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A relativistic calculation of photon-nucleon elastic scattering in the energy range from 0 to 450
MeV in the laboratory is presented. It includes explicit contributions from s- and u-channel nucleon
intermediate states, r-channel neutral pion states, and s-channel delta resonance states. Other pro-
cesses are implicitly included via energy-dependent parameters in the resonance process. Compar-
ison with experiments show an improvement over similar nonrelativistic approaches.

INTRODUCTION

The elastic scattering of a photon from a nucleon ap-
pears to be a very clean elementary process: The photon
interacts electromagnetically and thus the interaction ver-
tices should be well known. The nucleon is the simplest
baryon and thus an understanding of its elementary pro-
cesses should be a lowest order check of quark models of
hadrons. The nucleon is also the simplest nucleus, and if
one is to use photons to study properties of complex nu-
clei, it is first necessary to understand the elementary nu-
cleon process. At the present time, elastic photon scatter-
ing is becoming a tool in nuclear physics, and experimen-
tal and theoretical work is progressing, while the elemen-
tary nucleon process remains poorly understood due both
to inadequate experimental data and inadequate theoreti-
cal explanation. Information derived from photon
scattering can be quite different from that of electron
scattering, due to the presence of the second electromag-
netic vertex at the target. For a composite target (consid-
ering quarks within the nucleon, or the nucleon as a con-
stituent of nuclei), the single photon vertex in the target,
typical of lowest order calculations of electron scattering,
causes a cancellation of some of the contributions of posi-
tive and negative currents within the target. Such cancel-
lations can be a calculational advantage, but also limit the
amount of information obtainable from the process. Pho-
ton scattering, on the other hand, admits the possibility of
both the incoming and outgoing photons attaching to the
same target constituent, giving a contribution proportion-
al to charge squared, and thus giving contributions which
are additive, regardless of sign of the charge.

Photon scattering from nuclei is presently being pur-
sued since it contributes supplementary (and sometimes
new) information to results from established techniques in
electron scattering. It is a technique for studying pion ex-
change currents, whose effects largely cancel in electron
scattering—the Siegert theorem.! Photon scattering data,
when combined with pion scattering and pion photopro-
duction data, can provide consistency checks and help in
analysis and understanding of the pion-nucleus process.
In the intermediate energy region, many nuclear processes
are dominated by the 3-3 nucleon resonance, and the
modification of the resonance propagator in the nuclear
medium is a subject of current attention. Photon scatter-
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ing in the resonance region allows resonances to be excited
and deexcited via an on-mass-shell electromagnetic parti-
cle and thus allows a clear look at the medium modifica-
tion effects. To extract these and other kinds of informa-
tion from nuclear experiments, one must be able to reli-
ably calculate the elementary photon-nucleon contribu-
tions, and this paper is intended to contribute towards this
goal.

Photon scattering from the nucleon should allow a test
of quark models of hadrons. Whether it is useful to con-
sider the nucleus as simple a multiquark state, or as a
multinucleon state admitting some quark effects, a study
of the electromagnetic processes of a three-quark system
should contribute to the understanding of how the quark
many-body problem can be approached. Most attempts at
a quark explanation of photon scattering have been
focused on the energy region below pion threshold and ex-
traction of the electric and magnetic polarizabilities.?
While this paper will not examine the nucleus as a collec-
tion of quarks, to whatever degree it is successful in pro-
ducing a simple model of photon scattering using relativ-
istic graphical techniques, it will provide a theoretical
framework for attempted quark explanations.

Two difficulties have retarded experimental investiga-
tion into elastic photon scattering. Only recently have
techniques existed for the production of a high flux of
monochromatic photons. Photon tagging facilities now
exist in several laboratories (Bonn, Mainz, Illinois, MIT).
New continuous beam electron machines are being
designed with monochromatic photon capabilities
(CEBAF, for example). On the output end of such experi-
ments, radiative processes, and at higher energies the com-
peting neutral pion production process, make discrimina-
tion difficult. Detector technology has progressed to the
point where these discriminations are now reliably being
made, and clean data are forthcoming. Older data on
photon nucleon elastic scattering are being repeated and
error bars are being reduced. Due to continuing experi-
mental problems, the data, while covering the energy
range of interest for applications to nuclear problems, are
limited in angles. Forward scattering cross sections are
available only by extraction from total photon cross sec-
tions using dispersion relations, and reliable scattering
data exist primarily only in the range 60°<c.m. angle
< 130°. Because of the large error bars on the extracted 0°
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data, and the absence of good data in the forward and
backward directions, there are not stringent experimental
limits on the allowed angular distributions. Good data
are required at forward and backward angles in the energy
region of the 3-3 resonance to allow theoretical extraction
of information about the resonance; its E2 coupling con-
stant, and the degree of interference with competing pro-
cesses.

Despite the apparent simplicity of the photon nucleon
process, attempts to explain it theoretically have tradition-
ally met difficulties. Some of these problems can be laid
to uncertainty in the experimental results available for
comparison, but theoretical inconsistencies exist which are
not data dependent. Yet other inconsistencies await more
and better data. Dispersion theoretic explanations of the
process have run into a difficulty at the energy of the 3-3
resonance which has yet to be resolved. Experimental
data at 90° at the resonance energy are consistently below
predictions of dispersion theory, even when the real part
of the theoretical cross section is set to zero.® While the
discrepancy has been reduced, the best experimental data
remain at least one standard deviation below the lower
limit prescribed by unitarity.* Nonrelativistic approaches
to understanding of the process have been undertaken to
provide a model useful in the treatment of photon-nucleus
scattering, but also with limited success. The most recent
and most complete such approach uses photoproduction
data to restrict allowed energy dependence of the photon
scattering amplitudes (via Watson’s theorem), and uses ex-
trapolation of the photoproduction process to continue the
scattering amplitudes off shell.® Despite fitting parame-
ters and choices made in energy dependencies to produce
best agreement with existing data, fits are poor at some
angles and energies, and nuclear processes calculated us-
ing this model are thus limited in their accuracy and
predictive ability. Relativistic approaches to understand-
ing the scattering process have been hampered by a long
existing misunderstanding concerning the propagator for
the 3-3 resonance.5’

THE CALCULATION

The differential cross section for the scattering of pho-
tons and nucleons will be calculated relativistically, in an
attempt to match existing data from threshold to 450
MeV excitation. This should allow for the use of the re-
sults in nuclear calculations which encompass the 3-3 res-
onance region. The technique would allow simple exten-
sion to include higher mass nucleon resonances. In partic-
ular, the next heavier resonance, N *(1470), has the same
spin and isospin as the nucleon and becomes a straightfor-
ward inclusion based on the nucleon calculations: Its in-
fluence upon the cross section may become important im-
mediately above the 3-3 resonance peak.

Figure 1 shows the Feynman diagrams to be included in
the calculations. All will be treated relativistically, thus
including particle as well as antiparticle intermediate
states. Conventions for four-vectors and for gamma ma-
trices will follow Bjorken and Drell.® Such a diagram-
matic approach necessarily leads to difficulties with uni-
tarity. Truncation of the Hilbert space to include only
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FIG. 1. Processes which contribute to elastic pion-nucleon
scattering: (a) s-channel nucleon exchange; (b) u-channel nu-
cleon exchange; (c) t-channel neutral pion exchange; (d) s-
channel delta exchange. In (a) the variables in the center of

mass system are labeled; momentum and polarization of the
photons, energy and momentum of the nucleons.

selected processes leads to nonunitary amplitudes, and
those aspects of unitarity which are important in the final
results must be restored artificially.® This restoration in
the present calculation will involve the use of an energy-
dependent vertex function and resonance width for the 3-3
resonance.

Diagrams 1(a) and (b) represent the ordinary s- and u-
channel nucleon graphs, and lead to the Klein-Nishina
cross section when nucleon anomalous moments are ig-
nored (these moments are of course included in the results
of this work). The threshold value of the photon-nucleon
scattering cross section, which must equal the Thompson
cross section, is given exactly by the sum of these two
contributions from nucleon intermediate states. The sum
of the remaining contributions must necessarily vanish at
threshold to give the proper value there. As energy in-
creases, the actual cross section begins to deviate from the
results of these two graphs due, at lower energies, to nu-
cleon polarizability and finally to particle production
thresholds.

Diagram 1(c) shows the exchange of a z-channel 7, a
process with vanishing contribution at threshold (con-
sistent with the Thompson cross section being given by
the nucleon graphs) but a non-negligible contribution in
the energy region below and around the pion threshold.
The fraction of the total cross section contributed by this
process is largest at angles between 90° and 180° at about
150 MeV photon laboratory energy. Its contribution is
particularly important in the extraction of nucleon polari-
zabilities, where the deviation of the cross section from
the point nucleon behavior of diagrams 1(a) and (b) is the
crucial experimental information. A contribution similar
to 1(c), due to the t-channel exchange of an 7° is easily
included computationally, since the required algebra is the
same as that for the #°. It is not included here, since the
mass of the 7° (549 MeV) puts it more distant from the
mass shell than the pion graph, and the coupling con-
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stants for the eta are significantly lower than those for the
pion.

Diagram 1(d) is the dominant contribution in the region
above pion threshold to 500 MeV photon laboratory ener-
gy. It is obviously the source of the resonance behavior in
the spin 2 isospin < channel, but due to the inclusion of
negative energy states of the intermediate baryon, it also
incorporates nonresonant background contributions in this
and other angular momentum states. The companion u-
channel delta excitation graph [similar to 1(b)] is not in-
cluded in the present calculation. It, too, contributes non-
resonant background to the cross section. At threshold, it
yields a contribution equal to that of the s channel graph
[of 1(d)]: Its relative importance decreases with increasing
photon energy, and at the resonant energy, the u-channel
delta is 600 MeV off mass shell, and has a small (and rela-
tively uninteresting) contribution. The threshold contri-
bution of the delta graphs does not vanish, and when
combined with the nucleon intermediate states will pro-
duce a cross section in excess of the Thompson cross sec-
tion and thus at variance with experiment at zero photon
energy. This is a reflection of the problem of limiting the
graphs to be included. Treating the complete Hilbert
space of the scattering process, including all possible in-
termediate states in s, u, and t channels, would produce
an amplitude which exhibits unitarity and, as well, satis-
fies the threshold requirement. A standard way of repair-
ing this damage is to allow the y NA vertex to show an en-
ergy dependence which vanishes at threshold. This energy
dependence must be chosen to satisfy the threshold re-
quirement, but unitarity can be utilized in the choosing of
energy-dependent vertex functions and resonance widths
which appropriately represent the omitted processes.
Olsson’ has carried out such a procedure in the case of
pion photoproduction from the nucleon. He includes the
expected pole terms, postulates a background term, and
then lets the multichannel unitarity equations dictate the
energy dependence of the width and vertices of the 3-3
resonance graph. In the case of photoproduction, the
equation can be approximately solved due to the domi-
nance of the N over the yN final state. For photon
scattering the equations remained coupled, and analytic
results are difficult to achieve. Here, as a less satisfying
alternative, unitarity is used as a justification for allowing
energy dependences in the delta width and vertices. The
Olsson procedure gives the proper threshold cross section,
ensures the scattering amplitude to be real below pion
threshold, and produces the correct resonance width and
strength at resonance energy. The omission of the u
channel delta process is thus justified in the energy region
of interest: At threshold, where it is as important as the
s-channel delta process, it is suppressed by a vertex factor
which vanished at threshold; at higher energies it is small
and slowly varying and is accounted for by the use of
energy-dependent terms in the delta propagator.

The amplitudes for the processes illustrated in Figs. 1(a)
and (b) make use of the N-N vertex and the nucleon prop-
agator of Bjorken and Drell:?

(Vynn)y=—ie(y,+0,kHK /2m) ; (1)

PN(p)___,-_Z___2+M2 . (2)
p°—M

Letting k (k') represent the four-momentum of the in-
coming (outgoing) photon, and e (e’) represent its polari-
zation four-vector, p (p') the incoming (outgoing) four-
momentum of the nucleon [Fig. 1(a)], and M and K the
nucleon mass and anomalous moment, the invariant am-
plitudes for the s- and u-channel nucleon graphs are as
follows:

T1a=2(p" ) [Vinn-e'Pn(p +K)V nnvelu(p) ; (3)
T1b=17(P’)[ VI'NN 'EPN(p —k')V,,NN'e’]u (p) . 4)

The initial and final nucleon spinors are represented by
u(p) and #%(p’), respectively.

The amplitude for Fig. 1(c) requires the 7NN vertex,®
the 7%y vertex,'° and the propagator for the 7°:%

VaNN=807570 (5)

(Varyy )P =g,16" Pk K, ; 6
i

P.(q)= m . (7)

The pion mass is m =135.0 MeV, and its coupling con-
stants are go=13.3 (unitless), and g, =2.55X10"°> MeV
as deduced from the lifetime of the #°. The scattering
amplitude contributed by z-channel neutral pion exchange
is therefore

T1e=@(p [ Vinn-e'Vayy-ePylp —p)]u(p) . (8)

The resonant amplitude, represented in Fig. 1(d), re-
quires for its calculation entities of lesser certainty. The
Rarita-Schwinger formalism will be used to treat the spin
—;— particle within the Dirac spin -} algebra. There are two
possible vertices which allow the coupling of a nucleon to

a spin % baryon via a photon: the M 1 coupling,

ke,—¢k,
Vs

MM, ®

M1 .
ViNa=i8m1

and the E 2 coupling,
PN-ekv——PN-kev
(M +M,)?

Vina=—igg2 Vs - (10)

Comparison of theory with photoproduction data shows
the E2 coupling constant to be smaller than the M 1 by a
factor of 20;!! in addition, the E2 vertex is smaller than
the M1 due to an additional factor of (photon
momentum/nucleon mass). In order to achieve the
minimal set of amplitudes which should be expected to
produce reasonable comparison with experiment, the E2
coupling is omitted from the calculations herein; this is
consistent with quark model predictions of a vanishing
E2 coupling, and experimental fits which argue to the
smallness'? of this contribution. The value of the M1
coupling constant used is g;;;=0.93, consistent with the
best value chosen to fit photoproduction data, and with
quark model predictions. The propagator for spin % par-
ticles in the Rarita-Schwinger formalism was derived by
Behrends and Fronsdal,'® but has suffered from frequent
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misrepresentation in the intervening years.” The form
used here is that of Behrends and Fronsdal.

P+M,

wv_ 8
2M A (p2—M3)

v 1 v V.
g* ——%7“7”352—(1’?“17 +p*y'p) |-
(11)

Gauge invariance and unitarity require that this form be
supplemented by an energy dependence in the resonance
width, as well as energy-dependent vertex functions.
Without these additional energy dependencies, the
Thompson limit is not satisfied at threshold, and the reso-
nance contribution is complex, inappropriately, below
pion threshold. These additional energy dependencies
represent the implicit inclusion of other processes in the
calculation. The u-channel delta graph (crossed photon
lines), for example, should be as important as the resonant
delta graph at photon threshold, and the vertex factors
can be chosen to represent that contribution. Low energy
theorems require the cross section to be that of pure
charge scattering at photon threshold, and thus that the
contributions other than intermediate s and u channel nu-
cleon graphs must cancel. This cancellation requires di-
pole quark excitations [N*(1520), for example] as well as
delta contributions.? Figure 2 shows how the cross sec-
tion is altered by the inclusion of these energy dependen-
cies. With a fixed width and no vertex function (curve a),
the threshold cross section is several times too large, the
resonance peak occurs at too high an energy, and the
overall amplitude is too large. The peak could be shifted
back by picking a delta mass less than 1232 MeV, but no
a priori justification for this shift is seen. The amplitude
could, of course, be adjusted downward by picking a
smaller yNA coupling constant, but this reduction moves
the best fit coupling constant more distant from the
values from quark models and photoproduction fits—this,
too, is not desirable. Curve b in Fig. 2 shows the effect of
an energy-dependent resonance width which vanishes at
and below the pion-nucleon threshold. The particular en-
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FIG. 2. The effect of an energy-dependent width and vertex
factor on the differential cross section: (a) width =110 MeV,
vertex factor =1; (b) energy-dependent width from Eq. (12), ver-
tex factor =1; (c) energy-dependent width from Eq. (12), vertex
factor from Eq. (13).

ergy dependence chosen is that of Olsson,’

3

I'(g)=0.801— (12)

9 ,
q%+160°
who deduced the form from the requirements of unitarity
upon the nucleon and delta processes. The scattering am-
plitude contributed by s-channel delta exchange takes the
form

Tia=a(p )\ VML -P- VML u (p)V (kg2 . (13)

The results of Olsson regarding the vertex function are
not as easily utilized, since he treated processes only above
pion threshold (pion-nucleon scattering, pion photopro-
duction) where the photon-nucleon channel could be
neglected when it was in competition with the pion-
nucleon channel. No clue is given there for the behavior
of the vertex factors below pion threshold. A phenomeno-
logical vertex function is used herein which has the proper
behavior at the thresholds (proportional to k2 at photon
threshold, and to ¢? at pion threshold), is constant at high
energies, and is algebraically simple:
k2 ql
K71 1002 +1.03 P70 (14)

The k2 dependence is chosen to best represent the experi-
mental cross section below k =150 MeV. While the zero
photon energy cross section is given exactly by the nu-
cleon intermediate states, the k? terms exhibit roughly
equal contributions from nucleon, neutral pion, and
baryon resonance intermediate states.!* Since the s-
channel delta amplitude dressed with these energy depen-
dencies is to represent all higher contributions, it is valid
to attempt to fit the low energy data using the vertex fac-
tor. The g¢? dependence must have proper threshold
behavior and must force the vertex function to one at the
resonance peak. The remaining freedom was used to
reasonably approximate the shape of the experimental res-
onance curve. The cross section at 90° utilizing both Egs.
(12) and (13) is shown as curve c in Fig. 2.

V(k2,q%)=0.143

RESULTS

Figures 3—6 show the results of the present calculation
compared to experimental data!*~?° at four angles. In the
forward direction, experimental points are calculated from
total photon cross sections using the optical theorem.!’
The angles 67° and 122° represent the most forward and
most backward laboratory angles where a significant
amount of photon scattering data exist. To preserve the
simplicity of this approach, it was decided to choose a sin-
gle resonance mass and YNA coupling constant which
would reasonably reproduce the existing data at all angles
and at energies between threshold and 450 MeV photon
laboratory energy. Changing the resonance mass would in
no case improve the match to the data. A slightly lower
coupling constant could improve the fit at 62°, but at the
expense of the fits at other angles. All of the results
shown (Figs. 2—9) are calculated using a resonance mass
of 1232 MeV, and a coupling constant of g;;;=0.93.
This value, chosen to fit the elastic scattering data, com-
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FIG. 3. Calculated differential cross section (solid line) at 0°
shown with data extracted from total cross section data, Ref. 15.
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FIG. 4. Calculated differential cross section (solid line) at 67°
shown with accumulated data in the range 60°—75°. Open boxes
are data of Genzel, Ref. 15; diamonds are data of DeWire, Ref.
17; shaded boxes are data of Nagashima, Ref. 18; shaded circles
are data reported in Baranov and Fil’kov, Ref. 20.
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FIG. 5. Calculated differential cross section (solid line) at 92°
shown with accumulated data in the range 85°—100°. Open
boxes are data of Genzel, Ref. 15; open circles are data of
Baranov, Ref. 19; triangles are data of Ishii, Ref. 16; shaded cir-
cles are data reported in Baranov and Fil’kov, Ref. 20.
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FIG. 6. Calculated differential cross section (solid line) at
122° shown with accumulated data in the range 115°—130°.
Open boxes are data of Genzel, Ref. 15; triangles are data of
Ishii, Ref. 16; shaded circles are data reported in Baranov and
Fil’kov, Ref. 20.

pares with values from analyses of photoproduction data
which range from 1.08 to 1.42, an SU(3) value of 1.15,
and an SU(6) value of 0.92.>2"22 The nearness of the
present value to that deduced from SU(6) is interesting,
but most likely coincidental, given the approximate nature
of most SU(6) predictions of elementary particle proper-
ties. For each of the four angles in Figs. 3—6, the present
model accurately predicts the low energy behavior
(0< k <200 MeV), as well as the position and height of
the resonance peak. The best reproduction over the whole
energy range is at 90°, but the experimental data there are
not consistent, so the fit may not be as good as it might
appear. The data in cases where two experiments are done
at comparable energies and angles show discrepancies
beyond the statistical error bars. Before conclusive results
can be drawn from comparison of experiment and theory,
consistent and accurate data over a large range of angles
and energies are necessary. The most consistent problem
with the present calculations is at energies above the reso-
nance peak. The overestimate of the cross section, most
severe at 0°, could be rectified by a more complicated en-
ergy dependence for the resonance width or vertex factors.
Because of the angular dependence of the discrepancy,
however, it seems likely that the high energy results can
be well matched only with the explicit inclusion of higher
resonances. The N*(1470) spin and isospin 3 resonance
will provide a growing contribution in the energy range
beyond the delta peak, and its angular dependence will
differ from that of the delta so as to give angular-
dependent corrections. The low energy side of the delta
peak also exhibits experiment-theory disagreement.
These, too, could be better understood with more (and
more consistent) data; could be diminished by use of a
more complicated vertex factor; or could be the result of
processes not considered. The results of Dreschel and
Russo,? implying the importance of at least the 1520 MeV
resonance in the threshold result, imply that this energy
range could be greatly influenced by higher s-channel res-
onances.
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FIG. 7. Calculated differential cross section versus laborato-
ry angle at laboratory momentum corresponding to resonance
energy minus 55 MeV (in the center of mass).

It is significant that, while the calculation by no means
produces a good fit to the data, it uses reasonable coupling
constants and masses to give a good representation of the
general shape and size of the cross section energy and an-
gular dependencies. Koch, Moniz, and Ohtsuka,’ using a
nonrelativistic approach to the problem, find the need for
considerable contribution from an s-wave “background”
term, in addition to the resonant process which was calcu-
lated using f,na =1.03. This implies that the majority of
the necessary background contribution can be found in the
relativistic amplitude for the process of diagram 1(b). The
part of this calculation which corresponds to an anti-
baryon in the intermediate state consists of terms of all
multipolarities which are contributing in the resonance re-
gion. The magnitude and energy dependence of this back-
ground contribution are thus fixed by the resonance pa-
rameters.’

Figures 7—9 show the angular dependence of the labo-
ratory cross section at the resonance energy and one half
width above and below resonance energy. The variation
from the relatively isotropic distribution below resonance
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FIG. 8. Calculated differential cross section versus laborato-
ry angle at laboratory momentum corresponding to resonance
energy.
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FIG. 9. Calculated differential cross section versus laborato-
ry angle at laboratory momentum corresponding to resonance
energy plus 55 MeV (in the center of mass).

to the striking forward asymmetry at resonance and above
shows the importance of nonresonant contributions at and
around the resonance energy. The [7+ 3 cos*(6)] angular
distribution expected from the decay of a p3/? state is
considerably altered by angular distributions from other
multipoles associated with the relativistic expression of
the delta excitation process [Fig. 1(d)]. Consistent data
over a much wider range of angles than is presently avail-
able will be necessary before these predictions can be reli-
ably evaluated.

CONCLUSION

A simple tree graph approach to the calculation of
pion-nucleon scattering up to 450 MeV has been present-
ed. It has shown that considerable contribution from
baryon resonances of higher mass than the delta (1232
MeV) as well as from wu-channel resonance graphs is
necessary to fit existing data without ad hoc form factors
and energy dependence in the resonance width. It is
shown however, that a big part of the background which
is necessary to add in nonrelativistic calculations is ac-
counted for by the use of relativistic wave functions and
propagators. Data with smaller errors (systematic errors,
in particular) over a wide range of angles will help indi-
cate if the addition of a few more graphs will considerably
improve the predictions, or whether it will be necessary to
approach the problem in a significantly different way.
The need to incorporate wu-channel resonance graphs
renders the calculation much more difficult, but more sig-
nificantly it leads to the problem of defining propagators
for baryons with spin> 5 which are valid in many-body
intermediate states. The success of work with quark
models to determine nucleon polarizabilities leads to the
hope that quark models might more simply describe the
resonance region for this process. Relativity will doubt-
less be an important part of such a quark calculation.

The author would like to acknowledge the help of
James Coyle and Karl Keller, who made considerable con-
tributions to the numerical computations.
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