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Applications of the m NN bound-state problem: The deuteron and the 4,4 resonance
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The relativistic three-body equations for the bound-state problem proposed by the authors are
solved for the mNN system, in particular for the states with total isospin zero and two. In the case
of isospin zero, only one bound state is found which corresponds precisely to the deuteron and
whose wave function is quite similar to those of phenomenological models. In the case of isospin
two, the most favorable configuration to possess a bound state is with total angular momentum two
and positive space parity. There is experimental evidence, however, that the state is unbound; that
means that it will appear as a resonance of spin two and isospin two which we call the 4,4 resonance
since it is the analog to the we11-known 3,3 resonance in the mN system which has spin z and iso-

spin 2.

I. INTRODUCTION

In this paper we are going to study some applications of
the srNN bound-state problem with the generalization to
resonances; that means that we investigate not only the
poles of the S matrix in the negative real axis which give
evidence of true bound states, but study also the poles in
the complex plane which correspond to resonances.

It has been, in our opinion, one of the great successes of
the srNN Faddeev theory to explain the observed 'Dz and
F& resonances of proton-proton scattering by means of

conventional mN and NN dynamics. ' These so-called
dibaryon resonances were originally thought to be of
quark origin and have aroused a great deal of interest
among nuclear physicists. Since these isospin-one
nucleon-nucleon resonances have been studied extensive-
ly,

' we will not investigate them again in this paper, but
we will concentrate on the less well-known channels with
isospin zero and two.

The isospin zero channel is interesting in its own right,
since there the only known bound state with baryon num-
ber two, the deuteron, is located. Thus, this channel pro-
vides us with a unique opportunity to test the reliability of
the +AN dynamics contained in the I'"addeev theory. The
isospin-two channel recently received a considerable
amount of attention " after it was pointed out by the au-
thors of Refs. 8 and 9 that possible bound state solutions
exist in this channel. The bound system would consist of
a negative pion and two neutrons (or, its isobaric analog,
of a positive pion and two protons). Such a possibility is a
very attractive one, since, as the bound state can only de-
cay by weak interactions, it means that it will be stable
with a lifetime comparable to that of the charged pion.
Even if it turns out that the system is unbound, as the re-

suit is in some of our solutions, this would mean that the
state lies in the continuum; therefore, it should still be
possible to observe it as a three-body resonance. Since this
isospin-two resonance cannot couple directly to the
nucleon-nucleon system, which can have only isospin zero
or one, the observation is only possible via reactions like
m +d~m++m +n+ n or m + t~p+m +n+ n,
where in the first case the sr+ should be detected and in
the second one the proton. Recent experiments on the
first of these reactions ' have found no evidence of a
m. nn bound state; the data, however, show a resonantlike
behavior at 256 MeV incident pion energy, which can be
interpreted as a resonance of mass equal to 2056 MeV,
that is 38 MeV above the srNN threshold. Thus, if this
result is confirmed by other experiments, it is very likely
that one has observed the 4,4 resonance predicted by our
three-body theory.

In Sec. II, we review the relativistic three-body equa-
tions for the bound-state problem including the treatment
of angular momentum, spin, and isospin. Section III
gives a brief description of the two-body interactions for
all the necessary two-body channels. In Sec. IV we apply
this formalism to study the three-body channels with iso-
spin zero, placing special emphasis on the deuteron, and
in Sec. V we study the three-body channels with isospin
tw'o, especially with respect to the 4,4 resonance. Finally,
we summarize our results in Sec. VI.

II. RELATIVISTIC THREE-BODY EQUATIONS

In Ref. 9 we pointed out that the relativistic version of
the Faddeev equations proposed by Aaron, Amado, and
Young' (AAY) possesses spurious bound-state solutions;
therefore, it is not suitable for applications in the bound-
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state problem. In the same work, however, we modified
the AAY theory in such a way that no spurious bound-
state solutions appear and that the equations are well
behaved as a function of the energy throughout the

I

bound-state region —ao & v S &m;+mJ+mk. The
modified equations for the bound-state problem are in the
case of spinless particles, of S-wave two-body interactions,
and for a state with total angular momentum J as follows:

k dk

2coj.(kj )
'1 ' '

DJ(kJ, S )

where k and kj are the magnitudes of the three-momenta of particles i and j in the three-body c.m. frame. The driving
term 8;~ reads as

1 g;(p;)gj(pj) co;(k;)+coj(kj.)+cok( Ik;+kj I
)

8;&(k;,kj', S)= d eosXPJ(cosX)IJ l& J&
2cok( Ik&+kj I

) S [co;—(k;)+co,(kj )+cok( I k;+k, I
)]'

%'1th

cosX =k;.kj,
co;(k) =(m; +k2)'~2,

(3)

p; = [s;—(mj +mk ) ][s; (m~ —m—k ) ],2 2

SI.

pj = [sj —(m;+mk) ][s,—(m; —mk) ],
Sj

s; =[coj(kJ)+cok(
I k;+kJ I )) —k;,

sj ——[co;(k )+cok( I «+kJ I
)]'—k,

~ .

The functions g;(p; ) and gj(p& ) are the form factors of the S-wave separable potentials

I'(p p )=rigl(p )g (p ) (9)

and the propagator I/DJ(kj;v S ) appearing in Eq. (1) is given by

D, (kJ;vS)=

with

PJ Pj i PJ +~k Pj gJ' Pj
2 2

4co;(p; )cok(p; ) I k; + fco;(PJ)+cok(PJ)) )
'~

W, (kJ, ~S )—I kj +[co;(PJ)+cok(p, ))'I'~ (10}

W~(kJ;V S )=v S coj(kj) . —

(12)

In the rest frame of the pair ik we have kJ =0, and Eq. (10}becomes
2 2

D(0~S) 1 y" PJ PJ gj PJ

y, o 4co;(PJ )cok(PJ. ) WJ(0;~$ ) co;(p, ) cok—(p, )—
which is the solution of the two-body I& adyshevski equation" for the separable potential of Eq. (9). In the original
theory of Aaron, Amado, and Young, on the other hand, the two-body amphtudes were obtained from the solutions of
the two-body Blankenbecler-Sugar equation. '2

We can straightforwardly generalize this three-body theory to the case of particles with spin and interactions with ar-
bitrary angular momentum using Wick's three-body helicity formahsm. ' ' Thus, the partial-wave decoinposed three-
body equations obtained by the application of the Wick formalism are

k dk
(13}

The discrete quantum numbers a; in Eq. (13) are

cc& = t~T&icscJ&t&&m&'v& I &

where J and T are the total angular momentum and total isospin of the three-body system; /;, s;, j;, and t; are the orbital
angular momentum, spin, total angular momentum, and isospin of the pair jk; while m; is the helieity of the pair jk and
v; the helicity of particle i

The driving terms 8;1' ' in Eq. (13) are now given by
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g; '(p;)gj'(p, ) ~;(k;)+co,(k, )+~k(
~
k;+k,

~
)

2cok k;+kj S [—co; (k; )+coj(kj )+cok( k;+k~
(15)

where the function A;~, that replaced the Legendre polynomial Pz in Eq. (2), is given by

AJ' '(k;, kj, cosX)=( —)' ' (2t;+1)' (2tj+1}' W(rirt, Tr;;t;tj)

~J'"k ~aI t

Xd '
,y„p .(&J )d „.

',
p (P; .)d„. ' , i. (PJ .)d„. ,",i., (Pk ), (16)

where W is a Racah coefficient, and'

1/2
l.s.j . 2I; + 1 1.s,.j,. cr .oks,.

r;,rj, rk and tr;, aj, trk are the isospins and spins of the three particles, and the arguments of the rotation matrices X, 8;,
8J, P;, P~, and pk are the angles of the Wick triangle. ' ' The angular momentum coefficient [Eq. (16)] satisfies the
parity relation

A;J
' '(k;, kj, cosX) =(—} ' 'A;&' '(k;, kj, cosX),

with

'% =~i —Ji+trj+irk ~

and with the definition

(19}

—Qi =—IJT, ltstJiti, —Ni —VI I (20)

Using the parity relation of Eq. (18), the integral equations [Eq. (13)] can be decoupled into two sets which correspond to
the states of positive and negative parity. ' ' Since two of the particles are identical in the case of the irNN system, the
integral equations can be further reduced following the same steps as for the nonrelativistic equation. ' Thus, if we take
particle 1 to be the pion and particles 2 and 3 the two nucleons, we obtain the final set of equations

r, m k~ dki rr', 1 ~2Fp'(ki, S)= gI, Bp' '(ki, ki', S) Ft '(ki,'S), (21)
2top(kg )

y2

where P is the parity quantum number that can take the values P =+1. The new discrete quantum numbers yz are

) 2 =
IJT, lzs2Jztz, m2 —, I

where we have fixed the helicity of the spectator 2 as vz ———,', so that

—y2= I JT, l,s2J, ti; —mi ——,
'

I .

The new driving terms are
I I

(22)

(23)

k )dk) y, ,a, 1+2+ f „B,i' '(k, ,k, ;S)
2a)i(ki)

' '
D i(k .~S)

I

X[Bii '(ki, k2', S)+P(—) 'Bi2 '(ki, ki, S)] . (24}

The integral equations (21) depend only on the variables
with index 2 in which the pion and one of the nucleons
are in a state with quantum numbers Iz,s2,j2, t2, while kz
is the momentum of the spectator nucleon. The depen-
dence on the variables with index 1 has been eliminated,

since in Eq. (24) we have summed over the discrete quan-
tum numbers a~ and integrated over the momentum k~.
The three-body integral equations (21} are allowed to go
into states corresponding to a nucleon-nucleon configura-
tion when the discrete quantum numbers of the pion-
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total parity =P ( —) (26)

III. THE T%'0-BODY INPUT

Since the pion has isospin 1 and the two nucleons iso-
spin —,, a mNN state with total isospin T=O requires the
nucleon-nucleon subsystem to be in a state with isospin
t; = 1 and the pion-nucleon subsystem to be in a state with
isospin t;= —,'. Thus, only the 'So, 3Po, P&, P2, and 'Dz

partial waves will contribute out of all nucleon-nucleon
channels with angular momentum j; & 2. Similarly, of the
six S- and P-wave pion-nucleon channels, only the S»,
P)), and P|3 will enter. In the case of states with total
isospin T=2 the nucleon-nucleon subsystem again can
only be in states with isospin t;=1, while the pion-
nucleon subsystem can now only be in a state with isospin
t; = —,; in this case the contributing pion-nucleon channels

are S3) P3$ and P33.
We have found that the solutions with total isospin

T=O are dominated by the pion-nucleon P» channel, and
that the solutions with total isospin T=2 are governed by
the pion-nucleon P33 channel. Thus, we have constructed
a family of two-body interactions with different ranges
for these two channels. In the P» case we have used
rank-one separable potentials [Eq. (9)], which give rise to

a pole in the two-body propagator I/D~ '(0;v S ), given by
Eq. (12), at an energy Wj(0, v S ) =M, the mass of the nu-
cleon; the corresponding residue gives the pion-nucleon
coupling constant. We used the form factors

2
p; ap;g(p)= » +

pi+ A+
(27)

and considered for the range P the values P=2, 3, 4, and 5
fm ' as shown in Table I. Although these potentials
reproduce the position of the nucleon pole and have the
right pion-nucleon coupling constant, they do not fit well
the P~~ phase shift which changes the sign around 170
MeV laboratory energy. To reproduce this fact, at least a
rank-two potential or a potential with an explicit energy
dependence auld be required. However, in our bound-
state calculations the two-body subenergy is always re-
stricted to W, (q;, v S ) &M, which is far below the pion-
nucleon threshold M+p; that means the behavior of the

nucleon subsystem are

I12s2j, t, I = I 1 —,
'

—,
'

—,
' j,

which are the quantum numbers of the pion-nucleon P~~
channel. Thus, in this case the helicity m2 must be re-
stricted to have only those values which are allowed by
the Pauli principle in the case of two nucleons.

Finally, the P =+1 solutions of Eq. (21) correspond to
the usual states of positive and negative space parity ac-
cording to the prescription

space parity =P ( —)
+ ' .

If we take into account additionally the intrinsic parity of
the pion, then the total parity of the solutions of Eq (21),
characterized by the quantum numbers J and P, is

TABLE I. Parameters of the four models with @=2, 3, 4,
aud 5 fm ' in Eq. (27) for the pion-nucleon P» channel.

0. {fm )

2.28
1.80
1.25
0.78

y (fm )

—16.752 43
—42.27336
—99.295 54

—211.270 1

P (fm ')

2.0
3.0
4.0
5.0

interaction in the region above threshold is not so impor-
tant.

For the pion-nucleon P33 channel we have used also
rank-one separable potentials with form factors given by

1 —A
g(p )=p; »+ za'+p P'+p

(28)

IV. RESULTS FOR THE ISOSPIN ZERO CHANNEL

We will study the T=Q states with total angular
momentum J(2 by calculating the Fredholm deter-
minant of the relativistic Faddeev equations (21) below
the nucleon-nucleon threshold, that is for invariant ener-
gies ~S &2M, where M is the mass of the nucleon. Of
the six possible states J corresponding to J=0,1,2 and
P =+1 only three are allowed to also be nucleon-nucleon
states in accordance with the Pauli principle. These are
the states J =1, 1+, and 2+, corresponding to the S&-

D~, 'P~, and D2 nucleon-nucleon channels. Thus, it is
important to calculate the Fredholm determinant of these
three channels in order to compare it with features known
from low energy nucleon-nucleon ~hase shift analyses.
For example, in the case of the S~- D& channel with the
deuteron bound state we expect that the Fredholm deter-
minant will pass through zero. In the case of the 'D~

state the low-energy phase shift is negative; that means
that the channel is repulsive and we expect the Fredholm
determinant to be positive and larger than one. Finally, in
the case of the D2 state the low energy phase -shift is pos-
itive, i.e., the channel is attractive, although not attractive
enough to produce a bound state; therefore, we expect that
the Fredholm determinant will be positive but smaller
than one.

where we took the values 2000, 4000, 7000, and 10000
MeV/c for the second range P. These potentials fit the
P» scattering volume and phase shift from 0 to 350 MeV,
and the parameters are given in Ref. 9. We should men-
tion that the requirement of an energy-independent poten-
tial has the consequence that one needs two ranges in Eq.
(28), one very small (a-200 MeV/c) and the other one
very large. In order to fit the two-body data the actual
magnitude of the second range is not essentially provided
it is large enough (P~ 1000 MeV/c). ' Thus, one of the
most interesting features of our three body results will be
that they are very sensitive to the value of this second
range; so that by going into the three-body system one
may be able to learn something about the off-shell
behavior of the two-body subsystem.

The separable potentials for the remaining nN and NN
channels have been constructed already in Ref. 9.
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In Fig. 1 we show the Fredholm determinant of the
J~=1, 1+, and 2+ channels as a function of the energy.
The curves labeled 2 to 5 correspond to the models of the

P» channel with ranges p=2—5 fm ' given in Table I.
In case (a) only the pion-nucleon Pt t channel, in case (b)
all the pion-nucleon channels, and in case (c) all pion-
nucleon and all nucleon-nucleon channels were taken into
account. As we see, there is quite gmxi agreement with
the qualitative behavior expected from the low-energy
phase shifts, that is, the 3S,- D& channel can have a
bound state, the 'Pt channel is repulsive, and the Dz
channel is weakly attractive. Although the S,-zD

&

Fredholm determinant can go through zero, it can also
have values larger than one, which means that this chan-
nel has both attractive and repulsive components. The
trend of the results for the different models of the Pt~
channel consists of a decrease of the attraction in the
three-body states while increasing the range p.

We see that using as input only the Pt~ channel (model
2) produces a bound state in the St- Dt channel of about
2.5 MeV. Including the other pion-nucleon channels de-
creases the binding energy to about 0.7 MeV, while the

2+

1'z=I10, 1T~
z z, mz z ) ™z (29)

(that means that the pion-nucleon subsystem is in the P»
channel), we can construct the two linear combinations of
the amplitudes E '~.

fo«z) = 1

Dz'(kz, MS )

v'2/3F' i (kz)

F, (k) (30)

' F'&,'(k, )

D '(k vS)

additional inclusion of the nucleon-nucleon channels

raises the binding energy again to about 1.5 MeV. In
order to get a bound state with approximately the correct
deuteron binding energy, we constructed a fifth
model of the Pt& channel (a=1.35, p=1.855 fm
y= —14.3951729 fm ), for which the full calculation
gives a binding energy of 2.22 MeV.

We have also calculated the wave function of this

bound state. If we consider the solutions F 't of Eq. (21)
with the quantum numbers

3
( $)- 6)) —v'2/3F I (kz ) (31)

2

l (b) )

5

I I I ~ I

which correspond to the usual S- and D-wave components
of the deuteron wave function.

We show this "three-body" deuteron wave function in
Fig. 2, where we compare it with the deuteron wave func-
tion of the Paris potential, ' and with the Moravcsik-
Gartenhaus wave function. As we see, there is quite
good agreement between the thrtM:-body wave function
and the two phenomenological ones, particularly with re-
gard to the change of sign of the S-state wave function at
k -2 fm '; this feature is well known for all models hav-

ing a strong repulsive core at short distances. In the tradi-

I I
I ~ ~ 10'

10'

10

-2

VS - m (May

l I

-2

FIG. 1. The Fredholm determinant for the three states with
isospin zero J =1, 1+, and 2+, as a function of the energy.
The curves labeled 2—5 correspond to the models of the P»
channel given by Eq. (27) with ranges P=2—5 fm '. (a) Only
the pion-nucleon Pl I channel, (b) all the pion-nucleon channels,
and (c) all the pion-nucleon and nucleon-nucleon channels are
taken into account in the calculation.

$0 '
0

FIG. 2. The deuteron wave function of our three-body model
as compared with the wave functions of the Paris potential (Ref.
19) and the Moravcsik-Gartenhaus {Ref.20) wave function.
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posite from that with isospin zero, since now a larger

range P leads always to increased attraction. We see that
for the inclusion of only the pion-nucleon interaction the
three channels can have a bound state for sufficiently
large values of P, although the channel 2 is the one with

the strongest attraction. If we include in addition the
nucleon-nucleon interaction, the bound states disappear in

the 0 and 1 states and only that one in the 2 state
remains.

We can also see from Fig. 4 that in the case of the 0
and 2 states the pion-nucleon F33 channel is the dom-
inant two-body interaction, while the other pion-nucleon
and nucleon-nucleon channels have only a very small ef-

fect. These two states have positive space parity [sm Eq.
(25)], and since the pion will be mainly in a P wave with

respect to the two nucleons, the nucleons themselves must
also be in a relative P wave (spin triplet); therefore the
strong nucleon-nucleon singlet 'So channel will not con-
tribute. Thus, in the case of the 2 state the P-wave pion
will have its magnetic projection parallel to the spins of
the two nucleons. That means that for each pion-nucleon

pair the mN magnetic projection will be —, and the pion
will form the delta 3,3 resonance with full strength with
each of the nucleons, since in addition the isospins are
also parallel. This configuration gives rise to a three-body
resonance of spin 2 and isospin 2, which we can call the
4,4 resonance, in analogy to the 3,3 resonance of the two-

body AN system that has spin —', and isospin —,'.
As we see in Fig. 4 models A and 8 give rise to a reso-

nance while models C and D give rise to bound states.
Since the existence of bound states has essentially been

ruled out by two recent experiments, this also rules out
the models [Eq. (28)] of the pion-nucleon Piq channel
with range P&5000 MeV/c. However, if we accept the
experimental evidence found by Lichtenstadt et al. ,

namely the existence of a resonance at 38 MeV above the
n NN threshold, we can find a model which gives rise to a
4,4 resonance of such a mass with quantum numbers of
spin and isospin equal to two and positive space parity.

In order to search for the position of the resonance, we
parametrized the Fredholm determinant of the J~=2
channel as

(32)

v S =(m.'+k')'"+(4m', +k')'" (33)

1(k)=8k (34)

corresponding to a P-wave resonance. The parameters A,
Sa, 8, and C were fitted to the values of the Fredholm
determinant below threshold, that is for k =i~ with a real
and positive. Since the resonance, however, must be locat-
ed in the second Riemann sheet (defined by k = i ~—), we
have to go from the physical to the unphysical sheet.
This can be achieved within our simple parametrization
[Eqs. (32)—(34)] by replacing A ~A, QSx ~AS+,
C~C, and 8~—8. Applying this procedure to our
model of the P33 channel [Eq. (28)], we reproduced the
correct experimental mass with the parameters
a = 182.126 MeV/c, P=4830 MeV/c, y = —0.164036 8
fm, and 2=0.625. The result for the width, however, is
between 2 and 3 MeV, which is much smaller than report-
ed by Lichtenstadt et al.

VI. SUMMARY

This work was supported in part by the Bundesmin-
isterium fiir Forschung und Technologie of the Federal
Republic of Germany.

We have described a relativistic three-body theory of
the bound-state problem and applied it to the case of the
nNN system with total isospin zero and two. Our results
for isospin zero are in qualitative agreement with the
behavior expected from the low-energy nucleon-nucleon
phase shifts. In the case of the deuteron bound state, we
find that the wave function of our "thrm-body" deuteron
is very similar to those of other models.

In the case of isospin two, we find that the state with
the most attraction has total angular momentum two and
positive space parity. Since—according to experimental
searches —the state is not bound, it will appear as a 4,4
resonance. Taking into account these experimental re-
sults, we can set a limit to the range of the pion-nucleon

P33 form factor within our model which must be less than
5000 MeV/c. More general, if the experimental finding
of Ref. 7 will be confirmed by other groups, our calcula-
tions have shown the appointement of the resonance to a
specific channel (J =2 ) and a strong connection of the
position of the resonance to off-shell features of the
underlying pion-nucleon interaction in the F33 channel.
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