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M 1 transitions between low-lying levels in ' Xe
and the proton-neutron interacting boson model
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The branching ratios of the collective levels in ' Xe were discussed in the frame&work of the
proton-neutron interacting boson model . It is shown that the experiment is only consistent with

rather small M1 admixtures among the low-lying collective levels. These small Ml matrix elements

imply strong constraints on the proton-neutron interacting boson model Hamiltonian.

The various collective models have focused hitherto
mostly on the excitation energies and E2 transitions.
With the discovery of the 3.08 MeV isovector (1+) excita-
tion in ' Gd and of similar excitations in neighboring nu-
clei by the Darmstadt group, ' there has been a surge of in-
terest in a theoretical description of the magnetic proper-
ties of collective nuclei, viz. , g factors and Ml transitions.
Clearly, besides the experimental evidence on the isovector
excitations there exists in the literature a large body of in-
formation on Ml transitions in the form of intensity
branching ratios and less accurately in the form of
E2jM1 mixing ratios of transitions. These data clearly
involve both E2 and Ml matrix elements, and in order to
obtain reliable information on the Ml matrix elements
one should consider only those transitions which have
strong E2 matrix elements in the collective model con-
sidered. In the following we will consider as an example
the nucleus ' Xe, because there exist particularly detailed
data for this nucleus from recent experiments at Koln and
Jyvaskyla, and also because this nucleus belongs to a
large class of nuclei in the Xe-Ba region which have been
shown to belong to the O(6) limit in the interacting boson
model (IBM-1). Thus we have a rather good understand-
ing of the

energies
and of the E2 transitions of the collec-

tive levels of ' Xe. In order to describe Ml transitions
we will use the IBM-2 version of the interacting boson
model which comprises both proton and neutron bosons,
which has been introduced by Arima et al. 3 In the IBM-
2 model one can describe Ml transitions with the operator
T (Ml),

T(M1 )=gpL p+g„L„

=(Np+N„) '[(N~p+N„g„)(L p+L„)

+(gp —gn)(NBLp —NpLn)l

in nuclear Bohr magneton units, where gp and g„are the
g factors for the proton and neutron bosons. The values
of these g factors of the bosons are not completely known
at the moment. The experimental evidence comes from
the M1 transitions to the mixed symmetry 1+ state usual-
ly called the isovector state' which leads to 0.6
&gp —g„&1.' Similar values are also found from sys-
tematic fits to the g factors of the 2+ states which have
been performed by Wolf et al. which yield gp

M =(spd„—s„dp)(spd„—s„dp)

—2 g [dtxd~]'"'[d xd„]'"'.
k=l, 3

In the following we will denote the Hamiltonian
H =H(k =0) by H~ and the Hamiltonian H =H(k'=0)
by Hz. There are at least two limiting cases of H, which
lead to vanishing Ml transitions between the low lying
members of the ground and gamma bands, namely the
Hamiltonians H~(Xp=X„=O) and H~(Xp=X„=O). By
fitting energies and E2 transitions in ' Xe from Table I
within the O(6) limit the following parameters were found
for H, :

@=0, k'= —0.07 MeV,

Xp =En =Op ~=0.183 MeV . (3)

=(0.63+0.04) and g„=(0.05+0.05).
In the following we will use the value gp

—g„=1. This
value is obtained if the magnetic properties of the proton
boson and the neutron boson arise from orbital contribu-
tions only.

With this transition operator we can calculate the ex-
perimental energies, branching ratios, and mixing ratios
when we have the IBM-2 wave functions, i.e., if we have a
proper IBM-2 Hamiltonian.

In order to obtain a proper IBM-2 Hamiltonian we note
that the absolute Ml transition intensities needed to
reproduce the data are rather small. The 8(M1) values
are of order of & 10 JLtN for the low-lying levels of the
ground and gamma bands in ' Xe. Thus, it seems
reasonable to start with an IBM-2 Hamiltonian, which
has no Ml transitions at all between the low-lying
members of the ground and gamma bands. This Hamil-
tonian will subsequently be perturbed by a small addition-
al term which induces the Ml transitions. We have
chosen the following form of the IBM-2 Hamiltonian in-
troduced originally by Dieperink et al. :s

H =e(n4p+ n&„)+k (QpQ„)+k'(Q p+ Q„)2

where n4, =(d„d„),

Q, =(dts, +d„s„)'2'+X„[d,&&d„]'~', r =n or p,
and where

Oc1986 The American Physical Society



M1 TRANSITIONS BET%'EEN LO%'-LYING LEVELS IN ' Xe. . . 1473

TABLE I. Relatjve ga~ma ray jntensjty values for i2sXe Calculatjon of the theoref jcal values for
the Hamiltonian Hi(X') [effective charge obtained from 8(E2;2~~0'~) =1500 e fm" (Ref. 15); experi-
mental intensities from Refs. 15—17; parameters as in Fig. 1 but for the variation of X ].
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FIG. 1. Excitation energies: A: Hamiltonian H2(g'); pa-
rameters @=0.28 MeV, k = —0.263 MeV, +=0, J'=0, X=0.1
MeV, and k'=0.0 MeV. 8: Hamiltonian Hi{+'); parameters
@=0.0 MeV, k'= —0.07 MeV, g =0, g' =0, k =0.183 MeV, and
k=0.0 MeV. {The dots label these levels which are nearly pure

—1 states. )

Similarly, we found the following parameters for H&.

a=0 28 M. eV, k =—0.263 MeV,

Xp ——X„=O, A, =0.1 MeV .

The value of A, has been chosen to set the 1+ isovector lev-
el at E„(1+)=2.3 MeV. Presumably the true isovector
level lies higher and thus a larger value of A, is needed, as
discussed below. The value of the parameter A, of the Ma-
jorana force can be determined from the energy of the
lowest (1+) isovector state. The energy of these isovector
excitations is not known in the barium-xenon region. We
find a value A, =0.22 MeV for E„=(1+)=3 MeV and a
value A, =0.55 MeV for E,(1+)=5 MeV. The fits to the
energies with the two Hamiltonians are shown in Fig. 1;
the fits to the branching ratios are shown in Tables I and
D. These fits seem quite reasonable and they correspond
in quality to fits which were obtained in the IBM-1 with
the O(6} limit. Actually the above IBM-2 Hamiltonians

were obtained by using as a start the O(6) IBM-1 Hamil-
tonian and by the help of a projection method which con-
nects an IBM-2 Hamiltonian with an IBM-1 Hamiltonian
for states of maximum Ii spin I' =F~ . When we con-
sider the fit to the energies in Fig. 1 it is rather good, al-
though there are some deviations for the quasibeta band
and in the staggering of the gamma band.

Those deviations can be removed in the IBM-1 by the
introduction of a three-body term which induces triaxiali-
ty. In a nucleus described by IBM-2 triaxiality appears if
X~ and X„are large and have opposite signs.

In order to induce Ml transitions we have chosen to
vary the parameter X'= —,

' (X„—X„) while keeping the pa-
rameter X= —,

' (X~+X„)=0. We will now denote the Ham-
iltonians Hi(X') and Hi(X'}, respectively. The depen-
dence of our results on the parameter X' is shown in
Tables I and II. If we look at the tables, we note that
some of the branching ratios depend very strongly on the
parameter X' like, e.g., the branching ratio from the 5+
state, whereas other branching ratios such as the branch-
ing ratios from the 3+ state depend less strongly on X'.

If we consider a deviation between experiment and
theory of less than 25%%uo satisfactory, then it is clear that a
value X'= —0.15 for the IBM-2 Hamiltonian H, (X') with
the (Q~+Q„) term and X'= —0.22 for the usual IBM-2
Hamiltonian H2(X') with the Q~Q„ term gives a fair
overall agreement. One notes also that larger values of
X'= —1.0 lead to strong deviations between the experi-
ment and the theory. In Fig. 2 we show the dependence
of the Ml matrix element of the 2r+~2s+ and the 5+„~6s+
transitions vs X'. One notes that these matrix elements
are linear for sinall values of X', which shows that one ac-
tually can calculate those matrix elements by perturbation
theory.

In ' ' Xe we got the same results with one exception.
The branching ratio (4z -+4s )/(4z —+2+&) of ' Xe is two
times weaker than the predicted O(6) ratio without an Ml
admixture. Thus this ratio cannot be used to extract the
M1 strength. Comparing the experimental values of

Xe and ' Xe we consider it possible that the 4& ~2g
line is a doublet.

Important observables are also the g factors and
E2/M1 mixing ratios. In the case of '~sXe most of the
E2/Ml mixing ratios are not well measured. Only the
value for 2z —+2s is well known. Table III shows that we
were able to reproduce them within experimental error
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TABLE II. Relative gamma ray intensity values for ' Xe. Calculation of the theoretical values for
the Hamiltonian H2(g') [effective charge obtained from 8(E2;2g —+Oiz) =1500 e2fm (Ref. 15); experi-

mental intensities from Refs. 15—17; parameters as in Fig. 1 but for the variation of g'].
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TABLE III. E2/M1 mixing ratios for the Hamiltonian H2{g ). (Parameters as in Fig. 1 but with
g'= —0.22.)
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TABLE IV. Calculated F-spin amphtudes for the Hamiltonian H](g') {parameters as in Fig. 1 but
with g' = —0.15.)
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TABLE V. Calculated F-spin amplitudes for the Hamiltonian 02(+') {parameters as in Fig. 1 but
with g' = —0.22.)
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bars. As a result of recent Coulomb excitation ex-
Periments 8 (E2;2&~2e)=1800(20) ezfm and
8(M1;2r-+2s) have been determined. The resulting 5,
which is also in agreement with our calculation, is given
in Table III. Moreover, there is good agreement between
the calculated B(E2;2&~2s)=1959 ezfm (Hamiltonian
H~) and the experimental one. The g factor of the first
2+ state is g=0.31(3). The Hamiltonian H i gives
g=0.33 and the Hamiltonian H2 gives g=0.24; the op-
timum value of X' mentioned above has been used.

A particularly simple interpretation of our results can
be given for the Hamiltonian Hi (X'=0) with the

(Q~+Q„) term by means of the F-spin concept. This
concept was introduced by Arima er al. ' F spin is the
isospin for a system of proton and neutron bosons. Since
T(M1) is an F-spin vector, only transitions with
~=0,+1 are allowed. For operators of the form

Tp Xp T the matrix elements between states with
maximal F spin F=I'/2 are zero. Only the second part
of the Ml transition operator which has this form will

contribute to transition matrix elements, because the first
part [formula (1)] is proportional to the angular momen-
tum. Thus Ml transitions are rigorously forbidden be-
tween states with maximum F spin. If we use the param-
e«rs X=O and X'=0, we find that the Hamiltonian
Hi(X') with the ( Q~+Q„) term is a pure F-scalar opera-
tor and leads to wave functions with a pure F spin. Thus,
indeed, we find no Ml transitions between F F,„states
for X'=0. If we now introduce X'&0, then it will induce
F =(F~ —1) components into the IBM-2 wave functions.
The existence of the F=F —1 components is a necessary
condition for the appearance of Ml transitions. (See Fig.
3.)

It is clearly of interest to investigate the purity of the
wave functions of the two Hamiltonians in terms of F
spin. In order to do so we have modified the IBM-2 pro-
gram NPBOS by adding a subroutine which decomposes
the wave functions according to their F spin [program
NPBOS-F (Ref. 11)]. The calculations were repeated with a
new version of the IBM-2 code by Otsuka which runs on

TABLE VI. Calculated E-spin amplitudes for the Hamiltonian H2(g'=0), N~ =3,N„=4.

Amplitudes
E (MeV) p—1

2
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31
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0.000
1.328
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0.371
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2.147
1.488
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—0.985
—0.990
—0.909
—0.986
—0.988
—0.993
—0.990
—0.000
—0.988
—0.990

0.048
0.068
0.036
0.056
0.063
0.069
0.068
0.980
0.063
0.068

—0.162
—0.162
—0.205
—0.154
—0.141
—0.099
—0.123
—0.092
—0.141
—0.123

0.019
0.012
0.066
0.018
0.015
0.007
0.012
0.178
0.016
0.012
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a VAX, and complete numerical agreement was obtained.
In Tables IV and V we decompose the amplitudes of

the two Hamiltonians for which we obtained the best fit.
One notes that the F-spin breaking is quite small for the

(Q~+Q„) type of Hamiltonian, H, (X'), whereas the situ-

ation is more comphcated for the usual Q~Q„ IBM-2
Hamiltonian H2(X'). In this case the Hamiltonian is a
combination of an F-spin scalar and an F-spin tensor.
Thus the states considered have an F-spin mixing even at
X'=0, although the Ml transition strengths vanish. We

want to note that the components with F (F —2 are

generally much smaller than the adrnixtures with

F=F —1 or F —2 due to the tensor part of the Hamil-

tonian. Table VI shows the F-spin amplitudes in a case
with %~=3, N„=4. The possible values of F spin are
now F= —,, —,', —', , —,'. Note that with one exception all am-

plitudes with (F —3}=—,
' are rather small compared to

F —1 and F~ —2. The exception is the second 3+ state.

The largest component of this state is F~ —1 with an am-
plitude of 98.0%. Therefore it is not surprising that the
F —3 component is 17.8%%uo.

Due to the F-spin selection rule, in the case of the
Hamiltonian H|(X'} the Ml transitions between the gam-
ma and the ground state bands can occur only in the pres-
ence of F-spin mixing. To this extent the Ml transitions
indicate F-spin mixing. However, the situation is com-
plex, as shown by the properties of the Hamiltonian Hq,
as we noted above.

This unexpected behavior is due to the symmetry prop-
erties of Q~Q„. This operator can be decomposed into the
Casimir operators of O~(6),O„(6),O~(5),O„(5),O~+„(6),
O~+„(5). In this sense it belongs to an intermediate case
between the two dynamic symmetries, which have the
O~+„(5) subgroup in common

) XO„(5)

Op(6) XO„(6) DO@+„(5)DO@+„(3)

p+„(6)

The eigenstates of H~ are representations of O~+„(5)
characterized by two labels (r„~2};the lowest states con-

sidered by us are of the (r,O) type. It has been shown'
that an Ml transition between states (r,O) and (i',0) is
forbidden if ~&~'. Besides, transitions with &I; =+1 in-
side a (~,0) multiplet are also forbidden.

An IBA-2 calculation of the Xe, Ba, and Pt nuclei was
recently carried out by Novoselsky and Talmi. ' An ex-
cellent ftt of energies and a quite good agreement for the
8(E2)'s have been achieved. On the other hand, Ml
strengths calculated with their wave functions and with

(g~ —g„}=1would be too large as compared to the data,
due to strong F-spin mixing in their wave functions. This
disagreement could be removed either by reducing the
value of (g~ —g„) or by introducing higher-order terms in
the Ml operator. This question is open to further investi-
gation.

Finally, we have to add a word of caution. Our results
depend on two parameters which are only partly known,
namely on the value of (g~ —g„) and on the value of the
parameter A, of the Majorana force. It seems that both of
these parameters are, however, known to within a factor 2
and that our results thus are valid. In this case the X' has
to be changed and can be larger if A, is larger.

Summing up, we have shown that one can obtain a sa-
tisfactory IBM-2 fit of the energies and of the branching
ratios for the low-lying collective levels in ' Xe. We have
shown in particular that the fit to the branching ratios
which includes Ml transitions is a very sensitive way of
determining the proton neutron degree of freedom of the
IBM-2 Hamiltonian. Caution in this conclusion is need-
ed, however, in view of special selection rules for Ml
transitions, which are independent of the F spin.

It would be interesting to generalize our results to nu-
clei with other symmetries as, e.g., SU(3) nuclei. An ex-

ample of such work has recently bow performed by Lipas
and Helimaki.
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