a(i) =(ip)( l, . . . , i —1,n, i+ 1, . . . , g)

or

a(i)=(ni)(1, . . . , i —l, p, i+1, . . . , A) .

Higher order terms, analogous to (6.2), are easily written
down; a11 are three-body contributions. Such terms are
identified as being of Pauli blocking type due to the ap-
pearance in the matrix element of both Qa(p) and & ( ) (p).
These types of terms, and others not containing V„p, will

l

arise from the exchange-effect contributions to W'„p. It
serves no useful purpose for this article to single them out,
and we have not done so in the following discussion of
Sape

VII. MULTIPLE SCATTERING TYPE
APPROXIMATIONS TO 8'„p

It follows from Eq. (5.6) that the three-body contribu-
tions to the transition oPerator nTa(0)a(0)y.r [Eqs. (4.5a)
and (4.5b)] are given by

A A
[yr Ta(0)a(0)~]3 body yrTa(0)a(0) yr yr t Tp{0)p(0)(E Kn) + Tv(0)»»(0) (E Kp ) j )r

A—8 Tgr(Q)~(Q) K Tp Tg

(7.la)

(7.1b)

Eq. (7.1b) defines Tp and T„.
We have found no ways to determine [m T"(0) (0)yr]3 ~y

exactly. On the other hand, there are many possibilities
for approximating this quantity and thus W„p. We have
studied two types, and shall describe the simpler of them
in detail in this section, ending it with a qualitative
description of the other.

The simpler of these two classes of approximations is
characterized as a multiple scattering type of approxima-
tion. ' In its least comPlex form, n U (0)a(0)yr in Eq. (4.1)
is replaced by Tp+ T„—the leading (curly-bracketed)
term in (5.7)—and then (4.1) is iterated. The leading
three-body terms in this iteration are from (7.1)

[yrTa(0)a(0)~]3-body= Tp61 Tn+ TnGd Tp»
A (+) (+) (7.2)

6,'+' =(E+i0 K, K„, V„,)— — —(7.3)

and, as before, the target ground state energy eT has been
set equal to zero.

A further approximation is to replace Gd+' by 6„'p ',

defined by

6'„+p' ——(E+i 0 Ky( —K„p)—
so that an alternate low-order approximation is

A (+) (+)
[yrTa(0)a(0)~]3-body= TpGnp Tn+ TnGnp Tp .

(7.4)

(7.5)

If all iterations can be ignored, so that (7.4) or (7.5) and

rr BRS ~A~ a(Q)a(Q)K —K a(0}a(Q)K

are reasonable approximations, then the simplest approxi-
mation to W„p has the form

8'„p = 8'„'p' ——TpGg T„+T„GgTp,

where k=d or A. =np. If the choice A, =np is made, the
Tp and T„ terms can be replaced by their expressions in
terms of the antisymmetrized, one-body optical potentials

and F „z (evaluated at the properly shifted ener-
gies). Use of a few operator manipulations and Green's
function identities then yield ()(,=np)

W'„p' ——P pg(E+i 0 Kg Knp P—„~—Wpq+—&„gG—„'p 'Wpg )

+P „g(E+i0 Ky( K„p —P „—g —&pg+—P p~G„'p 'F ~) 'P
pp, . (7.7)
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TF T(n)+ T(p)
np

with

(7.8a)

T'J'=TJ+TJG't.+'T' ', k~j, k and j=n or p. (7.8b)

The physical interpretation of this result is straightfor-
ward, the propagators containing a modified neutron-
proton interaction involving the optical potentials P „z
and Wpq.

Equation (7.6) is especially simple because no iterations
are included. Their inclusion involves three-body terms of
various kinds. Probably the most familiar looking of
these arises from iterations in which T~ and T„alternate.
Such an iteration arises from the decomposition

sion for the symmetrized three-body contribution to the
deuteron-nucleus elastic scattering optical potential we
have derived in Ref. 8, an expression which may be re-
ferred to for structural details. We do not display the
analogous expression in the present case because to do so
involves an inconsistency, viz. , IV» is treated in the QIA,
but the potentials W» and F„q are not, though they
must be also. Treating the QIA approach consistently,
however, leads to approximations on both the two-body
and three-bod levels. Since only formal expressions for

and „„' can be written down, while their detailed
properties remain unknown, then both the two-body and
three-body parts of H& become indeterminate. It there-
fore suffices simply to note that this alternate approach
exists.

F F
T3 Tnp Tn Tp (7.9)

This is the three-body portion of the amplitude for simul-
taneous scattering of the neutron and proton due, respec-
tively, to their interactions with the target via &„z and
F ~z and, for A, =d, with each other via V».

Substituting (7.9) into (4.1) and then dropping the terms
with G' ~p') yields a second, Faddeev-like approximation
for IV», viz. ,

(2) F8'np= 8'np ——T3 . (7.10)

Notice that we cannot get a pure three-body contribution
by first iterating

T» ——(T„+Tp)(1+Gi+'T»)

and then subtracting T„+Tp, since such an iteration will
contain pure two-body terms like T„G~+'T„, etc. Sub-
tracting all such two-body terms from T» would, of
course, yield a third approximation to IV» of the same
type as W„"„)and W„",).

The "simplicity" of the IV'„~' and IV„'~' approximations
results from not solving the relevant forms of (4.1). Such
solutions can be obtained, in much the same way as the
two-body contributions were determined in Sec. V. They
do not lead to results that are as simple in form as in the
case of the two-body contributions, however, and we do
not consider them further.

The other procedure we have studied for approximating
the left hand side of (7.1) involves restricting the incident
deuteron to interact with only one target nucleon at a
time. Such a restriction tnay be referred to as a quasiim-
pulse approximation (QIA.). The resulting expression for
W», assuming no iteration of Eq. (4.1), is the ground
state matrix element of a symmetrized, three-body scatter-
ing operator which has subtracted from it the sum of two
two-body scattering operators. This difference of opera-
tors is analogous to any of the three terms in the expres-

The pair (7.8) is an analogue of the well-known set of
Faddeev equations. ' The iteration of them yields a mul-

tiple scattering expansion, ' to which the title of this sub-
section refers.

If we subtract T„and T~ from T„~ of (7.8a), the result
is a pure three-body term, which we denote T3..

VIII. SUMMARY

In this paper we have used a fully antisymmetrized,
multiparticle scattering theory to reduce the deuteron-
nucleus collision system to an effective three-body model
consisting of the neutron and proton forming the deuteron
plus an absorptive core representing the unexcited (and
unexcitable) target nucleus. The Hamiltonian H& for this
model is a sum of a "two-body" portion and a "three-
body" portion 8'„p. The two-body part is in precisely the
form employed as the theoretical basis of the standard
deuteron-nucleus three-body collision model as used to
analyze (d,d) and (d,np) collision data. In addition to the
kinetic energy operators, this two-body part of H3 con-
sists of three other terms: the exact neutron-nucleus and
the exact proton-nucleus elastic scattering optical poten-
tials, each evaluated at an energy shifted by the kinetic en-

ergy of the other (spectator) nucleon, plus the bare
neutron-proton interaction V„p that binds the deuteron.
Pauli-principle effects occur at this level only in the opti-
cal potentials.

The three-body part of H3 is too complicated to be
amenable to exact calculation. A multiple-scattering type
of approximation is introduced, which allows for relative-

ly "simple" evaluations of W». However, we are able to
show exactly that 8'„p does not contain any terms which,
when used in conjunction with the V» part of H3, would
lead to a contribution of the form V»Q, where Q
represents a Pauli blocking effect. Pauli blocking involv-

ing V„p will arise only when at least one other interaction
and a Green's function are present in the relevant (target
ground state) matrix element. Thus, one should not at-
tempt to augment ' the Hamiltonian H~ of the standard
deuteron-nucleus collision three-body collision model by a
term such as V»(1 —Q) in an attempt to include Pauli
principle effects: the model as it is used already properly
takes them into account.

Finally, we note that this paper is exclusively concerned
with the formal reductions Hz+2~H3~H~ and not
with the validity of the means used to approximate Hss so
as to extract numbers from it. In the next paper in this
series, we shall examine the accuracy of the diagonaliza-
tion and expansion methods used in numerically solving
the HM problem [after suitable (and standard) approxima-
tions to H~ have been madel.
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