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The thermal response of states of approximate angular momentum in 24Mg with J =8+ has been

calculated in the finite temperature restricted Hartree-Fock approximation. Full angular momen-
2

turn projection has been circumvented by the use of constraints on the total angular momentum 2
and the z component J,. States with an abnorma1 occupation of the single particle orbitals at T =0
exhibit a discontinuity in the thermal response of their variational energy.

Most finite temperature Hartree-Fock (1 1'HF) calcula-
tions' are performed for the low-lying Hartree-Fock
(HF) solutions, which, in general, are not eigenstates of
the angular momentum operator. Since the exact Hamil-
tonian preserves rotational symmetry, it is of interest to
study the thermal excitation of states of good angular
momentum. At zero temperature an approximation
method has been devised to calculate the excitation spec-
trum of states of a particular angular momentum. ' The
full angular momentum projection has been circumvented
by the use of the constrained Hartree-Pock (CHF) method
with constraints on the expectation values of the total an-

gular momentum J (Refs. 6 and 7) and the z component

J,. If one only considers those states that are strongly lo-
calized about the desired angular momentum, that is,
those for which M =([J —J(J+1)] ) is small, it has
been demonstrated that, in Mg, it is possible to obtain a
good approximation to the excitation spectrum of states
of a particular angular momentum. Furthermore, this
method may easily be extended to the finite temperature
regime.

It has recently been demonstrated that quantum sys-
tems with few degrees of freedom display quantum sta-
tistical behavior, even when the dimension of the Hilbert
space is only 2 . In these numerical studies of the dynam-
ics of finite quantum spin chains the system is well
described by the canonical ensemble in spite of the fact
that the density of states of the system was too irregular
to be described by a Boltzmann factor. In the present cal-
culations the number of J=8 many particle states at zero
temperature in the model space considered is 329. In view
of the aforementioned work we feel justified in applying
quantum statistical mechanics to the J=8 states in Mg.

Finite temperature restricted Hartree-Fock calculations
for the thermal excitation of the ground state have also
been performed in other light nuclei. In these calcula-
tions, as well as the calculations in heavier systems, ' the
level spacing of the lowest-lying Hartree-Fock states at
zero temperature is expected to be of roughly the same
magnitude as that for the constrained J=8 states in

Mg. In all of these calculations one uses the grand
canonical ensemble with the Fermi distribution for the

thermal occupation probability of the single particle
states.

For the states in the yrast band, finite temperature
Hartree-Fock-Bogoliubov cranking equations have also
been evaluated numerically by a number of groups.
In these calculations the full angular momentum projec-
tion has been circumvented by means of a constraint on

the expectation value of the one-body operator J„but no
attempt has been made to ascertain how strongly localized
the solutions are about the desired angular momentum.
Furthermore, no anomalous behavior in the thermal
response of the states in the yrast band has been observed
at very low temperatures. This is probably due to the fact
that the equation of constraint involves a one-body opera-
tor, and that only the lowest-lying solution of the crank-
ing equations is considered. At higher temperatures a
critical temperature exists above which backbending
disappears.

The use of the two-body J constraint in zero tempera-
ture CHF calculations, which has previously been success-
fully implemented, leads to an anomalous occupation
of the single particle orbitals, in which the lowest lying or-
bitals are not all occupied. The thermal excitation of such
solutions in the grand canonical ensemble will inevitably
lead to discontinuities between the zero and finite tem-
perature results. The present calculation is the first to
demonstrate this behavior.

In the present work we formulate and solve the con-
strained finite temperature restricted Hartree-Fock
(Ci'1'HF) equations with constraints on the expectation
values of the total angular momentum J and its z com-

ponent J,. As in &lHF, one minimizes the thermo-

dynamic potential 0= (H )T TS is% with re—spect—to
the HF orbitals P„(r) and the single particle thermal occu-
pation probabilities f„,given the constraint

Now, however, the additional constraints
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are imposed. Here & &r designates the ensemble average
at temperature T, where T denotes the absolute tempera-
ture. The chemical potential is denoted by p, the number
of particles by N, and the entropy by S, where

S= —g f„lnf„+(1—f„)ln(1 f„)—.

Starting from a many-body Hamiltonian

a=T+ U+ V"',

where U is a single particle potential and V' ' is a two-
body nuclear interaction, one obtains the following set of
coupled Ct j.'HF equations:

& J'&r ——g fg„"'+g f/'„"„„-'„=J(J+1),

gle particle orbitals are occupied. In the calculations of
Ref. 4 several low-lying solutions in fact have a particle-
hole structure (see Figs. 2 and 3). This is probably due in
part to the fact that one of the equations of constraint in-
volves a two-body operator that, for certain solutions,
enhances the importance of the two-body contribution to
the variational energy. For such abnormal states a discon-
tinuity between the zero and finite temperature solutions
may occur.

In the present work we have performed a calculation of
the thermal response of the J =8+ and E = —7 states
with total isospin I =0 in Mg. The Mg nucleus has
been taken to consist of an inert ' 0 core plus eight active
valence particles in the 2s- 1 d shell. The thermal response
of the core was neglected in the present calculation be-
cause one expects, as in the case of the thermal response
of the HF ground state, this contribution to be minimal
for T & 1 MeV. In the 2s-ld shell we used an effective
Hamiltonian with the Vary-Yang interaction, ' including
additional third order corrections to the 6 matrix to pro-
vide a more complete accounting of the core polarization
effects, ' and the following single particle energies:

where p= 1/kT

H„=H(p) CI (p) —aJ, , — (10)
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-6I
and H(p) and J (p) are given by their matrix elements

&v IH I
v&r = &v I

T+ U
I
v&+ g &vr I

I"
I
vr&f.
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&v I
J'I v&r=&v

I

J""Iv&+ g &vr
I

J""
I
vr&f, .

(12)

Note that J has been written as the sum of one- and
two-body operators in the form

J'=g&vl j J lv&c„'c.+ g &I vl j J l~r&c„'c~,c. ,
p,var

(13)
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where the operators c„refer to the Hartree-Fock orbitals -69

For the HF equations at zero temperature the HF
ground state is usually one in which the lowest N single

particle orbitals are occupied. As temperature increases,
the occupation probabilities follow a Fermi distribution,

where, again, the single particle states lowest in energy
have the highest occupation probability. In the CI 1'HF

method the occupation probabilities are also given by a
Fermi distribution,

f„=I 1+exp[P(e —p)) I

where the e now denote the modified single particle ener-

gies of the constrained Hamiltonian, H„. Again, the sin-

gle particle states with the lowest (modified) energy have
the highest occupation probabilities.

At zero temperature, however, the solutions of the CHF
equations are not necessarily ones in which the lowest sin-
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FIG. 1. The variational energies of some of the energetically
lowest-lying solutions of the CFTHF equations of a function of
temperature. The two delocalized solutions whose CHF varia-
tional energies are —69.506 MeV and —69.476 MeV are desig-
nated by open squares and circles, respectively. The localized
solutions whose CHF variational energies are —68.085 MeV
and —66.069 MeV are designated by solid squares and circles,
respectively. Solid curves have been drawn through the CFTHF
results which are localized in angular momentum.



34".M RUICK~NDH G~ . MII.I.ER

dd' for terntemperature T (MeV)

0.5 1.00.0 0.3 0.8

TABI.E I. The variance of thhe angular mom
t' ll 1'" tl

EcHF

- ymg solutions of the CFTHF

gg (MeV)

- ym s equations.
in units of

(T=Q MeV)

—69.506
—69.476
—68.085
—67.970
—66.069

1746.29
1811.58
577.00
490.94
678.46

1737.16
1807.45
632.35

617.91

1674.47
1752.71
706.07

614.78

1562.70
1567.08
783.71

1507.49

816.77

718.04

edsn= —5 00 MeV ~

eds~i ——0.08 MeV

esiqq ———4. 13 MeV .

Too solve the CEt'HF equations th „were

ffa &d' '.s, „i. The resulting uat'
multaneously via the'a e Newton-Rhaphson

The thermal res onponse of the variati
t solutions of the CFTHF ' ' '

en in Fi
l. I ddiio, Mih

ho ld o the are t ese results with th
a el).

suits f

p
o e. 4. Fo

era-

tions

r T =0 the CHF

l lo li ed
ps, t e first rou so

hJ'& 85 o sisting o deloc
'

edon con
'

a iz solu-
ne should note th

n s to a width of
at

i o the angular

0

tL 0,0012

0.0012

0.0102
0.0226

.I51l
0.20
0.1635

0.0102

-12

0.0631
0.06dd
0.070d

O. 'f214
0.1617

~8+@ ii

4J

0.9965
0.9971

-10

-20 -12
0.7933

0.0555
O.d771

~ 24 0.9750

-2d I I

0.1 0,2 0.3 0.4 05 0.6 0.7 O.d 0.9 1.0

T {HeV)

-16

0.1

I I I I

0,2 0.3 0.4 0.5 0.6 0.7 O.d 0.9

I

10

FIG.. 2. The thermal exc'a excitation of the sin lea exc sing e particle levels of

e sing e particle levels at 7 =
g

o by solid circles.

FIG. 3.. The thermal exci ing e particle levels of

are
p rticle le els at T—o t e single a

erma occu-

cu Red

=1 MeV

pi levels are denoted b
' '

es.y sohd circles.



THERMAL RESPONSE OF STATES OF APPROXIMATE. . . 1461

TABLE II. The mass quadrupole moment go in units of v ', where v '=filmco for the energetically lowest-lying solutions of the
CFTHF equations.

EHF" (MeV)
(T=O MeV) 0.0 0.1 0.2 0.3

Qo(v ') for temperature T (MeV)
0.4 0.5 0.6 0.7 0.8 1.0

—69.506
—69.476
—68.085
—67.970
—66.069

—9.112
—8.780
11.931
11.858

—1.172

—9.112 —9.113 —9.125 —9.147
—8.780 —8.781 —8.785 —8.794

11.934 11.986 12.043

—0.511 —0.532 —0.570

11.844

—0.616 —0.653 —0.666 —0.641 —0.572 —0.453

—9.155 —9.129 —9.072 —8.984 —8.863 —&.687
—8.808 —8.837 —8.894 —8.823
12.070 12.064 12.032 11.983

momentum distribution of 1—2)ri. At zero temperature
the two lowest-lying solutions are delocalized and there-
fore fall into the second group. The next three CHF solu-
tions are localized and in terms of their excitation spec-
trum have been identified with the results obtained from
an exact diagonalization. Of these solutions only the
three localized solutions have an abnormal structure.

Unfortunately, at finite temperature we are unable to
obtain the thermal response of the second CHF solution
in the higher-lying doublet. This is undoubtedly a conse-
quence of the similar structure of the two CHF solutions
and the discontinuity resulting from their abnormal struc-
ture at zero temperature.

In the case of the lowest lying discontinuous solution of
the CI'I'HF equation, the internal energy, EHF, initially
decreases with increasing temperature. This decrease is a
feature of the approximate nature of the present calcula-
tions and we do not expect it to occur in exact calcula-
tions. The zero and finite temperature solutions only
represent upper bounds to exact results. At zero tempera-
ture the corresponding exact eigenenergy lies at —74.328
MeV (Ref. 4), which is well below the value of the internal
energy at low temperatures.

For the second lowest CI'I'HF solution, convergent
solutions of the CI'I'HF were obtained only for tempera-
tures &0.8 MeV. Similar behavior was observed for the
other solutions, but at higher temperatures. At higher
temperatures the unconstrained deformed I I HF solutions
undergo a "phase transition" and become spherical in
shape. Attempting to avoid this "phase transition" by the
use of the angular momentum constraints given in the
present work does not appear to be possible. Eventually,
at higher temperature, we cannot satisfy the equations of
constraint, and therefore convergent solutions of the
CEI HF equations are no longer obtainable. At low tem-
peratures (T&0.1 MeV) numerical difficulties are en-
countered in obtaining CI I'HF solutions for the states of
abnormal occupation.

Although the values of M change with temperature,
one can still unambiguously divide the solutions into two
groups. As for the CHF solutions, the two energetically
lowest-lying CE'IHF solutions are delocalized, while the
rest of the solutions remain localized in the distribution of

their angular moinentum. One should note the different
thermal response of the two groups of solutions. The
value of Mi for the solutions that are localized at T =0
does not increase significantly with increasing tempera-
ture, which leads us to believe that they remain states of
approximately good angular momentum. It should be
noted that the thermal response of the two solutions that
remain localized is similar only at lower temperatures
( T &0.6 MeV). One should also note the discontinuity in
the thermal response of the variational energy between the
zero and finite temperature results for these two solutions.
This is due to their abnormal structure at zero tempera-
ture.

The thermal excitation of the single particle levels of
the two abnormal CI I'HF solutions [see Eq. (6)] are given
in Figs. 2 and 3. In the present calculation for T & 1 MeV
our choice of the model space appears to be adequate
since the thermal occupation probability of the highest
level does not exceed 2 X 10 . Furthermore, the gaps be-
tween the single particle levels with highest occupation
probability and the higher lying single particle levels in-
crease with increasing temperature. This may well indi-
cate that the CI'IHF approximation is better at higher
temperatures.

In Table II we give the mass quadrupole moment for
the CI I'HF solutions as a function of the absolute tem-
perature. Firstly one notes that the quadrupole moment is
essentially independent of temperature. This implies that
the constraint on J i leads to a constant quadrupole defor-
mation, as might be expected. Secondly, at least in the
case of the lower three solutions, there is no apparent
discontinuity in the quadrupole moment obtained from
the zero and finite temperature solutions. This is particu-
larly surprising in the case of the third solution in light of
the marked discontinuity in the variational energy.

In the present work we have demonstrated the feasibili-
ty of calculating the thermal response of different states
of the same angular momentum in the CFTHF approxi-
mation. For states that at T =0 do not have the lowest
single particle states occupied there is a discontinuity be-
tween the zero and finite temperature solutions. Here it is
of interest to note that this discontinuity could occur in
the thermal excitation of any abnormal HF state. ' *'
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