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The modification of the Faddeev equations including three-nucleon forces is presented in a pertur-
bational approach for arbitrary orders in the three-nucleon force. We report our results for the tri-
ton bound state energy using the Reid-soft-core and Paris potential and the Tucson-Melbourne two-
pion-exchange three-body force. Furthermore, we show that only a small number of the N? channel
to channel contributions are important for the energetic shift caused by the three-nucleon potential.

I. INTRODUCTION

The inclusion of three-nucleon forces has gained much
attention in explaining the difference between the experi-
mental binding energy of the triton (—8.48 MeV) (Ref. 1)
and the theoretical value using realistic two-body poten-
tials which ranges between about —7.0 and —7.5 MeV
(Ref. 2). Since the two-pion-exchange three-nucleon po-
tential (2PE-3BP) should be most important among the
three-body forces because of its long range, we use this
potential in a first attempt to explain the aforementioned
discrepancy. The basic ingredient of the 2PE-3BP is the
m-N scattering amplitude which is needed for off-shell
pions (Figs. 1 and 2). We use the description of the 7-N
scattering amplitude developed by Coon et al.® which uses
current algebra and PCAC and fulfills the soft pion
theorems by construction. This procedure has its main
advantage in being almost completely model independent,
whereas the model making approach* suffers from uncer-
tainties, such as, for instance, the ambiguity of the off-
shell A propagator.’

Since first calculations using three-nucleon forces in
first order perturbation theory gave results® which are
small compared to the expectation value of realistic two-
body forces,’ one could expect that first order results
represent the main part of the total energetic shift caused
by the three-body force. Unfortunately, this is not the
case, as recent nonperturbational treatments® of the
three-nucleon force in the Faddeev scheme have shown.
In fact, first order results make up only about half of the

FIG. 1. The two-pion exchange three-nucleon force.

total energetic shift. Therefore we extended our method
of incorporating three-nucleon potentials into the Faddeev
equations’ to arbitrary order.

In Sec. II of this paper we describe our perturbation
theory with three-body forces in the Faddeev formalism
and discuss the solvability of the resulting set of integral
equations. In Sec. III we present some details of the nu-
merical treatment of these equations. Finally, Sec. IV
contains our numerical results and a comparison with the
results of other groups.

II. PERTURBATION THEORY OF THREE-BODY
FORCES WITHIN THE FADDEEV SCHEME

The standard method of solving the quantum mechani-
cal three body problem is the solution of the Faddeev
equations,'© originally developed for two-body forces only.
There exists a variety of ways to include three-body poten-
tials in this scheme.!' The basic assumption for our way is
the decomposition of the three-body potential W into
three parts,

3
w=3 W, ()
i=1

which appears naturally for the 2PE-3BP we used. With
Go=(E —H,)™!, the free resolvent operator, and the pair
interactions V; =V (j, ki), the Schrodinger equation
for the three-nucleon wave function ¥ in integral form
reads

N

N =

FIG. 2. The pion-nucleon scattering amplitude.
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3
V=G 3 (V;+ W)V . @)

i=1

The usual decomposition of the total wave function ¥
splits V¥ into three Faddeev components y; with

Y =Go(V;+W;)¥ (3)

and
Y= ;. (4)

This leads to the modified form of the Faddeev equations
used in'?

Vi=GoT; X ¢; . (5)
J#i
Here the three-body T matrices obey the following
Lippmann-Schwinger equations,

T;=Vi+ W)+ (Vi+ W;)GoT; , (6)

which can be rewritten by use of the Lippmann-
Schwinger equations for the two-body ¢ matrices,

L =Vi+ViGot; , ™
to give
Ti=ti+(1+t,~Go)VV,'(l+GoT,-) . (8)

This is obviously suitable for a perturbational treatment
in W. Instead of this procedure, which leads to problems
with the storage requirements to be discussed later, we
prefer to introduce a fourth Faddeev component:

3
W=G, 3 V,¥+G,W¥

i=1

3
=23 i+ )

i=1
Taking into account Eq. (7) and the Lippmann-Schwinger
equations for the scattering by W alone,

T4=W+WGOT4 s (10)

we end up with the following set of coupled integral equa-
tions:

Ui =Got;(PY; +¥,) ,
\P4=GOT4( 1 +P)l/1, .

Here the permutation operator P, for instance, related to
the choice of subsystem 1, is

P =P;Py3+P3Py3 . (12)

(11a)
(11b)

Because of the particles’ identity, we will restrict our at-
tention to one subsystem, leaving the indices i behind. In
this way the modified set (11) reads

¢=G01(P¢+q’4) ’
W,=GoT4(1+P)y .

(13a)
(13b)

We want to perform a perturbational expansion around
the unPerturbed solution (W =0) of the Faddeev equa-
tions ¢'* with energy E©,

¢(0)(E(0))=GO(E(O))t(E(O))Pt/,(O)(E(O)) . (14)

We insert Eq. (13b) into (13a) and indicate the energy
dependence explicitly,

YWE)=Go(ENX(E)[P +Go(E)T4E)X1+P)IYE) . (15)

To make the notations more readable, we define the fol-
lowing abbreviations:

YOAEO) =@ (16a)

Go(E®)=G,, (16b)

tEM)=t, . (16c¢)
For our perturbational ansatz, we write

E=E94+AE, (17a)

Y=YE)=¢yV4+y . (17b)

The perturbational expansion of the free resolvent G
and the two-body ¢ matrix around the unperturbed energy
E(O) is

Go(E'Y+AE)=Gy—GoAEGy+GoAEG,AEGF - -+ ,
(18)
t(EQ 4+ AE)=ty—AEtyGGoto+(AE)?
Xt9Go(Go+GotgGo)Goty
—(AEPtyGo(Go+GotoGo) Gotot -+ *
(19)
which leads to the product’s expansion occurring in (15):
Go(EQ+AE)X(E'©+AE)
=Gotg—AE(Gy+ GotgGo)Goty
+(AE) Go+GotoGo)?GotoF - . (20)

For the three-body T matrix T, the equivalent procedure
leads to

Go(EQ+AE)T(E©+AE)
=0+GoW+Go(W—AE)G,W

+Go[(W —AE)G,PW+ -+ . (21)

It is convenient to introduce the abbreviations
€= —AE(Gy+ Gyt(Gy) , (22a)
o=(W—-AE)G, . (22b)

In these terms the fourfold product of energy dependent
operators occurring in (15) an be rewritten as

Go(E)t(E)Go(E)T4(E)= E 2 GnGotoGoa)m "W

m>0n=0
(23)

Now we are able to write exact but, up to the moment,
still formal equations for our basic equation (15). To do
this we expand the perturbed part of the Faddeev com-
ponent ¥’ corresponding to powers of W,
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¢'= 2 ¢(n) , (24)

n>1
and obtain

2 ,‘,[}(m): 2 i 6"G010P¢(m —n)

m>0 m>0n=0
n 1
+ 3 3 I €GotoGoo "W (1 +P™ D
m>01=0n=0
(25)
This equation can be successively reduced, up to Nth or-

der in W and AE, respectively, to the following equations,
ignoring errors of higher orders,

N N N-1
2 II/(M):GotoP 2 ¢(m)+e 2 l[/('")
m=0 m=0 m=0
N—1 m
+GoteGy 3, 3 o"W(14+PW'™=™ (26a)
m=0n=0
N N—-1 m
‘P(N)z(l—}-P) 2 ¢(m)+GO 2 2 wnW(1+P)¢(m—-n) ,
m=0 m=0n=0
(26b)
N <¢(0)’ W I \p(N——l))
AEY = (G0 | Wy (26¢)
with the normalization condition
(WO g™y =1, 7

For N =0 the given formulas are trivial; for the first or-
der equations the formulas are shown in Ref. 9. The
proof for arbitrary orders can be done by induction and is
given in Appendix A. Looking at the perturbed part of
Eq. (26a) (m=£0), we recognize the same integral kernel X
as in the unperturbed problem

K=Gyt,P , (28)

but now we face an inhomogeneous integral equation. It
is well known from Fredholm theory that it is sufficient
and necessary for the inhomogeneous equation

V'=¢+K¢ (29)

to have a solution that ¢ is orthogonal to the left handed
solution of the homogeneous equation

1'Z;(O):J;(i))[( . (30)
The left handed eigenfunction ¢ ‘*) can be shown to be

(J(O), =(¢(0)|Pt0P , (31)

and the orthogonality to our driving terms ¢ follows im-
mediately from the expression for the energetic shift (Eq.
(26¢)].

The solution of (29) is obviously given only up to an ar-
bitrary admixture of the unperturbed solution ¢'*). How-
ever, it can be made unique by our normalization require-
ment (27). To make our formulas clearer to the reader, we
give explicit representations of them for lower orders in
Appendix B.

III. NUMERICAL TREATMENT

We focus our attention on the solution of the inhomo-
geneous (perturbed) integral equation (26a). We remind
the reader’® that in addition to the physical eigenstate cor-
responding to the eigenvalue Ap=1,

A=Ky, (32)

because of the strong short range repulsion there exists an
unphysical eigenstate ' ~’ obeying

A=k =) AT —1 . (33)
We transform our inhomogeneous equation

Y'=¢0+Ky¢' (34)
into

. 1
¢=———1_N_,,¢, (35a)
k=—L1 _(x_a-n), (35b)
1 _)\'( -)
V=¢'+K'y" . (35¢)

Since Ay and A'~’ are the largest positive and negative
eigenvalues, respectively, it can be shown by simple esti-
mates that the Neumann series of Eq. (35¢) converges if
the irrelevant part of ¢’ proportional to ¥'* is projected
out.

To this end we introduce the following projection
operator A,

(0)Y ¢ 7 (0)
A=1 JL_&LL (36)

- ($(0)|¢(0)> ’
which obviously has the desired properties
Ap=¢, (37a)
AYP=0, (37b)
[A,K]=0. (37¢)

Thus, instead of solving Eq. (34), we use
AY'=¢'"+K'AY, AY'=y) . (38)

The resulting Neumann series converges in our actual case
after about 40 iterations. Since we determined in this
iteration scheme only the part of ¥’ which has no admix-
ture of ¥'% in it, ¥, we finally set

¥'=19 +ay'?, (39)

where the parameter a is fixed by the normalization con-
dition (27).

We emphasize the treatment in momentum space be-
cause relativistic effects'* can easily be handled in it. Cer-
tainly then, one has to deal with nonlocal potential opera-
tors, which is the price which has to be paid. What helps,
however, is that wave functions are smoother than in
coordinate space.

We discretize our integral equations using NP =22
meshpoints for the two-body subsystem’s momentum and
NQ =12 meshpoints for the spectator’s momentum. All
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18 partial waves with the total angular momentum of the
subsystem j <2 are taken into account (see Ref. 13) for
the definition of our channel states) The resulting dimen-
sion D of the three-body matrices which we have to work
with on the computer is of the order D ~5000. Our treat-
ment of the incorporation of three-nucleon forces into the
Faddeev equations is advantageous compared to the
equivalent usage of Egs. (5) and (8) because it requires
only the disk storage of one D XD matrix, whereas the
solution of, for instance, Eq. (8) would need the disk space
for two such matrices. Furthermore, the kernel for the
perturbed part of the Faddeev component is the same as
in the wunperturbed problem, which reduces the
programmer’s expense.

IV. NUMERICAL RESULTS

For the definition of our Jacobian momenta and basis
states, and for the explicit formulas for the angular
momentum decomposition of the permutation operator
and of the three-body force W, we refer to Refs. 9 and 13,
where also the strength parameters and the cutoff parame-
ter for the three-body force are cited.

First, we want to present our results for the expectation
value correcting an erroneous table in Ref. 9 which was
caused by irregularities in handling tapes. We decompose
both the Faddeev component 3 and the three-nucleon
wave function ¥ into three-body partial waves:

l/}["]= ;1 Ya > (40a)

N
Yin N = 21 Woin - (40b)
a=

It should be noted that even a finite number n in (40a) in-
troduces infinitely many states in (40b), which is truncat-
ed to N in our calculatlonal scheme. ¥y, is gained by
Faddeev calculation with n channels and two-body forces.
In first order perturbation theory in W, we get

AEp,ny=3(Yan) | W1 | ¥Yan)) /{¥Van) | Yinn)) -
(41)
Using the Reid soft core potential, we obtain the follow-
ing:
AE(s 1y=—0.498 MeV ,
AEj3,13)=—1.000 MeV .

The first value corrects that given in Ref. 9 and agrees
very well with the results found in a coordinate treatment
of the Faddeev equations and with the results of the Sen-
dai group.!'* We also would like to present in Table I the
corrected Table II of Ref. 9.

To test the accuracy of our values, we use the following
identities,

(14+PP2=3(1+P), (42)
W) =(1+P)W, | W), (43)

which are fulfilled only approximately after a finite ex-
pansion into three-body partial waves. It should be kept

TABLE 1. Contributions to the energy shift in MeV (n =5,
N =18) resulting from channels 1 and 2.

a a'=1 a'=2
1 —0.168 (+0.126)
2 +0.126 —0.148
3 —0.186 —0.991
4 —0.244 +1.506
5 +0.196 +0.000
6 —0.020 —0.108
7 —0.027 —0.054
8 0 +0.393
9 —0.305 +0.244
10 +0.138 +0.015
11 0 +0.018
12 0 —0.194
13 0 —0.236
14 0 +0.003
15 +0.004 —0.049
16 —0.025 —0.063
17 —0.127 +0.003
18 —0.074 —0.017
> —0.712 +0.449—(0.126)=0.323

R

in mind, furthermore, that the appearance of the permuta-
tion operator makes an interpolation unavoidable if it is
treated numerically. The following expressions for the ex-
pectation value should lead to the same value as Eq. (41):

(0)
AE,= T%f\% X)=(1+P)W, | V) (44a)
ag, = YOI (44b)
L (PYO|wO)y -

The resulting numbers for AE, (5 13) and AEy[g,13] are
AEa[l8,18]= —0.994 MeV ,
AEb[lg 18]1= —0.982 MeV .

The difference between AE,[5,5 and AEPS 18] can
be traced back to the scalar product of (%'® | W) which
should be exactly one-third. Because of the above men-
tioned reasons the actual value in our numerical treatment
is given by

<¢(0) | \P(O)> =0.339 ,

which differs from the exact value by 1.8%. Further-
more, we checked the constituent of the first order driving
term evaluating
(§ 9 GotoGo | X)
AE .= ~(0)‘/’ [FofoSo | )y (d4c)
(9% Go+GotoGo | ')

giving
AEc“g’]g]: —0.986 MeV .

Comparing these numbers, we conclude that our results
should be correct up to about 10 keV.
Now we come to our results in higher orders of the per-
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turbational expansion. Using the Reid soft core poten-
tial,'® we find the values given in Table II. They are based
on an n =N =18 expansion. For the maximum momenta
of the two-body subsystem (of the spectator particle) we
used P,y =25.0 fm™! (g =10.0 fm™!). The values
given in Table II signify the following: E; is the energetic
shift in ith order, E‘” the summation of these effects up
to ith order, and = denotes the resulting triton bound-
state energy in ith order. A closer look at Table II reveals
that the main contributions in our perturbational expan-
sion come from first and second order; in fact, they make
up more than 90% of the total energetic shift, whereas the
first three orders comprise about 97% of the total effect
of the three-body force in the triton. Hence we conclude
that our perturbational approach is useful in getting the
three-nucleon bound state energy, though the convergence
is not as fast as we supposed before actually performing
these calculations. The corresponding numbers for the
Paris potential'” can be found in Table III. Comparing
our results with the latest numbers of the Sendai group,
who found a triton binding energy of —9.11 MeV for the
Reid soft core—Tucson-Melbourne (RSC-TM) potentials
and the same 18 partial waves, we notice a satisfactory
agreement with our high order perturbational result of
—9.08 MeV. However, this small difference would cer-
tainly be increased if we both used the same cutoff param-
eter for the three-nucleon force. (We used A*=17.0
fm~2, or equivalently, A=813.6 MeV, whereas Ishikawa
et al. took A>=16.44 fm~2 or A=800 MeV.) As an esti-
mate, we take their results for the two values of A, name-
ly A=700 and 800 MeV (taken in a 34-channel calcula-
tion with the Paris and Argonne two-body forces) and ex-
trapolate these numbers to A=813.6 MeV assuming
linear dependence of the energetic shift from A(A2).
Proceeding this way, we would find additional binding en-
ergy compared to A=800 MeV by an amount of —0.12
MeV (—0.13 MeV), thus shifting (by estimate) their num-
ber of —9.11 MeV to about —9.23 MeV. The agreement
concerning the usage of the Paris potential between our
results and those of the Sendai group is not so convincing.
Our zeroth order binding energy (—7.33 MeV) differs
from their number (—7.56 MeV) by more than 0.2 MeV,
whereas the calculation of Hajduk et al. (see Ref. 7) yield-
ed —7.38 MeV, which is much closer to our value. The
total energetic shift for the Paris and Tucson-Melbourne
potentials, however, gained by Ishikawa et al. (—1.93
MeV), is again very close to our result of —1.86 MeV.
Lastly, we can compare our values with those gained by

TABLE II. Perturbation theory results for the Reid soft core
potential (n =18, N =18).

i E;/MeV EY/MeV =9 /MeV
0 —7.24
1 ~0.99 —~0.99 —8.23
2 —0.69 —1.68 —8.92
3 —0.10 —1.78 —9.02
4 —0.06 —1.84 —~9.08
5 —0.01 —1.84 —9.08

TABLE III. Perturbation theory results for the Paris poten-
tial (n =18, N =18).

i E;/MeV E"/MeV 2% /MevV
0 —7.33
1 —0.72 —-0.72 —8.05
2 —0.93 —1.66 —8.99
3 —0.07 —1.73 —9.06
4 —0.13 —1.86 —9.19
5 —0.00 —1.86 —9.19

the Los Alamos group, who arrived at a triton binding en-
ergy of —8.93 MeV for the above mentioned potentials
(RSC + TM), 18 channels, and a cutoff parameter for the
27E-3BP of A’=16.836 fm~? If we again take their
values for the energetic shift using different cutoff param-
eters A, namely A2=8.413, 16.836, and A?=25.229
fm~2, and interpolate to our value of A’=17.0 fm 2, we
would get a triton binding energy of —8.97 MeV. This
differs from our value only by 0.11 MeV, which seems
very close if one takes into account the enormous com-
plexity of such a calculation. The agreement between all
three groups is satisfactory, though not yet on the same
level as the agreement between calculations with two-body
forces only.

We conclude that at the moment the theoretical binding
energies with 18 channels and the Reid soft core
—Tucson-Melbourne potentials lie in the range between
—8.97 and —9.23 MeV for the cutoff value of A2=17.0
fm~2, which we propose to read as —9.08+0.15 MeV.

In addition, we want to look more closely at the known
chaotic collection of positive and negative values which
builds up the energetic shift AE in first (higher) order:

N
AE= 3 AE@* . 45)

a,a’'=1

Since the channel states a=1 and 2 alone (subsystem’s
and spectator’s orbital angular momentum equal 0)
comprise about 90% of the wave function’s norm, and to-
gether with the state @ =3 [subsystem’s (spectator’s) orbi-
tal angular momentum equals 2 (0)], about 93%, we split
up AE as follows:

AE(nlez 2 AE(a,a’)+ 2 AE(“"’"ESNO-i-r%t,

a<N, a>N,
or and
a'<N, a'>N,

(46)

TABLE IV. Splitting of AE(, ) in first order perturbation
theory for the Reid softcore potential (all energies in MeV).

n N No SN() Rest AE[,,,N]
5 18 2 —0.389 —0.109 —0.498
5 18 3 —0.530 + 0.032 —0.498

18 18 2 —0.907 —0.093 —1.000

18 18 3 —0.975 —0.025 —1.000
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TABLE V. Splitting of AE in high order perturbation theory
(n =18, N =18 all energies in MeV).

Potential Order Ny AE S”o Rest
Reid 5 2 —1.84 —1.70 —-0.14
Reid 5 3 —1.84 —1.78 —0.06
Paris 5 2 —1.86 —1.74 —0.12
Paris 5 3 —1.86 —1.81 —0.05

where Nj equals 2 or 3. Because of the wave function’s
percentages, the first sum in (46) should build up the main
contribution to AE. This assumption can be seen to be
correct by regarding Table IV. The corresponding values
for our highest order energetic shift with the Reid (Paris)
potential are given in Table V.

The values in Table V refer to the perturbed wave func-
tion which was gained taking into account all channel to
channel couplings of W. Though the three-nucleon force
modifies the wave function it does not change the fact
that the first two or three channels are by far the most
important ones percentagewise. As a consequence, also
the full energetic shift is very well approximated by Sw,

in (46).

Together with the Tucson-Melbourne three-body force,
the results for the triton binding energy with the Reid soft
core and Paris potentials are very similar, though the con-
vergence of the perturbation series with the Paris potential
is more irregular than the one with the Reid potential.
We prefer usage of the Paris potential because it was de-
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rived from a more concrete theoretical basis than the
essentially phenomenological Reid potential.

Summarizing our results, we state that the 27E-3BP in
the form used yields a substantial additional binding ener-
gy in the triton. Therefore it will be a worthwhile chal-
lenge to solidify or modify the building blocks in that
force, the 7NN form factor, and the 7N off-shell ampli-
tude, especially for pion momenta where the soft-pion re-
quirements underlying the force are not fulfilled.

A recent nuclear matter calculation'® has extended the
inclusion of 3BP’s to the 7-p and p-p forces, likewise
based on the current algebra program. The results for the
contributions to the binding energy of nuclear matter have
shown a repulsive effect of the 7-p-3BP and an almost
negligible attractive effect of the p-p-3BP. These addi-
tional potentials reduced the attractive energy shift of the
27E-3BP in nuclear matter by a factor of about .
Therefore one can hope to reproduce or at least nearly
reproduce the triton binding energy using these forces to-
gether with a realistic two-body interaction. Our calcula-
tion has demonstrated that the total energy shift arises
essentially of the first three orders in perturbation theory
and, furthermore, that out of the N2 channel to channel
contributions only a subset of 2(3) XN contributions are
dominating.
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APPENDIX A

Equation (25) can be rewritten reordering finite sums:

N
2 1/)(m)=

N m N—-1m [
3 3 €GotoPY" "+ 3 3 3 €GotoPo! W (14 PR

m=0 m=0n=0 m=01=0n=0
N N m
=3¢ 2 GotoPy'™ " + 2 €"GtGy 2 S o' W14 Pyym D
n=0 =n m=nl=n
N N—-1m
=GotoP 3, ¥ +GotoGy 3 3, o'W (1+P)ym—0
m=0 m=01[=0
N N N—1 N—1 n
+ 2 € 3 GotoPY" T+ T €"GoteGo 3 S o "W (14PN (A1)
n=1 m=n n=1 m=nl=n
Using
N—1 —1 m N—
S €"GotoGo 2 S o'W (4P = 2 €' GotoGo z zw’W(1+P)¢“" ”]
n=1 m=nl=n n=0 m=0 [I=0
N—2 N—1— N—l-n
— 26n+l E l/a'(M)—-GoloP 2 ¢(m)
n=0 n=0 m=
N-—-2—n
—eN==m 3 YL OV —n) |, (A2)

m =0
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Eq. (A1) gives

N N N—1 m
2 l/)(M):GotoP 2 ¢(M)+GOtOGO 2 E(DIW(l—i-P)t[J(m—”

m =0 m =0 m=0 [=0

LA V" (m)_
+ey +2€” DI

m =0
N—-1m

N-2 N-2-n
2 e tlegN—1-n) 2 1/:‘""+0(N+1)

m =0
N-2-—-

=GotoP 2 P +GoteGy 3, 2w’W(1+P)1//"" Dte 2 P+ 2 etoON-n 3 $™+O0WN+1)

m =0 m=0]=

N N -1 N—-1 m
=GotoP 3, ¥ +e 3 ¥ +GoteGo 3, I o'W(1+PW" D,

m =0 m=0 m=0 =0

which coincides with (26a).

It remains to be seen that the expression for the energet-
ic shift, Eq. (26¢c), follows from Eq. (26a). To do this, we
project Eq. (26¢c) with the left handed eigenfunction of the
homogeneous equation

(PO =($ 9| GotoP=(¢'V | P1oP , (A4)
and make use of the following auxiliary relations:
($9| GotogGo=(¢"”]| , (AS5a)
(99| GotoP=(¢'© | P1oP , (A5b)
(P01 (Go+GoteGo) =¥ | (1+P) . (A5c)
This results in
0=—AE'S (40 14P|ym)
m=0
+ Nz_‘,l ﬁo (YO o"W(+P) '™ ™). (A6)
m=0n=

The last term can be rewritten as

N—-1m
S S o"W(l+Pym

m=0n=0

2‘, W(1+Py'™ + 2 2 "W (14 P)ylm ="

m= m=1n=1
N—
2 W (1+ Py
j 3 o"W(1+PRm ="
=0 n=0
N—-2 m
—AEG, 2 }_‘, "W(1+Pm (A7)

which completes our proof by induction for Eqs. (26b)
and (26c¢).

APPENDIX B

To be more elucidatory, we present explicit representa-
tions for lower orders of our formulas (26). We use
K =GytyP throughout in this appendix. For zeroth or-
der,

m=0 n=0 m=0
(A3)

-

PO=KyO | (Bla)

W(0)=(1+P)¢(0) . (B1b)
For first order,

(YO W, | )
(n_

AE = (4 | W) ’ (B2a)

¢(1)___¢<11>+¢(21) :

Sl = —AE“)(GO+GotoGo)¢(0) , (B2b)

¢“) Goto¢ Goto[Go(1+P)W1w(0)] ’

P V=gV 4KV, (B2c)

W=y (14 P+ . (B2d)
For second order,

(\P(O) l Wl l w(l))

(2)_
AE"= (11}(0) | w(l)) ’ (B3a)
¢(2)=¢(12)+¢(22) ,
¢ = — AED(Gy+GotyGo) O +y'1) (B3b)

$5"'=Goto$ ¥ =Goto Go(1+P)W ¥ —AEDG$5]

(¢(1)+¢(2))=¢(2)+K(¢“)+1[J(2)) , (B3c)
VO=WO 4 (14 PP +9P)+87 . (B3d)
For nth order,
(\y(O) | Wl l\l,(n—l))
(n) _
AET = <¢(0) | w(n—l)) ’ (B4a)
¢(n)=¢(1n)+¢(2n)
¢(]n)____AE(n)(GO+GotoGO)(¢(O)+ v +¢(n—l)) ,
(B4b)

¢ =Gotod V" = Goto[ Go(1+PYW W~ D

_AE(n)GO(;(Zn—l)] ,
(¢(l)+ e +¢(n))=¢(n)+K(¢(l)+ . +.‘/’(n)) , (B4c)
W‘"’:W‘°’+(1+P)(:/)‘"’+ . +¢(n))+$(2n) . (B4d)

Note the common structure for the driving terms ¢'” and
the energy shifts AE'?) which are ideal for a recursive nu-
merical evaluation.
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