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Trinucleon charge densities and charge form factors are calculated in impulse approximation for
a large set of wave functions obtained from solving the Faddeev equations for diverse combinations
of four two-body force models and three three-nucleon force models. The three-nucleon forces im-

prove the form factor predictions in the region of the secondary maximum slightly, but the experi-
mental data are still substantially higher than the theoretical predictions, while the positions of the
theoretical first diffraction minimum and secondary maximum are too high.

I. INTRODUCTION

The behavior of the charge form factor of He in the re-
gion of the secondary maximum has been a persistent
problem for theorists since the data were first taken. ' In
impulse approximation the data are much higher than cal-
culations predict. ' This has led to speculation that ex-
otic mechanisms may be responsible for this behavior.
Models which include three-nucleon forces, i' pion-
exchange currents, ' or explicit quark degrees of free-
dom have been invoked. In this work we will investigate
some aspects of the first of these mechanisms.

The I.os Alamos —Iowa collaboration has devoted itself
to solving the Faddeev reformulation of the Schrodinger
equation in configuration space for bound state eigen-
values and eigenfunctions. ' ' Faddeev' calculations are
traditionally organized by expanding the nucleon-nucleon
potentials in a series (of infinite extent), each term of
which acts only in a single partial wave (e.g., 'So}, trun-
cating the series, and then solving the truncated problem
"exactly" in a numerical sense. Until recently, the stan-
dard for very accurate calculations was the five-channel
problem, ' keeping all positive-parity partial waves with
total angular momentum j&1. Hajduk and Sauer4 ex-
tended this to 18 channels (all j&2), and recently we
developed the first" 34-channel solution (all j&4). In the
(limited) sense that accrual of binding was very small be-
tween j,„=3 and j,„=4, and is estimated to be less
than 10 keV for all j&4, the "classical" three-nucleon
bound-state problem can be said to have been solved.
More recently, ' ' the necessary technical developments
were made so that three-body forces (38F's), those
forces ' ' which depend on the simultaneous coordi-
nates of three nucleons, could be included as well.

The result of these calculations is that two-body forces
underbind the triton. Realistic nucleon-nucleon forces'
[Reid soft core (RSC), Paris, super soft core (C) (SSCC),

de Tourreil —Rouben —Sprung (B) (TRSB}, Argonne Vi4
(AV14)] underbind by roughly 1 MeV. Three-body force
models based upon pion exchange provide substantial ad-
ditional binding, but have a disturbing sensitivity to the
short-range behavior. Thus the binding defect can be
cured by any of the commonly used 3BF models [Tucson-
Melbourne' (TM}, Brasilian' (BR},or Urbana-Argonne
(UA)], but the theoretical dependability of this result is

problematical.
A number of years ago Fabre de la Ripelle' suggested

that a remarkable property of most three-body force
models could resolve the form factor difficulty as well as
the binding problem. These forces, whether classical,
atomic„solid state, or nuclear, typically have a strong
dependence on the angular orientation of the three in-
teracting particles. Binding prefers equilateral, or near
equilateral, configurations, where each particle feels the
full attraction of both of its neighbors. The charge densi-

ty, on the other hand, is highly sensitive (in impulse ap-
proximation) to other configurations. The charge density,
p(r}, is determined at the origin primarily by medium and
large values of q (momentum transfer) in the charge
form factor, which are largely negative. Hence, p(0) is
(experimentally) smaller than calculations predict, because
the magnitude of the form factor data in the region of the
(negative} secondary maximum lies above the predictions.
In the impulse approximation the coordinate r in the
charge density corresponds to the distance from the center
of mass to one of the protons. Vanishing r corresponds to
a collinear configuration of nucleons. It is entirely possi-
ble for a 3BF to be attractive in the equilateral configura-
tion and repulsive in the collinear one, thus resolving both
binding and form factor problems. Nuclear 3BF models
have this qualitative property, but quantitative calcula-
tions are clearly necessary.

Many years ago pion-exchange contributions to the
charge operator, p (r), were calculated and later applied
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to He. Effects were found of the requisite sign and suffi-
cient magnitude to resolve the form factor problem. At
approximately the same time ' a more detailed and com-
plete calculation of these operators showed that (1) they
are relativistic corrections, (2) they contain important
momentum-dependent terms (which have never been in-
cluded in He calculations}, (3) they are model depen-
dent, reflecting the physical difference between pseudo-
scalar and pseudovector couplings of pion and nucleons,
and (4) they are ambiguous, reflecting a unitary ambiguity
which arises in different methods of calculating these
operators. The latter problem is commensural with an
identical ambiguity in the relativistic corrections to the
one-pion-exchange potential (OPEP); there is no prob-
lem at all if the wave functions calculated with a given
form of OPEP are used with a commensurate form of the
OPE charge operator (such matrix elements will be free of
any ambiguity). That is, strength in a matrix element can
be shared between the operator and wave functions. The
problem is most severe for the isoscalar charge density,
where it is possible to choose p to be zero. The exasperat-
ing element in this difficulty is that so-called realistic po-
tential models have the wrong form to correspond to any
of the allowed unitary representations of these operators.
Until a complete calculation is performed, no definitive
conclusion can be reached. In the work described below
we will explore the consequences of a 3BF only in the im-
pulse approximation.

In Sec. II we describe the organization of our impulse
approximation charge density calculation, while in the
Appendix we discuss the transformation of our wave
functions to an I.-S basis, which is especially convenient
for calculating matrix elements. In Sec. III we discuss our
results and in Sec. IV we present our conclusions.

II. CHARGE DENSITY

In the impulse approximation the point-nucleon tri-
nucleon charge density matrix elements have the form

p(r) (% g j; 4) z=,

where p; is the charge density operator for particle i, Z is
the number of protons and A (=3}is the nucleon num-

ber. For point nucleons the operators p; are given by

5(r ——', y;),
p; = i —,[1+F3(i)],

where —', y; is the distance of nucleon i to the trinucleon
center of mass and we have normalized the charge density
so that

prr r=l (3)

For three identical nucleons one can use the symmetry
properties of the total wave function to write

The charge density operator may be separated into an iso-
scalar and an isovector component, and we define the cor-
responding charge densities as

and

We evaluate these matrix elements using a wave function
with total isospin T= ,' and with—MT———,'. Therefore,
the proton (neutron) density for He ( H) is given by

1

p(p}(r)= 4 (3p, +p„),

and the neutron (proton) density for 3He ( H) is given by

The densities p, and p„have the normalizations

pr r=1
and

p„r r =1 . (10)

Using the wave function in the form given in Eq. (A26)
of the Appendix and averaging over orientations, one can
write the matrix element for p, in the form

where p is defined by xi.yi ——1u. Since the isovector density operator has the additional ~&(1) operator, the matrix ele-
ment for p„has the form

p))(r) 3 g g g g g+( 2 j f x id+1 f dP +LML(+1~ z r~P')+LML(+1) p r)u )&(})'.
l
ri(1)

l (I})) &

n n' L + M&

(12)

III. CALCULATIONS AND RESULTS

If we ignore isoquartet (T =—', } components of the
trinucleon wave function arising from charge-
symmetry-breaking elements of the nucleon-nucleon in-

teraction (e.g., the pp Coulomb force), the trinucleon
charge densities and charge form factors can be decom-
posed into isoscalar and isovector components. In the im-
pulse approximation the isovector density has a large
component which is simply proportional to the isoscalar
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one. If that coinponent is subtracted, the remainder deter-
mines the difference between the trinucleon charge densi-
ties and is denoted by pd. In the impulse approximation
only, we have

pu:ps+2pd ~

~'He=~~+«~2

p3H=ps pd s

(13a)

(13b)

(13c)

where p is normalized to zero, and all other densities
satisfy p(r)r dr =1. In earlier work 2 one of us25

adopted an unfortunate notation (p„) for what we call
here (and henceforth) p&.

The form factors can be calculated easily by Fourier
transformation:

F(q )=I dr r jo(qr)p(r), (14)

where jo is the usual spherical Bessel function. The effect
of the nucleon charge distribution [or form factor,
GE(q )] can be introduced in the usual way:

ZF(q )= iF,GE+ 2F„GE, (15)

qmjp 1 1 0+0 7 fm

q~,„=15.65 fm

—F(q',„)=(59+3)X10 ',
(16a)

where s and U label isospin components, as before, (+)
refer to He and H, and GE ——Gg+Gg, GE ——Gg —Gg.
The nucleon (Sachs) isotopic form factors are normalized
to 1; when numerical values are needed, we adopt fit 8.2
of Hohler et al.

With the exception of the very-low-q region, deter-
mined largely by the various radii, six numbers character-
ize the trinucleon form factors in the traditional nuclear
physics regime (q &30 fm ). These numbers are the
positions of the first diffraction minimum and the secon-
dary diffraction maximum, and the value of the form fac-
tor at the latter value of q, for both He and H. The
most recent Saclay fits to the world's trinucleon form
factor data produce, for He,
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FKJ. 7. The magnitude of the RSC He charge form factor in the impulse approximation for several three-body force models, plot-
ted versus q, together with the experimental data.
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and, for 'H,

q;„=12.6+0.5 fm

q m,„=17.25 fm

—F(q,„)=(39.5+4) X 10

(16b)

For comparison we present our results for these quanti-
ties in Figs. 1—6. Nucleon form factors are included in
each case. These observables are plotted for each of our
wave functions versus the corresponding binding energy
E~. Triangles, X's, circles, and inverted triangles corre-
spond to RSC, AV14, SSCC, and TRSB two-body poten-
tial models, respectively. Three-nucleon forces were add-
ed only to the RSC and AV14 models. All points with

EIi ~ 7.7 MeV contain such a force. A few of these cases
include a pp Coulomb force, which has little significance
in the results. In every figure there is a band, a clear
trend upward with increasing binding energy. Most of
those points for small Ez, which lie off the band, corre-
spond to three-channel calculations, which have a severely
truncated tensor force, and cannot be said to be particu-

larly realistic for this reason. In each case the AV14
model tends to produce larger values of q;„or q than
the RSC model, and smaller values of

~
F(q~,„)~. The

positions of all of our minima and maxima are at too
large a value of q, while the values of the maxima them-
selves are too small, compared to experiment.

This is shown most clearly in Figs. 7 and 8, which com-
pare our RSC 34-channel results corresponding to several
3BP models with the experimental data. ' The vari-
ous three-nuclcen forces clearly increase the value of the
secondary maxima and, just as clearly, generate compar-
able results for this range of momentum transfers. More-
over, there is a serious problem at moderate momentum
transfers, which stems from the fact that the diffraction
minima are not correctly located. Ironically, the case cor-
responding to no 3BF fits the low-q data quite well,
while adding a 3BF spoils this agreement.

The reason for the change in shape of the form factor
curves for small q can be understood as follows. The
most obvious quantitative effect of the inclusion of a 3BF
is the increase in binding. This affects the exterior part of
the wave function in an obvious way: the value of ~ in
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FIG. 8. The magnitude of the RSC H charge form factor in the impulse approximation for several three-body force models, plot-
ted vs q, together with the experimental data.
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Eq. (A8) changes because a -Ez . We therefore posit (as
a model) that the increase in binding simply changes
+ (x,y) (with binding energy E~) to aII (Ax, ky) (with
binding energy Eri), where A. -(Ez /Ez )'~2 y 1. This
changes p, i,(r) to A, pd, (Ar), where the multiplicative fac-
tor preserves the normalization. Calculating a form fac-
tor changes F,i, (q) to F,b(q/A, ), which simply "stretches"
the momentum transfer scale of the form factor. This
clearly accounts for some of the binding effect in Figs. 7
and 8, but cannot account for the increase in the secon-
dary maximum. The "stretching" model predicts the
same value for any secondary maximum, albeit at a shift-
ed value of q . A closer examination of the stretching
model shows that its predictions are quantitative only at
quite small values of q, although they are qualitative for
substantially larger values of q .

Finally, we examine the point-nucleon impulse approxi-
mation charge densities shown in Figs. 9 and 10. The He
charge density has a maximum at the origin when no 38F
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FIG. 10. The RSC 'H charge density in the impulse approxi-
mation for several three-body force models, plotted vs r.

is included. This changes to a slight minimum (except for
the TM model) for the 3BF cases. The size of this depres-
sion is very much smaller than that found by Sick, ' re-
flecting the 50% increase in the secondary maximum for
our 3BF wave functions, while a factor of 3—4 is needed
in order to agree with the data. The form factors for the
various 3BF cases in Fig. 7 are nearly the same. The dif-
ferent behavior of the TM case near the origin in Fig. 9 is
symptomatic of the differences in the form factors at
much larger values of q than those shown in Fig. 7.

The H charge density has a small hole for every model,
caused by the L =2 (D-wave) component of the wave
function. This component necessarily has a completely
symmetric S = —,

' (spin-quartet) wave function. Conse-

quently, the two neutrons in the L =2 part of the H
wave function are forced by the Pauli principle to be in a
(relative) odd-parity state, as is the remaining proton.
Thus the charge density corresponding to this component
must vanish at the origin (-r ). There are two protons
in He, and singling out one of them can leave the remain-

ing neutron and proton in any orbital state, and this
places no restriction on p(r) for small r Altho. ugh it is
difficult to observe the effect in Figs. 9 and 10, we note
that the increased binding draws in the charge density
from large r toward the origin, which is yet another mani-
festation of the stretching in the form factor.

IV. CONCLUSIONS

The various combinations of two-body and three-body
force models that we have discussed above are clearly
inadequate to account for the experimental behavior of
the trinucleon form factors in the impulse approximation.
The experimental (first) diffraction minimum lies at a
smaller value of q than the theoretical models predict, as
does the position of the secondary maximum. Theoreti-
cally, the size of this maximum is too small. Although
the inclusion of three-body forces helps increase the size
of the secondary maximum, "stretching" of the form fac-
tor makes the calculated positions of the minimum and
maximum move outward, worsening the disagreement
with experiment. Clearly, the physics we have built into
our model calculations is inadequate. What remedies for
these problems are available?

The ad hoc addition to either form factor of a com-
ponent which vanishes at q =0 and is negative in the re-
gion of the diffraction minimum and secondary max-
imum would alleviate all of these problems. This negative
component would shift the form factor minimum and
maximum to smaller values of q, and would accentuate
the size of the maximum. This simple structural behavior
accounts for the helpfulness of the meson-exchange
currents. It is obviously difficult for three-body force
models to accomplish this in the impulse approximation
and to increase the binding at the same time. We rnen-
tioned earlier, however, that there was no fundamental
difference between certain pion-exchange contributions to
the charge operator, p, and inclusion of relativistic
corrections to the two- ' (and three- ) nucleon Hamiltoni-
ans, ~ . The matrix elements of the charge operator
have a certain strength, which can be dialed from the
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operator p into the wave functions via b,H in an arbi-

trary manner. Those ad hoc calculations of p which
have been heretofore performed have a negative sign and
an appropriate strength to alleviate some of the problems
in Figs. 7 and 8, however.

For this reason it is imperative that a trinucleon calcu-
lation be performed which (at least) includes relativistic
corrections. One would, of course, prefer a model calcula-
tion with the minimal correct physics which avoids a
(Ulc) expansion. Only in this way will we be able to
make a clear statement about relativistic effects and their
role in the He and H form factors.

The work of J.L.F. and B.F.G. was performed under
the auspices of the U.S. Department of Energy, while that
of C.R.C. and G.L.P. was supported in part by that agen-

cy.

APPENDIX

tion P, and the
~
a); are the angular momentum and

spin-isospin functions for the channel a and the variables

(x;,y;). That is,

~a);= ~[(l,s j),(P,S;)J ]JM;(t,T;)TMr), (A6)

and / is the relative orbital angular momentum of parti-
cles j and k, s is the spin angular momentum of particles

j and k, j is the total angular momentum of particles j
and k, 8 is the orbital angular momentum of particle i
relative to the center of mass of particles j and k, S; is the
spin of particle i (S;= z ), J~ is the total angular momen-

tum of particle i, J is the total angular momentum of the
three-particle system, t is the total isospin of particles j
and k, T; is the isospin of particle i ( T, = —, ), and T is the

total isospin of the three-particle system.
The 34 j-J partial-wave states that we have used for

our largest calculations are given in Ref. 13. The reduced
wave functions are expressed in terms of the hyperspheri-
cal variables, defined by

The configuration space Schrodinger wave function is
expressed as the sum of the three Faddeev amplitudes'

g;. That is, one writes

+(xi yi) =4(xi,yi)+4(x2 y2)+4(x3 y3)

and

x; =p cosL9;

v3
y; = psin8; .l

(A7a)

(A7b)

—=4i+4z+A
where we use the center-of-mass Jacobi variables

and

x =r —rkJ

1y;= —,(rj+rk) —r; .

The r; are the coordinates of particle i, and the subscripts
are to be taken cyclically. The total wave function can be
expressed as a function of any pair of the Jacobi variables.
We choose to use the pair (xi,yi ), which are conventional-
ly written as (x,y). The other two pairs can be expressed
in terms of xi and yi, by the relations

We write

8
—KP

P (x;,y;)=F (p, B;) p'" (A8)

where a is the bound-state wave number. The binding en-

ergy is given by

fPK
(A9)

It is the F~(p, B; ) which form the eigenfunctions corre-
sponding to our Faddeev eigenvalues. The F (p, B;) are
expanded in bicubic splines on a rectangular grid in the
p-8; coordinates:

1

X2 = —TX1+P1, (A3a)
I"' (p, B; ) = g g a „s (p)s„(8;),

m =1n =1
(A10)

3 1 (A3b)

and

1

+3 2X1 J1 ~

3 1

X3= 4 X1—T)'1

(A4a)

(A4b)

For each of the Faddeev amplitudes we use the partial-
wave expansion in the j-J coupling scheme. Thus we
write

P(x;,y;)=g ~
a);,

xi3'i

where we have introduced the reduced partial-wave func-
t

where s~(p) and s„(8;) are the cubic Hermite splines. 3

The Faddeev equations are reduced to a matrix eigenvalue
problem for the eigenvalue a and the eigenvectors whose
components are the a „. Given the a „and ~, one can
use Eqs. (Al), (A5), (AS), and (A10) to construct the total
wave function for any values of xi and y, .

While the j-J coupling scheme is convenient for solving
the Faddeev equations, it is not the most convenient
scheme for using the wave functions to calculate matrix
elements. For most numerical calculations it is preferable
to separate the orbital angular momentum wave function
from the spin-isospin wave function. To do this we first
transform the channel functions ~a); to the L-S cou-
pling scheme and use the relations

I~ su j~

~
a);=+[(2J +1)(2J +1)(21.+1)(2S+I)] S J '

~
[(I,g )I., (s,S )S]JM'(f, T~)TM ); .

L S J
(Al la)
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Defining the L -S channel states

I P); = I f(Ip, /p)Lp, (sp, S;)Sp]JM;(tp, T;)TMT );,
(Al lb)

one can write Eq. (Al 1) in the form

3 together and then coupling to particle 1 to form the to-
tal spin and isospin. For three nucleons with spins
Si ——S2 ——Si ———,

' and isospins Ti ——T2 ——T3 ———,, we defme
the state functions

Xn=
I
f(S2~S3)sn SilSnMs&= I(sn, Si)S.&,

Ia);=pc pIP);,
P

where the L -S states are given in Ref. 13.
Using Eq. (A12), we can now rewrite Eq. (A5) as

p(x;,y;)=grec. p IP&i
p Xggg

ii3~l
I P)

p &~3'i

Using Eqs. (A8) and (A10), one finds

(A12)

(A13)

rIn =
I f(T2 T3)tn Ti]T.MT &

=
I
(t—n Ti)T& «ig)

The three possible spin states are

X,= I fo, —,']-,' &,

X2=
I fl z l ~ &

(A19a)

(A19b)

(A19c)

Since we consider only states with a total isospin of —,, the
tvro possible isospin states are

e
—KP

'(( p(Xiii i ) =y CapFa(pi 8i ) i/2
CX

P'"
8

—KP

in
P

(A14)

aDd

gati= ifo 2]2 & (A20a)

(A20b)

We have introduced

Fp(p 8i )=g cap g g a „s~(p)s„(8;)
e m =1n =1

Following Schiff, ' we choose as our spin-isospin basis
states linear combinations of the states defined in (A19)
and (A20). These states are

g binnsni(p)sn(8i. ), (A15)

1
into ~ (Xi,rti Xi/2)&2

(A21a)

m =1n =1

where the new expansion coefficients b „are defined by

bP„=pc.pa „. (A16)

1
Pl ~ (Xi /i X292) i&2

1
(X192+X2 I i )o'2

(A21b)

(A21c)

Using the expansion coefficients bgn one can combine
Eqs. (A13)—(A15) to construct the Faddeev amplitudes in
the L-S representation. The total wave function is still
the sum of the three Faddeev amplitudes.

Both the j-J and the L-S partial-wave expansions de-
fined above contain spin-isospin functions for three nu-

cleons coupled to all permutations. For the evaluation of
matrix elements which contain spin and isospin operators,
we choose to rewrite the wave function in terms of spin-
isospin functions formed by first coupling particles 2 and

X3rtz-
P4 X3I1 i

1
(Xiii i+XprIp) .o'2

(A21d)

(A21e)

(A21f)

Our spin-isospin states, X and iI, are not the same as
Schiff's, 3 but we have defined the P's to be the same as
those of Schiff and Gibson.

The L-S channel states can be written in the form

IP&, = g (LpM, S,M, I&M)fv,,(x, )g Z,,(y, )],,~, I(sp, S, )SpM, ;(tp, T, )TM, &, .
L~ S

The spin-isospin state function can be rewritten as linear combinations of the i)) s defined in Eq. (A21). We write

I (sp, Si)SpMs, (tp, T;)TMT);=gdpnitin .

(A22)

(A23)

Now each of the Faddeev amplitudes can be written in the form

4(xi y )=g g g g«pML, snMs I JM)dp.' fl't (x;) 1'~ (yi)]t. st, 4n .
p ~~ms

n ii p i p i p L ii (A24)

The total wave function can now be written in the form
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4'(x, y)=gg g g(LttMLS„Ms
~

JM) dtt„[l't (x))@Fr (y))]L st
(t~ (bt)(+1~3 1)

p MLMs

(2) 0t)(+213 2 )
+dpn [~l (x2) ~r's(y2)]LsMt

X~2
(A25)

Collecting the terms with same value of Lts, one can write the total wave function in the form

4(x,y) =g g g g(LMt S„Ms
~
JM)+tM (x,y)P„,

n L ML, Ms

where the /tee can be constructed from the spline expansion and the appropriate spherical harmonics. This decomposi-
L

tion is virtually identical to the bipolar harmonic expansion advocated in Ref. 36.
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