PHYSICAL REVIEW C

VOLUME 34, NUMBER 4

OCTOBER 1986

Form factors for a proximity interaction between deformed nuclei

B. F. Bayman
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455
(Received 3 February 1986)

A method is presented for the calculation of form factors for the interaction of two axially sym-
metric deformed nuclei via a proximity-plus-Coulomb potential. A distorted-wave Born approxima-
tion calculation for the inelastic scattering of 150 MeV **Mg from '*Sm indicates that the proximity
and centerline interactions produce significantly different M-substate populations in the final nu-

clear states.

I. INTRODUCTION

When two nonspherical nuclei approach each other,
their interaction has both central and noncentral com-
ponents. The so-called “centerline” potential depends
only on the distance between the nuclear surfaces, mea-
sured along the line connecting their centers. It has a
noncentral component if either or both nuclei are non-
spherical, because then the centerline distance between the
surfaces depends upon the orientation of the nuclei as well
as upon the between-center distance. This orientation
dependence of interaction energy implies the presence of
internuclear torques: a torque will be exerted on each non-
spherical nucleus, and we have the possibility of exchange
of angular momentum between the relative and orienta-
tion degrees of freedom.

A possible limitation of the centerline potential is that
its value is unaffected by rotation of the nuclei around the
centerline, since such a rotation does not change the dis-
tance between the nuclear surfaces along the centerline. A
consequence of this rotation invariance is the statement
that the torque each nucleus exerts on the other has no
component along the centerline.

Blocki et al.! have described a nucleus-nucleus “prox-
imity” interaction whose properties can be derived from
general considerations concerning the energy density of
nuclear matter. This interaction is a function of the dis-
tance between the nuclear surfaces along the shortest line
connecting the surfaces, which is not, in general, the line
between centers. The proximity interaction also depends
upon the shape of the gap between the surfaces in the vi-
cinity of this shortest line. The gap shape changes if the
nuclei are rotated about this line, and thus the torque each
nucleus exerts on the other has a component along this
line (and along the centerline). It might be expected that
the presence of this torque component would have an ef-
fect on the relative populations of M-substate components
in an inelastic collision of deformed nuclei.

References 2 and 3 have discussed the geometrically
simpler situation in which one of the nuclei is spherical.
In Ref. 2, a study was made of the difference between the
strengths of the centerline and proximity potentials, as a
function of the angle between the symmetry axis of the
deformed nucleus and the relative vector between nuclear
centers. A multipole analysis of this difference suggested
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that the two potentials would have significantly different
effects when the angular momentum transfer is greater
than or equal to four. This was confirmed in Ref. 3,
by a coupled-channel calculation of data for
152§m(190,1¢0")1*2Sm(4*). It was found that the use of
the proximity potential yielded a B,R* value consistent
with results obtained by Coulomb excitation and electron
scattering, whereas the centerline-potential analysis of the
data required a B,R* value only half as large. It should be
noted that in this case, with one nucleus spherical, neither
the proximity potential nor the centerline potential leads
to a torque component along the centerline. For this
reason, we may expect even greater differences between
the effects of the two potentials when both nuclei are de-
formed, since then the proximity potential implies a
torque component along the centerline, whereas the
centerline potential does not.

The first step in the calculation of the differential cross
section for inelastic scattering produced by a particular in-
teraction is the calculation of the radial form factors.
These are matrix elements of the interaction with respect
to the initial and final nuclear states, integrated over the
internal degrees of freedom. In the present context, these
internal degrees of freedom are the orientation degrees of
freedom of the two deformed nuclei. In the following sec-
tions we will describe a method for calculating radial
form factors for a proximity interaction and for a doubly
folded Coulomb interaction between axially symmetry nu-
clei. We will then use these form factors in a distorted-
wave Born approximation (DWBA) calculation to com-
pare M-substate populations produced by proximity and
centerline interactions.

II. THE FORM FACTORS

We consider the collision of two even-even nuclei.
Each is assumed to be axially symmetric, and invariant*
under a 180° rotation about an axis perpendicular to the
symmetry axis. We assume that the nuclei remain in their
K =07 ground-state rotational bands throughout the col-
lision, with constant intrinsic states. Thus only their
orientation degrees of freedom are affected by the col-
lision. These orientation degrees of freedom are simply
the spherical polar coordinates of the symmetry axes.
Each nucleus can be in rotational states with angular mo-
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menta 07,2%,4%, . ... The normalized orientation wave
function of nucleus i (=1,2) when it has total angular
momentum I; and angular-momentunll z component M; is
simply the spherical harmonic Yb}i(eid;,-). Figure 1
represents the two nuclei at an instant when their axes
have orientations 0;,4;, and the line connecting their
centers has orientation 6,4 and length r. The total
scattering wave function can be expanded in the form

V= urrswN([Y (0160 Y (0,001 Y00)}5 . (1
J

sl

11,1,
The term shown in (1) has total angular momentum J,
channel spin S, relative orbital angular momentum /, and

parity (—1).

The Schrédinger equation can be formulated® in terms
of a set of coupled ordinary differential equations for the
]

FIG. 1. 7, and %, point along the axes of two axially sym-
metric nuclei, whose centers are separated by r. The orienta-
tions of ?;, T,, and T are specified by polar coordinates defined
with respect to parallel sets of Cartesian axes.

radial functions u; 1,su(r). The coupling terms in this set
are the following matrix elements:

(LY1(016)) Y 2(0,6,)15Y (66)}3 | V (6,01;0:62;007) | {[Y"‘(e,cpl)Y”Z(92¢2)]S‘Y"<o¢)1é)EF’ (r . )

V(60161;0,0,;,04r) in (2) is the interaction energy when the
nuclei are in the configuration shown in Fig. 1. The in-
tegrations implied by this matrix element are over the six
angles 0,¢10,4,0¢, for fixed values of the separation r.
Because ¥ is invariant under rotation of the entire system,
the states in the bra and ket of (2) must have the same to-
tal angular momentum J if the matrix element is to be

LLSL I ST

[

nonzero. Similarly, inversion invariances of V requires
that the bra and ket have the same parity, which implies
that / and /' differ by an even integer.

By using some straightforward angular momentum
recoupling, we can express the matrix elements (2) in
terms of “reduced” matrix elements f L,L,.(r), which de-

pend upon fewer parameters:

Fl , sunpsrN= % [(SDS' 1)y [ (SS) () Tl U Ip)s T 3)s | (LT (I 15); ],

LiL,

X (11100 | L0)(I,1500 | L,0)(11'00 | LO)i "t H/ 1 ~Fi+latla=botl+l=L

Q26+ 12T+ 1)L + DI+ DRI+ Dl +1) |

(4m)32L; +1)(2L,+ 1)(2L +1)

Sr,(r), (3a)

fr,,0(n= [ sin6,d6,d6, [ sin6,d6,d¢, [ sin0d6ds V(0,01:0062;00r ([ Y (0,6 Y (0,6,)]1-Y-(04)}3.  (3b)

The parameter L has the significance of the angular
momentum transferred between the internal (i.e., nuclear
axis orientation) and relative motion. Similarly, L,
(i =1,2) has the significance of the angular momentum
transferred to nucleus i. The main concern of this paper
is the evaluation of the “form factor” (3b). The tech-
niques to be used for the nuclear and Coulomb interac-
tions are different, and so we will discuss them in turn.

A. Nuclear interaction

Since the integrand in (3b) is rotationally invariant, its
value is unchanged if #,, T,, and ? in Fig. 1 are simultane-

r

ously subjected to the same rotation. Thus if we replace
the six angles 6,¢,6,0,0¢ by three intrinsic angles and
three overall orientation angles, the integrand will be in-
dependent of the overall orientation angles. The intrinsic
angles are defined as shown in Fig. 2, with T along the 2
axis and T, in the x-z plane with (), >0. Clearly, any
configuration of ¥, T, and T can be obtained from three
vectors oriented as shown in Fig. 2, by means of an
overall rotation which does not affect the value of the in-
tegrand in (3b). The integration over these overall orienta-
tion coordinates simply gives a factor of 872, and (3b) be-
comes
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m . m . L L L
fi,L,(r) =8 f6]=051n01d91 f02=0s1n92d62 f¢2=_ﬂd¢2V(010;92¢2;00r){[Y 1(6,0)Y " %(6,6,)1FYE(00)}3 . 4)
It is convenient to express the spherical harmonics in terms of reduced Wigner d functions,®
172
Y. (6¢)=i! %—:—1 eimogl (9) , (5a)

2l+m —2n 2n—m
b L IVT—mTm)! 0 8 R
d,,,,o(B)—;(—-l) pTTETy e — L sin— =(—-1"d"_, 0(0), (5b)

so that (4) becomes

Ly+L,—L
frnn=i'"

Va(2L + DL, + 1) X (—1)™L\Lym —m | LO)
T T T —i L
x [ sin6,d6, [ sin6d6; [ dre "y lo(6))dp’s(0,)V(6,0;0,65;00r) .

(6)

Because we have assumed that each nucleus is invariant under rotation about its body-fixed y axis, ¥ in (3b) is un-
changed if (6,¢,) is replaced by (7 —0,, m+ ;) or if (6,¢,) is replaced by (7 —8,, m+¢,). Since these operations multi-
ply the respective spherical harmonics by (—1) ' and (—1)?, the integral (3b) vanishes unless L, and L, are even.
Similarly, V is unchanged if all three directions ?,,T,,T are simultaneously inverted (this is the parity operation). Thus it
also follows that L is even. This means that the vector-coupling coefficient in (6) is unchanged if m is replaced by — m,

and we can use (5b) to restrict the sum in (6) to non-negative m values:

Li+L,—L

Sr,e(r=i
m>0

2VTRL + DL+ 1D 3 (=)™

(Llem —m ILO)

1480

T T T L
x [ sin6,d6, [ sin:d6; [ ddn(6)dy(6:)cos(m )

In addition, inspection of Fig. 2 shows that replacing ¢,
by —¢, simply produces a reflection of the system across
the x -z plane, which has no effect on V. Thus the ¢, in-
tegration range can be restricted to 0<¢, <w. Further-
more, V is obviously unchanged if both nuclei in Fig. 2
are rotated by 7 around the z axis. If we combine this ro-
tation with rotations of both nuclei about their intrinsic y
axes, we see that

V(6,0;6,¢,;00r) =V (77— 0,,0;7m— 0,,¢,;,00r) . (8a)
]

JLi+L—L

X V(910;92¢2;00r) . (7)

Finally, invariance of V¥ under inversion of T, and reflec-
tion of T, across the x -z plane, yields

V(6,0;60,6,;00r) =V (6,0; ™ — 0,,m—¢,;00r) . (8b)

Equations (8a) and (8b), and the fact that L, and L, are
even, enable us to restrict the 8; and 6, integrations in (7)
to the range 0< 6, 6, <7 /2. The final result can be writ-
ten

(—=1)™L;Lym —m |LO)

16V 7L, +1)2L,+1) 3

m>0

Srp,(n=

1 +8m,0

1 1 T L L
X [ dxi [ dx; [ déadm'o(81)dmio(8r)cos(mby)V (6,0;0,65;00r) ,

with 8, =arccos(x,) and 6,=arccos(x,).

To perform a numerical evaluation of the integral in
(9), we must be able to calculate the interaction between
the nuclei for any separation and orientations. If we use
the proximity potential, this requires us to determine the
length d of the shortest line between the nuclear surfaces,
and the principal radii of curvature R,R,, of the gap at
the location of this shortest line. In terms of these quanti-
ties, the proximity interaction' is

9)

V =4ryRb®((), R=VR\R,, t=d/b . (10a)

The function @ and the parameters b and v are taken to
be

DE<E)=T(E—Lo)—k(E—&o)?,
Q&> Ey)=—3.34T exp(—£/0.75) , (10b)
£1=1.254, £,=2.54, k =0.0852 .
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FIG. 2. The nuclear configuration of Fig. 1 rotated so that ?
coincides with the 2 axis, and ?, lies in the x-z plane with
(f),>0.

Figure 3 shows the iterative procedure used to locate
the points on the nuclear surfaces at opposite ends of the
shortest line between them. This line will be perpendicu-
lar to the two surfaces where it meets them, and (for axi-
ally symmetric nuclei) will intersect their symmetry axes.
The iteration begins at the center of nucleus 1 (point A).
A line is then drawn through A, perpendicular to the sur-
face of nucleus 2. This line is extended until it reaches the
axis of nucleus 2 (point B). From B, a line is drawn per-
pendicular to the surface of nucleus 1, and extended until
it reaches the axis of nucleus 1 ( point C). This across-
and-back procedure is repeated until the distance between
two successive intersections with the axis of nucleus 1 is
less than some preassigned tolerance (chosen to be 0.001
J

FIG. 3. Line AB is drawn from A perpendicular to the sur-
face of nucleus 2, line BC is drawn from B perpendicular to the
surface of nucleus 1, etc. The closeness of points E and C indi-
cates convergence to the line perpendicular to both surfaces.

fm for the calculations presented in the next section).

Once_ this shortest line between the surfaces is located,
d and R can be calculated for axially symmetric nuclei of
arbitrary shape using the formulae given in Sec. V of Ref.
3.

B. Coulomb interaction

In this case, the interaction ¥V in (3b) is a double volume
integral over the two nuclei:

V(6141;6202;0¢r)
Py 0,0p1(11)Py 6,00:(T2)

= [ d*rd’r, (11)
| FE(64)+1,—1, |

(see Fig. 4). Here, p;(r;) represents the charge density of
nucleus i in its own body-fixed coordinate system. Thus
pi is an axially symmetric function and can be expanded
in terms of Legendre polynomials,

pilr,a)=3 u"(r)P/(cosa) , (12a)
i

. 1
u™r)=(I +1) [ pi(r,arccos(x)P(x)dx . (12b)

Pyg in (11) represents a rotation operator, so that
Py .60pi(r;) is the charge density at r; when nucleus i is

rotated so that its symmetry axis has polar coordinates
6;,6;. If (11) is used in (3b), we obtain

S L(n= [ sin6,d6,dg, [ sin6,d6,d¢, [ sin0dOdS([Y (6,4, (6,4,)1F Y (64))

Py 6,0P1(T1)Py 6,0p2(12)

x [ d’rid’r, : (13)

|r'f(9¢)+r2——t1 |

If we use the expansion (12), we can express the 6;; integrals as

. Ll
Lt () Sin0:d0:dd; Ya[ (8161)Py,,0pi(x:) = T

so that (13) becomes

(41)?

fCoul
(2L +1)(2L,+1)

L,L,L(r)=

0] Li oy
up, (r)) Yy, (t;)=

([ (e e (e, 1 YE(66)}0

41
2L;+1

L.
Unt (53) (14)

[ sin6dode [ d*rd’r,

(15)
| rT(0¢)+r1,—1 |

Because the denominator in (15) depends on r,—ry, it is convenient to do the integral using relative and center-of-mass

coordinates:



1350 B. F. BAYMAN 34

r+r
= l2 2, r’:rl——rz R (16a)
Ll L2 L L] ’ ’ LZ ’ ’ L
(r)Y *(ry) (R'+1'/72)¢y “(R'—1'/2)
[ arar, [¥_{r)y (r)]u _—_fd3r'd3R’[¢ 4 v I (16b)
| FT(6¢)+1y—1 | | FE(6¢)—r1' |
The angular part of the R’ integration yields a result of the form
J ARy R 41 /204 R 1 /2y = — g 1,1 (7 ROYE(R) )

The radial function 8r,L,.(r',R’) in (17) can be calculated with the method used by Bayman and Kallio’ to project out
the relative / =0 part of two-particle shell-model wave functions. The result is

2
e Ry b+t | TRE DL+ D V .
8L,L,L\r 2L +1 r
Xf dx uL rl)u,_ (rz E(L LzM M }LO dMO(Ol)dMO 92) (18a)
with
r 2 172
A== | +R?ErR'x| (18b)
ry 2
cos@lzl—/—z—j:—@i, cosgzz___f_/w_. (18¢)
r r
When (17) is used in (16b) and (15), the result is
,R")
Coul (4m)? : 3 1 "2 ,gL L, L' Lia L 0
(r)= 6dod d———————RdR—————Y Y*~(6 .
LiL,L'r (2L1+1)(2L2+1)fsm ¢f r | F2(66) —r' | f 'R’ [YHE")Y™(64)]o
We then use a Slater expansion,
L
1 r< 41 LiAar L 0
= YHT")Y™6,4)]p (19)
| r2(6¢)—r' | §rg+1 VAL 71 Do
to obtain our final result:
Coul _ (477)3 1 r ' nL+1 4.+ L *® ’ N—L 3.1
= G T GL, s DVAL ST | 7 Ly by, O e ot [y e R | (20a)
hi(r)= [ R'ARgL 1,0 (FR) . (20b)

Note that (20) is valid at all separations 7; it is not limited
to situations in which the charge distributions do not
overlap during the integrations in (13).

Equations (9) and (20) were used to calculate the nu-
clear (proximity) and Coulomb contributions to the form
factors (3b). The numerical calculations were performed

FIG. 4. Calculating the Coulomb interaction between the nu-
clei when they have orientations 0,,¢,0,,¢,. Note that these
angles are kept fixed during the ry,r, integrations.

at the Central Computing Facility of Los Alamos Nation-
al Laboratory and at the University of Minnesota Super-
computing Institute.

III. A COMPARISON OF PROXIMITY
AND CENTER-LINE INTERACTIONS

A complete discussion of the collision between axially
symmetric deformed nuclei would require solutions of sets
of coupled-channel equations,’ with (3), (9), and (20) used
to calculate the interaction matrix elements. At this time
we will present a more modest calculation: a DWBA pre-
diction for the simultaneous excitation of two deformed
nuclei. Our object is to compare the effect of the proximi-
ty interaction (10) with that of the more commonly used
centerline interaction.

Suppose two axially symmetric nuclei in their ground
states make a direct inelastic transition to final K =07
states with angular momentum quantum numbers I, M,
and I, M,, respectively. The DWBA matrix element? is
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Fooat,m, 1, (Kiskp) = (Y3t (01600 V32 (0:820X (k) | V(616130,85306r) | Y3(6161) Y30, (ki) . (21)

Here, X'*) and X'~ are distorted waves describing the relative motion. Writing out the integrals explicitly, we have

Foor,m,,1,m, (Kisky)

1
= - SULWLM M, | LM+ M)
L

X [ @ rx'="*(ks,0)| [ sin0,d6,d4sin0,d0,d¢,[ ¥ (6:6)Y X(0:6)1%1, 1 aa, V (6161;0:65:60r)

XX *FAk;,1) .

(22)

If we compare the quantity in curly braces in (22) with (3b), we see that

. . 1
J 5in6\d6,d$15in6,d0d 6,1 Y (6161)Y O i, b,V (O 13028508V = s 1,1, (1 Vit 1, (68)

so that (3b) is the form factor to be used in the DWBA matrix element:

1 (1112M‘M2|LM1+M2
Foo_. K k)= ——
00—1,M,,1,M, Ki,Ky) 417-; TR

We have chosen, as an example, the inelastic scattering
of 150 MeV Mg nuclei from !**Sm, leading to simul-
taneous excitation of the 27 level of 2*Mg and the 47 lev-
el of ¥*Sm. Each nucleus is represented by an axially
symmetric spheroid whose shape in its body-fixed coordi-
nate system is given by

Vén)
/ \\ Proximity
\ —=—-—Centerline
1000 -
e
=
=]
o
o
-“é 100 —
P=3
G
©
~
b
o
10 —
!
!
111’111111111
o] 30 60 90 120

FIG. 5. DWBA cross sections for the simultaneous inelastic
excitation of 2% and 4* levels in Mg and '**Sm, respectively.
The same Coulomb interaction is used for the two curves, but
the nuclear interaction is taken to be a proximity potential for
the solid curve and a centerline potential for the dashed curve.
The relative normalization of the two curves is arbitrary.

) .
[ X ="kp,0f1 1L (VY 40, (06X HiKir) . (23)

R(O)=Ro |1+3i LB Y;(69) | . (24)
L

We have used Ry=3 fm, 8,=0.2, and 8,=0.1 for * Mg,
and Ry=5 fm, B,=0.1, B4=0.05, Bx=0.025, and
Bs=0.01 for >*Sm. These values should give a reasonable
description of the nuclear shapes; they are not expected to
be quantitatively exact. For the DWBA calculation we
have used the same optical potentials in the initial and fi-

Proximity
— — —— Centerline

1000

100

(Arbitrary Units)

do/dQ

10

120

FIG. 6. The same as in Fig. 5, except that the only 2*Mg(2+)
states included are those with M =+1 (defined relative to an
axis perpendicular to the reaction plane). The relative normali-
zation of the two curves is the same as in Fig. 5.
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nal channels: ¥V =—100 MeV, r;=1.09 fm, and a =0.78
fm for the real part, and W =—20 MeV, r;=1.27 fm,
and a;=0.6 fm for the (volume) imaginary part. We
have considered two nucleus-nucleus interactions: the
Coulomb-plus-proximity interaction discussed above, and
a Coulomb-plus-centerline interaction. This centerline in-
teraction has the same distance dependence (10) as the
proximity interaction, but the variable d is replaced by the
distance between the nuclear surfaces along the line con-
necting the nuclear centers. Furthermore, the dependence
of V on the gap radii of curvature is omitted. Figure 5
shows a comparison of the differential cross sections cal-
culated with the DWBA program DWUCK,’ using form
factors calculated with these two interactions, and
summed over all final M values. It is seen in Fig. 5 that
both differential cross sections have the familiar shape of
a broad maximum centered at the scattering angle of a
grazing Coulomb orbit, on which is superimposed oscilla-
tory structure associated with interference between orbits
passing on opposite sides of the nuclei.!” The relative nor-
malizations of the two curves is chosen to make them
nearly equal in the region of the Coulomb maximum.
Figure 6 shows plots of the differential cross sections as
measured by a detector sensitive only to the M =+1 com-
ponents of the 2*Mg 2% level, with these M components
defined relative to an axis perpendicular to the reaction
plane. Such a cross section could be measured, for exam-
ple, by detecting only those events that were coincident
with the emission of the deexcitation ¥ ray (2*—0%) per-
pendicular to the reaction plane.!! The relative scale fac-
tor used in the proximity and centerline plots in Fig. 6 is
the same as that used in Fig. 5. It is seen that the
M = +1 centerline differential cross section is more than
an order of magnitude smaller than the M = *1 proximi-
ty differential cross section, even though the differential
cross sections summed over all M values are comparable.
Thus, this DWBA calculation indicates that the distribu-
tion of flux between the final M states is strongly affected
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by the extra torque that the proximity interaction pro-
vides.

IV. DISCUSSION

A complete coupled-channel calculation for the inelas-
tic scattering of axially deformed nuclei would be a very
formidable task. If we decide to include rotational levels
with angular momenta up to a maximum of I,, for each
nucleus, the number of channels that must be coupled
(i.e., the number of compatible I,,1,,! values) for total an-
gular momentum J and parity 7 is

(I3 421, +2)I, +2)?
8

if m(—1) is even ,

I,,+2)}

3 if m(—1)is odd .

Thus it is necessary to restrict I, to a rather low value, or
to use an approximate version of the coupled-channel for-
malism, such as the adiabatic approximation'? or a calcu-
lation in which quantum effects are included in the treat-
ment of the orientation degrees of freedom, but the rela-
tive motion of the two nuclei is treated classically.’>* An
important ingredient in all these calculations is the choice
of the interaction between the nuclei, and the determina-
tion of its radial form factors. The main object of this pa-
per has been to present a convenient and practical pro-
cedure for the calculation of form factors for a proximity
interaction. Moreover, a DWBA calculation indicates
that proximity and Centerline interactions can lead to ob-
servably different populations of final M substates. Any
process which can be affected by the orientation of the
two nuclei as they approach each other is probably sensi-
tive to the details of the noncentral component of the
nucleus-nucleus interaction.
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