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%'e study nucleus-nucleus collisions at high energy on the basis of Boltzmann's kinetic theory

under the assumption that the incident energy per nucleon is high enough for nucleon-nucleon col-

lisions to dominate the strength of the mean field so that the latter may be treated perturbatively.

Then, by use of multiple collision expansion as well as linearization techniques and the eikonal ap-

proximation, we obtain the stationary distribution function from the Boltzmann equation with the

nuclear mean field as external force. The distribution consists of an infinite sum over multiple col-

lision components. Their momentum dependent parts obey a transport equation linear in the nu-

clear mean force field, and can be evaluated analytically. They differ from the solution of a

Fokker-Planck-type equation without external forces, obtained previously, only by a shift in the

momentum caused by the nuclear mean field. The present investigation confirms a recently

developed phenomenological approach which has been successful in explaining the sideward kinetic

energy flow of the particles emitted in individual nucleus-nucleus collision events.

I. INTRODUCTION

Boltzmann's kinetic theory has proven to be very suc-
cessful in the description of dilute many particle systems
in various branches of physics. Its application to high-
energy nucleus-nucleus collisions is relatively new, '
though the derivation of an equation of Boltzmann type
from a Watson multiple scattering formulation for high-
energy nuclear reactions has been discussed earlier (cf.,
e.g., Refs. 3—6}. In fact, .the applicability of Boltzmann's
theory to high-energy heavy ion physics where strong
compression of nuclear matter might possibly occur is not
evident, since the former actually is a theory for rarefied
gases. In the present work, we will, however, take the
point of view that Boltzmann's theory is an appropriate
framework for the description of high-energy nucleus-
nucleus collisions. In other words, we assume these col-
lisions to be transparent enough so that only moderate nu-
clear densities are reached during the collision. Among
others, questions concerning the generalization of the
theory to higher densities and to quantum mechanical sys-
tems (though in branches other than nuclear physics} are
summarized in Ref. 7 and are discussed, e.g., in various
subsequent contributions in the same proceedings. %e
will not address such questions here, except for a brief dis-
cussion of quantum mechanical corrections in Sec. III.

Once accepting the validity of Boltzmann's theory for
our purposes we, however, still face serious difficulties.
In spite of its beauty and physical simplicity, the
Boltzmann equation, governing the time evolution of the
one-particle distribution function, is of a high mathemati-
cal complexity. Mainly due to its nonlinearity, it cannot
be solved in general; even the existence and the uniqueness
of the solution are far from being proven for arbitrary ini-
tial and boundary conditions. Eluding mathematical
rigor, we will assume that a unique solution exists for the
case we are dealing with. In this uncomfortable situation,

there are, in principle, three possible ways of tackling the
problem: (i) One could try to solve the Boltzmann equa-
tion directly numerically. This, however, is, for the prob-
lem under consideration, tremendously difficult at the
present state of computational art. (ii) One can simulate
the physical situation itself on a computer rather than
solving the Boltzmann equation as such, by so-called
Monte Carlo or molecular dynamics procedures (for the
methods in general, see, e.g. , Refs. 8 and 9). This has been
done, for the investigation of high-energy nuclear col-
lisions, by various authors (see, e.g. , Refs. 10—13). (iii)
One can introduce approximations, suitable for the physi-
cal problem under consideration, such that the Boltzmann
equation becomes accessible to an (at least partly) analyti-
cal treatment. We settle for this third possibility because
the main shortcoming of all purely numerical investiga-
tions is their lack of transparency; in order to gain as
much physical insight as possible, analytical investiga-
tions are indispensible. Unfortunately, classical tech-
niques for obtaining an approximate solution of the
Boltzmann equation, such as linearization about local
thermal equilibrium, can hardly be applied to high-energy
nucleus-nucleus collisions, since we are, at least in the ini-
tial phase of the reaction, concerned with a physical sys-
tem far from equilibrium. To reach our goal, we make
use of the multiple collision and linearization techniques
developed especially for thjs particular nonequilibrium sit-
uation. ' These methods have proven successful in the in-
terpretation of a large variety of measured particle in-
clusive cross sections over a wide range of incident ener-
gies. In Ref. 14 the reaction was described exclusively in
terms of sequences of binary collisions; collective effects
due to the presence of a mean field have been neglected.
Such effects may, however, be important to explain ob-
servables constructed from the momenta of particles mea-
sured in individual nucleus-nucleus collision events, like
the sideward kinetic energy flow, ' and they tnust there-
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fore be included. This will be done in the present work.
After giving an outline of the underlying conception in

Sec. II, we briefiy describe the techniques of Ref. 14 in

Sec. III, along with an extension to incorporate the pres-
ence of a mean field. The result is a set of linear kinetic
equations for the one-particle distribution function, ex-
panded in terms of collision numbers and powers of the
force. In Sec. IV we show how these equations can be
solved to first order in the force. This result is then used
in Sec. V to derive an analytically solvable transport equa-
tion in momentum space, dependent on the collision
number. The physical interpretation of the solution is
discussed. Its connection to a recently developed
phenomenological model' is pointed out. Our main re-
sults are briefly summarized in Scc. VI, and concluding
remarks are given. Finally, technical details of the calcu-
lations can be found in various Appendices.

"TEST" PAR

BEAM
FIELD

= YF

z direction

TARGET
FIELD

FIG. 1. A high-energy nucleus-nucleus collision in the
center-of-mass frame according to our notion. The z direction
is the direction of the beam.

II. THE UNDERLYING CONCEPTION

During the nucleus-nucleus collision, a particle under
consideration ("test" particle) undergoes a series of binary
interactions with other surrounding particles (shaded area
in Fig. 1), by which its initial motion is changed. In addi-
tion to these binary collisions, the particle is subject to the
infiuence of two nuclear average force fields, one of which
is built up by the beam- (B-) like and the other by the
target- (T-) like nucleons. As sketched in Fig. 1, the force
B and T fields inove with velocities vr and —vF, respec-
tively, relative to the center of mass of the two nuclei
which are assumed to possess equal mass numbers A.
Furthermore, these force fields are assumed not to
disperse essentially during the interaction time and, there-

fore, not to be destroyed. In other words, the nuclei are
supposed to show a large degree of transparency in the in-

cident energy regime considered. Thus, the "test" particle
is viewed as being infiuenced by external fields with time
independent shapes.

We emphasize the essential difference of our treatment
to those of Refs. 12 and 13 and others. In the latter, there
is a common mean field acting which is built up by all the
nucleons participating in the reaction, and which may
change its shape appreciably during the course of the col-
lision. No difference between B- and T-like nucleons is
made, and consequently the mean field depends on the

density arising from all nucleons in the interaction region.
In contrast, our point of view is, based on the transparen-
cy of the reaction, that there exist two distinct classes of
nucleons, namely 8- and T-like ones which, on the aver-
age, move in opposite directions. Because of the wide
separation in momentum space of the two classes of nu-
cleons, these give rise to two corresponding mean fields
which move in opposite directions with velocities vF and
—v~, respectively, and depend on the 8 and T densities
separately. Hence the nuclear densities on which the 8
and T fields depend will be near normal nuclear matter
density, and consequently the fields always remain attrac-
tive, whereas in Refs. 12 and 13 the nuclear mean field-
in contrast —can become strongly repulsive if high
compression is reached. In our treatment, compression ef-
fects are tt priori absent.

Throughout Secs. III and IV we consider for simplicity
the motion of a "test" nucleon in only one moving nuclear
mean field. The generalization to two moving fields will
be discussed in Sec. V.

III. REDUCTION OF THE BOLTZMANN
EQUATION

%ithin Boltzmann's kinetic theory the time evolution
of the one-particle distribution function N (r, p, t) is
governed by the equation

~ P', +F(r) Vr N(r, p, t)= Jd'pid p'd p', W(p, p, ;p', p', )[X(r,p', t)N(r, p', , t) —N(r, p, tW(r, p, , t)] .
i3t m

(3.1)

Here, m denotes the mass of the particles under con-
sideration, and F(r) is the local nuclear mean force field
viewed as an external force. Since we henceforth choose
the rest system of the field as our reference frame, and
since furthermore in this system the field is assumed to be
static (cf. Sec. II), we are allowed to omit the time depen-
dence of the force. Some results, however, are given in
the center-of-mass system of the colliding nuclei whenever

it is convenient; in this case we will clearly specify this
choice so that no confusion may arise. The transition
probability 8'(p, p&, p', p', ) is a measure for finding two
particles, undergoing an interaction with initial momenta
p' and pi, finally to possess momenta p and pi, it is ex-
pressed through the differential scattering cross section
do/d 0 and energy and momentum conservation:
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2 da~(p Pi'P Pi)= @P+Pi—P —Pi)I dQ
2 E2 ~2

p P& p' Pi" 2+2 2 2
(3.2)

Two remarks concerning extensions of the Boltzmann
equation are appropriate at this stage:

(i) One of the quantum mechanical effects mentioned in
the Introduction, namely the infiuence of the Pauli ex-
clusion principle, has been investigated for the case of
high-energy heavy ion collisions in an analytical fashion
in Ref. 17, by using the Uehling-Uhlenbeck equation
without mean Beld, ' which is a transport equation of
Boltzmann type with a semiclassical collision integral. It
was shown in Ref. 17 that the Boltzmann solution is
modified only within very limited intervals around the in-
itial momenta of beam and target. We anticipate that this
result will remain valid if the nuclear mean field is includ-
ed. Therefore, we feel free, in order to work out the infiu-
ence of the nuclear field as clearly as possible, to apply
Boltzmann's original theory without modifications due to
the Pauli principle.

(ii) It is well known how the Boltzmann equation (3.1)
can be extended to the relativistic regime in a covariant
manner (see, e.g. , Refs. 1 and 19); we will, however, re-
strict ourselves to the nonrelativistic formulation
throughout the investigation, since in the energy range we
are concerned with (beam energies of several hundred
MeV per nucleon), corrections due to relativistic kinemat-
ics are expected to be small.

A. Multiple colhsion expansion
and linearization techniques

The first task now is to make the Boltzmann equation
accessible to an analytical treatment in the context of the
special conditions for high-energy nucleus-nucleus col-
lisions. As mentioned in the Introduction, an appropriate
method for the case of a vanishing force on the left hand
side of Eq. (3.1) is given in Ref. 14, and we will use this
method as a framework for our investigations. We will
then subsequently show how it can be extended to take ac-
count of the presence of a force term in the Boltzmann

equation. We do not repeat here all the considerations of
Ref. 14, but only mention the essential steps required for
an analytically tractable version of Eq. (3.1).

First, we split up the one-particle distribution function
into two parts, one for 8-like and the other for T-like nu-
cleons:

N(r, p, t)=N (r,p, t)+N (r, p, i) . (3.3)

N(r, p, &)= g N„(r,p, r)
n=0

= g N„(r,p, t}+g N„(r,p, t),
n=0

(3.4)

where the subscript n denotes the collision number of a
nucleon. In the fourth and final step the distribution
function of those nucleons on which the "test" particle
scatters is approximated by a stationary distribution
which is assumed to be of the form p(r)f(p), where p(r) is
the nuclear density and f(p) is a cold Fermi momentum
distribution for n =1 and a Maxwell distribution for
n g l.

Taking all this together, one finally arrives at the fol-
lowing set of coupled linear differential equations which
relates each order of the multiple scattering expansion
(3.4) for either 8- or T-like particles to the next lower or-
der [we henceforth drop the index 8 or T; Eq. (3.5) is
valid for both kinds of particles]:

This is justified because at high incident energies (i.e., en-

ergies considerably higher than the Fermi energy) the two
kinds of nucleons are initially well distinguishable in
momentum space; furthermore, this separation will last
for a number of nucleon-nucleon (NN) collisions due to
the forward-backward peaking of the differential NN
scattering cross section at high energies. The second step
consists of the simphfication of taking only "violent" in-
teractions between 8- and T-like nucleons into account;
the "gentle" interactions of nucleons of the same kind
among each other are neglected in the early stage of the
heavy ion collision and are responsible for composite par-
ticle formation in a later stage which we do not consider
here. The third step is a multiple collision expansion of
the one-particle distribution function

—+ .V„+F(r) Vz N„(r,p, t)= —op(r) N„(r,p, t) d pX (p'
~
p)+op(r) I d~p' j.(p (

p')N„, (r, p', r) .
dt m SPY Pl

(3.5)

Here, o. denotes the total NN scattering cross section, as-
sumed to be independent of the relative momentum be-

tpveen the colliding nucleons. The transition kernel

K(p
~

p') can be determined rigorously from the differen-
tial NN scattering cross section and the momentum distri-
bution f(p} of the partner nucleons. In the present in-

vestigation, we will use for convenience a simplified ker-
nel whose explicit form and properties will be given later
on.

B. Expansion in powers of the force

The set of equations (3.5) can be solved recursively for
the case of a vanishing force. We will give a brief review
of the main results in the next subse:tion. The new
feature now is the presence of a force term. To solve Eq.
(3.5) with the force included, we choose a perturbative
method, i.e., we expand the solution to Eq. (3.5) in terms
of powers of the force. We are allowed to assume the con-
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F(r)~A,F(r), (3.6}

vergence of this expansion, since in the region of high in-

rident energy we are interested in, the reaction mechanism
is dominated by sequences of NN collisions, and the col-
lective field plays a role more subordinate than in reac-
tions at lower energies.

In order to expand the distribution function in powers
of the force, we formally provide the force with an order-

ing parameter k (which may finally be taken equal to uni-

ty},

and expand the distribution function for any index n in
powers of this ordering parameter:

N„(r,p, t) = g A'N„, "(r,p, t) .
i=o

(3.7)

Inserting both expressions (3.6) and (3.7) into the set of
equations (3.5) and equating powers of the ordering pa-
rameter A, yields a new set of coupled equations for each
order of the collision expansion and the field expansion of
the distribution function:

—+~.V„N„"(r,p, r)= —op(r)~N„"(r, p, t)f d'p'K(p'
~
p)

t m m

+op(r) f d p' K(p
~

p')N„"' i(r, p', t) —F(r) V&N„' "(r,p, t),

where N„' '~ vanishes by definition. Here, each order of the field expansion is coupled to the next lower order via the
force [cf. the last term in Eq. (3.&)].

The set of equations (3.g) can be solved formally in a way which is known in the theory of partial differential equa-
tions as the method of characteristics. The result is an integral recurrence relation for the functions N„"(r,p, ~):

0
N„"(r,p, r)= f « ~p r+~~ f d'S'«pl p'}~N." i r+~r p' r+r—CO m Pl

—F r+ ~~ .V N„' r+ ~~, p, t+r

0
)(exp —f dr op r+ r f d pK(p ~p) (3.9)

where in the expression

VzN„" "(r+pr/rn, p, r +r)
the gradient acts on the second argument only. Here, we
recognize in the first term on the right hand side the gain
term of the linearized Boltzmann equation (3.8); the loss
term manifests itself as an absorption factor [the exponen-
tial in Eq. (3.9)].

In order to obtain quantities which can be compared to
experimental observations, we have to get rid of the time
dependence in Eq. (3.9). This is achieved by introducing
the stationary distribution function P (r,p), which is
essentially the time integral over the time dependent dis-
tribution function N(r, p, t) and from which a cross sec-

tion can easily be derived

P(r,p)=~ f dtN(r, p, t) (3.10a)

P„"(r,p) =~f dt N„"(r,p, t) . (3.10b)

The justification for this integration procedure is dis-
cussed in Ref. 20. Integrating Eq. (3.9) over all times
yields a hierarchy of equations for the stationary distribu-
tion functions (here and from now on we will only consid-
er 8-like particles):

(i —1)

P„'(r,p)= f dg harp(r g) f d p'K(p~p—')P„',(r —g, p') —F(r—g) Vz
(.) Oo P„(r—g, p)

P P?l

Xexp —f dg'op(r f )f d p'K—(p'
i p) (3.11)

where g is a vector along the momentum direction, g= —(p/m)r. To treat Eq. (3.11) further analytically, we make use
of the eikonal approximation, i.e., we replace the actual path of a particle through the surrounding medium by its projec-
tion on the beam (z) direction in the coordinate dependent part of Eq. (3.11). Fortunately, the eikonal approximation,
which was originally introduced in the context of reactions at very high energy, has a range of validity down to energies
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as low as about 2SO MeV per nucleon, as was demonstrated in Ref. 21. With the new integration variables rj =z —g and
rI'=z —g', Eq. (3.11) then becomes

P(i —1) b
P„"(b,z;p)= f drl np(b, r))f d p'K(p

i
p')P„" i(b, rl;p') —F(b, rl) Vz

Qo p/I

)&exp —f drl'op(b, rI') f d'p'K(p'
~ p) (3.12)

where we have decomposed the coordinate vector in a
transverse and a longitudinal part, r =(b,z).

Our ultimate goal is to obtain from the set of coupled
equations (3.12) a transport equation which can be solved
directly analytically, and which we demand to be linear in
the force F. This is suggested by the linearity in F of the
Boltzmann equation (3.1). To this end, we will determine
the first order correction P„'" to the solution P„' ' of Eq.
(3.12) with a neglected force term (we will henceforth call
these functions "free" solutions).

IV. SOLUTION TO FIRST ORDER IN THE FORCE

P„' + "(b,z;p) =P„' '(b,z;p) +P„'"(b,z;p) . (4.1)

The first order solution to Eq. (3.12), which we denote
by P„' + "(b,z;p), is a sum of the "free" solution and the
first order correction:

A. Solution without mean field

For i =0, which is equivalent to the case without the force term in the Boltzmann equation, Eq. (3.12) reads explicitly

P„' '(b,z;p)= f droop(b, rI) f d p'K(p
~

p')P„' '&(b, r);p')exp —f drl'op(b, rl') f d3p K(p
I p) (4.2)

P„' '(b, z;p) =G„(b,z)M„(p) . (4.3)

The coordinate dependent functions G„(b,z) turn out to
be the well-known Glauber-Mat thiae factors for
nucleon-nucleus scattering:

G„(b,z) = [op(b, z))"exp[ —up(b, z)),1
n (4 4)

where we made use of the "z-integrated density"

p(b, z) =f drl p(b, r)), (4.5)

which, multiplied by the total NN cross section u, is a
measure for the (optical) path of a nucleon on its way
through the nucleus. The geometrical weight functions
(4.4) can easily be generalized for the nucleus-nucleus
case. They just have to be folded with the nuclear density.
This leads to'

The method of solving this equation is described in detail
in Ref. 14. We only give here the essential results. The
functions P„' '(b, z;p) factorize into a coordinate- and a
momentum-dependent part:

upon the differential NN scattering cross section. Since
the latter shows a smooth dependence on the momentum
transfer p —p', the right hand side (rhs) of Eq. (4.6) can be
expanded to second order in the momentum transfer, with
the result that the momentum distribution M„(p) obeys
an equation of Fokker-Planck type, expressed here in the
center-of-mass frame of the colliding nuclei:

a
81!

M„(p)=P(V& p+mrb~)M„(p) . (4.7)

M„(p)=f d'p'Hn-t(p p')Mt(p') (4.8)

with the propagator

The quantities P and r, the analogues of which in the con-
ventional theory of Brownian motion are the friction coef-
ficient and the temperature, respectively, are completely
determined by the slope of the differential NN cross sec-
tion on one hand and by energy conservation on the oth-
er. '" The solution of the transport equation (4.7) depends
on the initial momentum distribution M~ (p) according to

9'„(b,z) =—f d s p(s —b, z~ 00 )G„(s,z ), (4.4') H„(p,p') = [2nmr(1 —e ~")).

where b denotes the actual impact parameter in the
nucleus-nucleus collision. The momentum dependent
functions M„(p) obey the recurrence relation

M„(p)= f d p'K(p
~

p')M„$(p') (4.6)

As mentioned, the transition kernel K(p
~

p') depends

Pn)2—
&(exp

2mr(1 —e ~")
(4.9)

An explicit expression for the initial distribution Mt(p),
i.e., the momentum distribution after the first collision,
which is obtained by assuming the "test" particle to
scatter on a Fermi distribution, can be found in Ref. 14.
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8. Inclusion of the mean field

For the first order correction to the "free" solution (4.3) we need Eq. (3.12) with the index i = 1:

P„"'(b,z;p) =f dr) op(b, ri) f d'p X (p
~

p')&„"' i (b, ri;p')

M„(p) z—G„(b,ri)F{b,ri) V exp —f dri'trp(b, ri') f d p'&(p'
~
p)» p/m

(4.10)

where we have used the factorization property (4.3) of the
"free" solution.

At first, we have to specify the transition kernel

X(p
~

p'). Instead of the one rigorously determined from
the differential NN scattering cross section, which is a
rather complicated function of its arguments, we use a
simplified version:

IC( p ~

p') =[2~rmr{1—e ~)]

colliding nuclei. Since we have, however, chosen the rest
system of the force field as our reference frame, the tran-
sition kernel has to be modified. This is done in an obvi-
ous manner. Both arguments of the kernel (4.11) are
shifted by a momentum —pF ———mvF (where v» is the
velocity of the rest system of the field with respect to the
nucleus-nucleus center-of-mass frame; cf. Sec. II):

K»(p
~

p')=[2mmr{1 —e ~)]

p —p( — 'e ~)

2mr(1 —e ~)
(4.11} [p+p» —(p'+pF)e

)& exp (4.13)
2mr(1 —e ~)

We obtain this transition kernel in an a posteriori fashion:
On one hand, we have the recurrence relation (4.6) for the
momentum distribution M„(p},which contains the kernel
E(p

~

p'). On the other hand, we can express the func-
tions M„(p) through the initial distribution Mi(p) ac-
cording to Eq. (4.8), which contains the propagator
H„ i(p, p') of the transport equation (4.7). By compar-
ison of Eqs. (4.6) and (4.8) we are able to express the ker-
nel K(p

~

p') through the propagator H„(p,p'). This is
demonstrated in Appendix A. The result is

K(p
i
p') =Hi(p, p'), (4.12)

which is Eq. (4.11}. Therefore we may call the kernel
(4.11) the "one collision propagator" of the Fokker-
Planck-type equation (4.7), in analogy to the short time
propagator of the conventional Fokker-Planck equation.
Since the transport equation (4.7) has been obtained
through a second order expansion of the recurrence rela-
tion (4.6) which contains the exact transition kernel, the
simplified kernel (4.11) agrees with the latter at least in its
first and second moments. In addition, the kernel (4.11)
has the desired properties that (i) the average momentum
of the distribution M„(p) decreases exponentially in the
center-of-mass frame of the two colliding nuclei, and (ii)
the width is broadened, reaching the thermal width mr
after a sufficiently large number of collisions. Finally, we
remark that so far our arguments for using the simplified
kernel (4.11) refer only to collision numbers n & 1; as
mentioned above, the first collision is usually treated in a
different manner, ' namely by assuming the "test" parti-
cle to scatter on a cold partner distribution of Fermi type,
than on a thermalized heat bath. This turns out, however,
to hardly infiuence the first and stmond moments in the
energy range under consideration, so that we may use the
simphfied kernel (4.11) for each collision number.

We mention that the transition kernel K(p
~

p') has the
form of Eq. (4.11) in the center of mass system of th-e t-wo

We will drop the index I', since non confusion can arise

by this.
It is immediately seen that the transition kernel

E(p
~ p ) is normalized to unity with respect to its first ar-

gument,

pKp p'=1, (4.14)

for all values of the second argument. Therefore the ex-
ponential in Eq. (4.10) only contains the integral over the
density. Furthermore, we replace the absolute value of
the actual momentum p in the denominator of the expres-
sion V»[M„(p)/(p/rn)] by the absolute value of the aver-

age momentum of the "free" distribution, which we
denote by (p)„(of course, with resptx:t to the specific
choice of our reference frame). This is justified since the
momentum itself varies slowly compared to the pro-
nouncedly peaked moinentum distribution M„(p). For
the collision number n =0 the solution of Eq. (4.10} then
becomes

P'"(b,z;p) = —f dri 6 (b, ri)
Z

X exp —f d ri'op(b, ri')

Mo(p)
XF(b, ri) V»,

&p &o m
(4.15)

Po"(b,z;p) = —Go(b, z)
&p o

X f dr) F(b,g) V»Mo(p), (4.16}

With the explicit expression for the Glauber-Matthiae fac-
tors, Eq. (4.4), we obtain, after a simple manipulation [cf.
Eq. (C2) in Appendix C],
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Po '(b,z;p) =Go(b, z)

X[M,(p) —a,(b,z) V Mo(p)],

where the quantity ao(b, z), defined by

(4.17)

Pl
ao(b, z) = dg o.F(b, g), (4.18)

p 0

has a very simple meaning: In the limit of large distances
(z~co ), which we are interested in, it is the momentum

transfer suffered by a particle traversing the force field
F(r) in the z direction with an initial momentum (p &0 at
a distance b from the center of the field. For a spherical-
ly symmetric potential this inomentum transfer obviously
points in the b direction.

Next, we solve Eq. (4.10) recursively for each collision
number n. For n =1, we get, using the n =0 correction
of Eq. (4.10) along with the abbreviation 80(b,z)
= —( (p &0/m )Go(b, z)ao(b, z),

Z

P'i '(b,z;p)= f drl op(b, il)Bo(b, rl) f d p'E(p
i
p')V~MD(p')

00 &p&0

g—Go(b, rl)F(b, rl) V&Mi(p) exp — drl'op(b, rl')
p 0

(4.19)

Vz K(p
~

p') = —e ~V&E(p
~

p') (4.20)

of the transition kernel E(p
~

p'), we obtain, with Eq. (4.6)
for n =1,

The key to the solution of Eq. (4.19) [and, moreover, of
Eq. (4.16) for all higher collision numbers in analogy] is to
transform the momentum integral

f d p'E(p
i
p')V&Mo(p') .

First, by a partial integration, we let the gradient act on
the kernel; the surface term vanishes since the norm of the
momentum distribution is finite. Using the important
property

f d'p'K(p
~

p')V~ Mo(p') =e ~V,Mi(p) (4.21)

P„'"(b,z;p) = 8„(b,z) VqM„(p),
p n

(4.22)

where the coordinate dependent part obeys the equation

As a consequence, the momentum dependent part
V~Mi(p) appears as a common factor in both terms on
the rhs of (4.19). This property holds for all collision
numbers. Therefore, the first order correction P„"'(b,z;p)
separates for each collision number in a scalar product of
a geometrical vector function and the gradient of the
"free" momentum distribution:

8„(b,z) =f di) op(b, r))e ~ " 8„,(b, rl) —F(b, rt)G„(b, rl) exp — drl'op(b, rl')—00
(4.23)

derived in Appendix B.
Thus we have succeeded in obtaining a recurrence rela-

tion for the geometrical function 8„(b,z). However, this
relation is rather inconvenient to handle since it connects
any B„with 8„ i by an integration. Therefore the nu-

merical effort in evaluating the functions B„becomes
rather large for increasing collision numbers; furthermore,
(4.23) is not quite adequate to gain a physical understand-
ing of the effect of the mean field on the distribution
function. It turns out, however, that the geometrical
functions 8„(b,z) ean be expressed in a form much more
compact than Eq. (4.23); they can be written essentially in
terms of powers of the z-integrated density p(b, z) and of
one-dimensional integrals over products of the force and
powers of the z-integrated density:

8„(b,z) =exp[ —op(b, z) ]

X g bj„[np(b, z)]"
j=0

dgF b, g o.p b, g J . 4.24

This is shown in Appendix C, where the expansion coeffi-
cients bj„are also determined. They are numbers, in-
dependent of the coordinates, and can be computed with
the following algebraic recurrence relation:

bOO
———1,

(4.25)

n —1

, +X bj'n!

We have now obtained an explicit expression for the
first order correction to the nucleon distribution function.
It is given by a scalar product of two vector functions, one
depending only on the coordinates and the other on the
momentum. The momentum dependent part is the gra-
dient of the momentum distribution without the field; the
coordinate dependent part is a functional of the density
and the force.
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l
bjn = —

&gonf
(4.26)

where 5 denotes the Kronecker symbol. Therefore, only
the first term (j =0) contributes to the sum in Eq. (4.24).
The geometrical function B„(b,z) then has a particularly
simple form, since it becomes a product of the z-
integrated force with a functional of the z-integrated den-
sity which we recogmze as the Glauber-Matthiae factor
for the collision number n:

B„(b,z) = —G„(b,z) f di) F(b, rl) . (4.27)

Now, the analogy to the case n =0 [Eqs. (4.16)—(4.18)] is
complete. The first order correction to the "free" distri-
bution function is in the limit z~ oo (from now on we
suppress the argument z; this is to be understood as taking
the limit z~oo),

P„"'(b;p)= —G„(b) f di) F(b, i)) V M„(p),
p —co

(4.28)

C. Further simplifications

Though the coordinate dependent part of the first order
correction (4.22) can be calculated with only moderate nu-
merical effort from (4.24) and (4.25), its physical meaning
is still somewhat obscure because of the various combina-
tions of the force and the density in Eq. (4.24), except for
the case n =0 [cf. (4.17) and (4.18)]. In order to remove
this lack of transparency, we simplify Eq. (4.24) slightly.
This is done by again making use of the fact that the ele-
mentary differential NN cross section prefers forward-
backward scattering at high relative momenta. This im-
plies a small "friction" constant P, since the latter is
strongly related to the forward-backward enhancement of
the NN cross section. Consequently, the average nucleon
momenta belonging to successive collision numbers are
not very different from each other, especially in the rest
system of the mean field. Hence, we replace the quantity
e ~(p)„l(p)„ i in Eq. (4.25) by unity. This replace-
ment is less crucial than it looks at first sight since the
small momentum transfer approximation is applied only
to the, in general, not very sensitive geometrical part of
the distribution function; the much more essential
momentum dependent part remains untouched.

With the above mentioned replacement, it is easy to
show (cf. Appendix D) that the expansion coefficients b&„
then reduce to

is the momentum transfer acquired by a particle passing
the field in the z direction with impact parameter b and
momentum (p )„.

We now have found the connection between the nuclear
field and the distribution function to first order: the key
quantity appearing in the expression for the distribution is
the "z-integrated force"; in other words, it is the momen-
tum transfer suffered by a particle on its way through the
field. Next, we will derive a transport equation for the
distribution function.

Q„(p}=M„(p)—a„V~M„(p) . (5.1)

The old Fokker-Planck-type transport equation for the
function M„(p) reads, after a trivial manipulation,

V. TRANSPORT EQUATION IN MOMENTUM SPACE

A. A "test" nucleon traversing a force field

The aim now is, with the help of the first order distri-
bution function given by Eq. (4.29)„ to derive a transport
equation for the momentum distribution in dependence on
the collision number, i.e., a generalization of the "free"
transport equation (4.7) including the nuclear field. At
this point, we note that there will be an essential differ-
ence between the old Fokker-Planck-type equation and the
new transport equation. In the case without the mean
field, the momentum distribution factorizes in a
coordinate- and a momentum-dependent part for any col-
lision number; cf. Eq. (4.3). This has lead to a transport
equation for the momentum distribution which is in-
dependent of the coordinates of the "test" particle. This
will not be the case anymore when the nuclear field is in-
cluded. Though in Eq. (4.29) for the first order distribu-
tion function we were still able to separate the geometrical
weight functions G„(b}from the sum of the "free" distri-
bution function and the first order correction, the
remainder, i.e., the momentum distribution, now contains
the momentum transfer, which is a function of the impact
parameter [cf. Eq. (4.30)]. Therefore, the new transport
equation for the momentum distribution regarding the
mean field will contain the coordinates as a parameter.
From now on, we will again choose the nucleus-nucleus
center-of-mass system as our reference frame; Eqs.
(4.28)—(4.30) hold in any reference frame, of course, with
adequately transformed average momenta (p )„.

To derive the desired transport equation, we denote the
new momentum distribution by Q„(p}, where we have
dropped for convenience the argument b. Obviously, we
have, to first order,

or, with the "free" distribution function added,

P„' +"(b;p)=G„(b)[M„(p)—a„(b).V~M„(p)] .

The quantity a„(b), given by

a„(b)= f dg F(b,g),p).

(4.29)

(4.30}

M„(p)=P(3+p V~+mrb~)M„(p) .
87f

(5.2)

Next, we act on this equation with the gradient and then
multiply the resulting equation from the left with a„;
after some transformations with details given in Appendix
E, we obtain

BA~[a„.V&M„(p}]—V&M„(p). =PI4a„V&M„(p)+p Vz[a„V~M„(p)]+m~hz[a„V&M„(p)]) . (5.3)
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Subtraction of Eq. (5.3) from Eq. (5.2) yields, with the help of Eq. (5.1),

Bcx„
Q„(p)+V&M„(p) =P[3Q„(p)+p V&Q„(p)+rnwb~Q„(p) —a„.V&M„(p)] .

QPl i'll

This equation has been obtained by use of the first order
relation (5.1). Consequently, we may add in Eq. (5.4)
terms which are quadratic in the mean field. In other
words, we may replace the function M„(p) by the func-
tion Q„(p) whenever the former appears in combination
with the mean fleld, i.e., in the last terms on the left and
the right hand sides of Eq. (5.4). We finally obtain

Q„(p)= PVp p Pa„—+ Vp+mP~bp

Q„(q)=M„(q) . (5.10)

Going back to the original momentum distribution Q„(p)
for the original variables n and p, we obtain, by use of the
relations (5.7), the final result

This is identical to the old Fokker-Planck-type transport
equation (4.7), expressed through the new variables v and

q. Thus, the solution of Eq. (5.9) is identical to that of
Eq. (4.7) for the variables v and q:

Q„(p)=M„(p-a„) .

The stationary distribution function then reads

(5.11)

v(p, n)=n, q(p, n)=p a„;— (5.7)

the new momentum distribution as a function of these
variables is denoted by Q„(q). From Eq. (5.7) we obtain
for the differential operators

(5.&)

With the help of the relations (5.7) and (5.8), Eq. (5.6) be-
comes

C)V
Q„(q)=P(V~.q+ m~3 ~ )Q„(q) . (5.9)

This equation is our main result. It governs the evolution
of the collision-number-dependent momentum distribu-
tion of a "test" particle in the presence of the nuclear
field. The latter enters through the momentum transfer
e„and through its derivative with respect to the collision
number. If we neglect the nuclear field, i.e., if the
momentum transfer vanishes, we recover the old Fokker-
Planck-type transport equation (4.7).

Equation (5.5) is a second order partial differential
equation with varying coefficients, whose solution is not
a priori obvious. In the present case, however, we are able
to obtain the solution in closed form. The momentum
transfer a„, given by Eq. (4.30), may, in principle, be an
arbitrarily complicated function of the coordinate and the
collision number. The coordinate dependence is unimpor-
tant for obtaining the solution since the quantity b ap-
pears in Eq. (5.5) only in parametric form. The explicit
dependence on the collision nuxnber will not enter the
form of the solution, as we will see in a moment.

To solve Eq. (5.5), we first perform the trivial reorder-
ing

Ba„
+ V~ Q„(p)=P[V~ (p —a„)+m~6~]Q„(p) .

J

(5.6)
This suggests the introduction of new collision number
and momentum variables v and q, respectively, according
to

P„(b;p)=G„(b)M„[p—a„(b)] . (5.12)

Now the physical interpretation of the result becomes
clear. The distribution function under the influence of the
nuclear field agrees with the one without the field, taken
at a different momentum value. The original momentum
is shifted by an amount which is given by the momentum
transfer suffered by the "test" particle traversing the force
field with an average momentum (p)„. Thus, the change
of the momentum distribution compared to the "free" one

depends on the collision number. Furthermore, it depends
on the transverse coordinate b of the particle, since the
momentum shift varies with the distance of the particle
trajectory from the center of the force. Though the fac-
torization of the distribution function in a geometrical
weight function (the Glauber-Matthiae factor 6„) and a
momentum distribution is maintained for any collision
number, the momentum distribution now depends on the
coordinate in parametric form through its dependence on
the momentum shift. The form of the momentum distri-
bution is preserved; the only difference from the "free"
distribution consists of a shift of the argument.

Some remarks are appropriate at this stage. Though we
have used the first order momentum distribution only to
derive the transport equation (5.5}, its solution (5.11) now
contains the mean field to all orders. Hence it appears
that the transport equation (5.5) has a wider range of va-
lidity than its derivation at first sight suggests. This is
supported by the fact that this solution as well as the ac-
companying transport equation (5.5) have been obtained
previously in Ref. 23 in a quite different manner based on
phenomenological grounds. In the latter work, the start-
ing point is the momentum distribution (5.11}, whose
form is demanded; then it is shown that this distribution
obeys the transport equation (5.5). In contrast, in the
present investigation the transport equation is derived
from a microscopic point of view, starting with the
Boltzmann equation. Furthermore, an explicit expression
for the momentuin shift entering the transport equation is
obtained.

Finally, we express the momentum distribution Q„(p)
in terms of the "free" momentum distribution Mi(p)
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(5.13}

with the propagator

R„(p,p') = [2mrnr( 1 e—~")]

(p —a„—p'e ~"
)

/exp 2m'(1 —e ~")
(5.14)

after the first collision, since this representation is some-

times convenient for practical applications. After a sim-

ple calculation, the momentum distribution reads

Q„(p)=f d p'R„&(p,p')Mi(p'),

with a distance b from its center. For the case of an actu-
al nucleus-nucleus collision, the distribution P„(b,p} of
Eq. (5.12) has to be slightly modified with respect to the
coordinate dependent quantities. As in Sec. II, we restrict
ourselves to a collision between nuclei of equal nucleon
number A.

First, we note that now we are concerned with two
force fields rather than one, built up by 8 and T nucleons.
Their velocities relative to the center-of-mass system of
the colliding nuclei are vF and vF,—respectively. The to-
tal field is a sum of the two fields,

B. Extension to nucleus-nucleus collisions

Until now, we have restricted our investigation to the
consideration of a "test" particle traversing a force field

F(r, t) =Fs(r, r)+FT(r, t),

and the linearized Boltzmann equation (3.5) reads

(5.15)

+~—V„+[Fs(r,t)+Fr(r, t)] VF N. „(r,p, t)
t m

N„(r,p, t)f d'p'rC(p'
~
p)+~p(r) f d'p' It(p

~

p')N„, (r, p', i) .
M, m

(5.16)

F(r, t)~A~Ps(r, t)+ArFr(r, t), (5.17)

and expand the distribution function in powers of both or-
dering parameters:

At this stage we are not able to suppress the time depen-
dence of the force term, since there does not exist a refer-
ence frame in which both fields simultaneously are static.
To expand the distribution function again in powers of
the force, we provide both parts of the force, which do not
depend upon each other, with two different ordering pa-
rameters A,s and A, r, respectively,

N„(r,p, t) =N„' '(r, p, t)

+AsNs „'(r,p, t)+ArNT „'(r,p, t)

+higher order terms . (5.18)

Here, the subscripts 8 and T of the distribution function
denote the different fields and not the different kinds of
"test" particles. Insertion of expressions (5.17) and (5.18)
in Eq. (5.16) yields, to zeroth order, the old result, and, to
first order,

—+~ V„Ns"„'(r,p, t}= op(r)~Ns—'„'(r,p, t) f d'px(p'
~
p)

m Pl

+crp(r) f d'p'~K(p
~

p')Ns"„ i(r, p', t) Fs(r, t) VFN&—„'(r,p, t)
Pl

(5.19)

and

—+~ V NT„'(r, p, t)= —op(r) N (r~r, p, r) f d'pate(p'~ p)

I

+op(r) f dip' E(p
~
p')NT"„, (r,p', t)—FT(r, t) VFNT „'(r,p, t) .

Pl
(5.20)

To treat Eqs. (5.19) and (5.20) further, we choose for the
former the 8-field rest system as our reference frame and
for the latter the T-field rest system; this choice makes
the time dependence of both force terms vanish, and all
further considerations remain unchanged. Finally, we
deal with two different momentum shifts:

(s) = f dg F(s i}),
pF &p—

iz,+ (s)= f dgF(s, ri) .
PF+P e

(5.21)

Here, a„' ' denotes the momentum transfer given to a 8
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where b denotes the impact parameter in the nucleus-
nucleus collision. The net momentum shift 5„(b) is

5„(b)=5'„-'(b)+5„'+'(b) . (5.23)

After the change of the integration variable in the expres-
sion for 5'„'(b), this becomes

5„(b)=—f d s p(b —s)[a„'+'(s)—a'„'(s)l, (5.24)
A

or, with the help of Eq. (5.21),

2m (p)„ 00

((„(b)=——s, f d'sptb s) f ds(—P(s, s() .
~ pF' &p&'— 00

(5.25)

The average momentum (p)„of the "free" momentum
distribution after n collisions, which enters Eq. (5.25), is
readily determined as the first moment of the old trans-

port equation (4.7). The explicit expression reads

(p)„=(p),exp[ —P(n —1)) . (5.26)

Obviously, the two contributions to the momentum
shift do not cancel each other as long as the average
momentum (p)„does not vanish, i.e., as long as thermal
equilibrium is not yet reached. In the limit n ~w, how-

ever, the quantity 5„(b}vanishes and we obtain a thermal
distribution as the stationary solution of the transport
equation. For completeness, we mention that for T-like
"test" nucleons the momentum shift 5„(b) of Eq. (5.25)
merely changes its sign. Thus, the time integrated solu-
tion of the Boltzmann equation finally can be written as,
in the limit z~ao,

P(b;p) =g &n(b) I~a'[p —5n(»l+~'[p+5n(»ll

(5.27}

At this point we note that Eq. (5.25) for the momentum
shift was already given in Ref. 16. It was determined by
integrating the forces of the two moving sources acting on
the moving "test" particles distributed over the overlap re-

gion (roughly speaking, the shaded area in Fig. 1) over the
interaction time. Both expressions, our Eq. (5.25) and the
corresponding one in Ref. 16, are, in fact, identical; this is
shown in Appendix F. It has to be emphasized, however,
that in the latter investigation it is assumed from a
phenomenological point of view that the momentum shift
in the distribution function has to be identified with the
momentum transfer; this assumption is thereby confirmed
by a microscopic derivation.

nucleon by the 8 field, and a'„+' by the T field. The
quantity (p )„has to be understood now as the absolute
value of the average momentum after n collisions with

respect to the nucleus-nucleus center-of-mass frame. The
momentum shifts 5'„'(b) and 5„'+'(b) in a nucleus-
nucleus collision are obtained by a folding procedure:

5'„'(b)=—f d s p(s+b)a'„'(s),
(5.22)

5„'+'(b)=—f d s p(s —b)a'„+'(s),

VI. SUMMARY AND CONCLUDING
REMARKS

Within the framework of Boltzmann's kinetic theory,
we have presented a microscopic approach to the descrip-
tion of high-energy nucleus-nucleus collisions, taking ac-
count of nuclear mean field effects. This has been
achieved by making partly use of the multiple collision
expansion and linearization methods developed in Ref. 14.
In addition to these techniques, we have expanded the
thereby obtained set of linear Boltzmann type equations in
powers of the mean field. The result is a rather natural
extension of the original theory. To be specific, in the
eikonal limit we have obtained a linear transport equation
for the nucleon inomentum distribution in dependence on
the collision number. The solution of this transport equa-
tion differs from that without mean field only by a
momentum shift which is a functional of the density and
the nuclear mean field and which depends on the collision
number and the impact parameter. This shift can be in-
terpreted as the momentum transferred to the nucleons in
the overlap region by the moving nuclear mean fields.
The resulting expressions are identical to the correspond-
ing ones given in recent phenomenological investiga-
tions. ' We may refrain here from the evaluation of ob-
servable quantities like the kinetic energy fiow angle
which is determined by the second moments of the distri-
bution function (5.27) and triple differential cross sections
which are essentially given by Eq. (5.27) itself; this has al-
ready been done in the latter investigations, where poten-
tials derived from phenomenological Skyrme-type interac-
tions have been used. Let us merely mention that a side-
ward fiow angle is obtained which is not inconsistent in
size with the experimentally observed one. Thus, as long
as our underlying physical picture (large degree of tran-
sparency of the system) is valid, all results and con-
clusions reached in Refs. 16 and 23 are confirmed by
their microscopic foundation now at hand.
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APPENDIX A: THE SIMPLIFIED
COLLISION KERNEL

We briefly demonstrate how the simplified collision
kernel K(p

~

p') of Eq. (4.11) can be obtained from the
propagator H„(p,p') of the Fokker-Planck-type equation
(4.7). This is conveniently performed by application of
Fourier transformations. If a function in momentum
space is denoted by a capital letter, its Fourier transform
is denoted by the corresponding lower case letter. %e de-
fine a new propagator H„(p—q) according to

H„(p—q) =H„(p,e~"q) . (Al)
Changing integration variables from p' to q, Eq. (4.8) be-
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M„(p) =e @" "fd3q H„&(p—q)M, [e~'" "q], (A2)

By use of the Faltung theorem, this relation is readily
Fourier transformed. We obtain

m„(x)= (2m. ) ~ h„ i(x)m i(e @" "x),

M„+,tp)=g~)-'"Jd'p t'(p e— '-p W', (p )'.

Therefore, the desired transition kernel is

K(p i
p')=(2n) E(p —e ~p') .

(A6)

(A7)

and, using this equation for n and n +1 and eliminating
the function m i,

This equation is easily evaluated. The final result is Eq.
(4.12).

m„+i(x)=k(x)m„(e ~x),

where we have introduced the function k (x) through

(A4) APPENDIX 8: INTEGRAL RECURRENCE
RELATION FOR THE GEOMETRICAL

FUNCTIONS 8„
k(x) =hn(x)/h„&(e ~x) . (A5)

In momentum space, Eq. (A4) reads, again with the in-
tegration variable p'=e q,

Inserting the first order correction in the form of Eq.
(4.22) into Eq. (4.10) yields [with f d pX (p' ~p}=1 and

p in the denominator replaced by (p )„]:

B„(b,z) V~Mn(p)= f dr) op(b, r}) Bn i(b, ri). f d p'&(p
~

p')V~Mn i(p')
p n p n —i

G„(b,i})F(b,ri } V&M„(p) exp —f drI'op(b, g')
p n 7l

(Bl)

Again, we can evaluate the momentum integral by a partial integration and utilizing the property (4.20) of the transition
kernel; this gives

p'Ep p' &M„~p'=e P &K p p'Mn }p' (B2)

and, with the recurrence relation (4.6),

f d p'E(p
~
p')V~ M„&(p') =e ~V&M„(p),

so that we can factorize out the quantity V&Mn(p) on the right hand side of Eq. (81):

p (p).
B„(b,z} V&M„(p) = f dg op(b, ri)e ~ 8„ i(b, il) —P(b, ri)G„(b, ri)

(83)

Xexp —f dil'op(b, i}') V~M„(p) . (B4)
p n

The momentum dependent parts on both sides of this equation agree. Equating the geometrical parts yields the integral
recurrence relation (4.23).

APPENDIX C: EXPLICIT EXPRESSIONS FOR THE GEOMETRICAL FUNCTIONS B„

To prove Eq. (4.24) for the geometrical functions B„(b,z}, we go into the integral recurrence relation (4.23) with un-
specified expansion coefficients bj„.

n g

exp[ —np(b, z)] g b „[op(b,z)]" J f dg P(b, g)[harp(b, q)]J
j=0

( ) n —i
n —' —],=f dpi op(b, q)e ~ " g b, „,[orb, ri)]"-'-' f dq'F(b, }')[7opqb, }')]i

p n —iJ=O

z
F(b, il)[op(b, il)]" exp[ —op(b, ri)]exp —o f dg"p(b, ri")

n.

where we have used Eq. (4.4) for the Glauber-Matthiae factors G„(b,z). With the defmition (4.5) for the "z-integrated
density" p(b, z), both exponentials on the rhs of Eq. (C 1) can be combined:

exp[ —op(b, g)]exp —o J dq"p(b, i}") =exp[ —op(b, z)] . (C2)

This expression does not depend upon the variable g and can therefore be cast in front of the integral; Eq. (Cl) then
reads
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5 Z

g bj„[orb,z)]" J f drl F(b, i))[crp(b, rl }]»
j=0

( ) n —]
=f drl op(b, rl)e ~ g bj „][op(b,i))]" J ' f dg'F(b, g')[oP(b, g')]~ —F(b, q)[crp(b, il)]"

Next, we have to evaluate the rhs of Eq. (C3). To this end, we have to make use of the following lemma:

(C3)

f dy f(y) f dxg(x)= f dy f(y) f dxg{x)—f dyg(y) f dx f(x), (C4)

where f and g are arbitrary, sufficiently well-behaved functions, and a is an arbitrary number. Lemma (C4) can easily be
proved by partial integration. Obviously, Eq. (C4) remains true if one or both of the integrands are vector functions.
Applying lemma (C4) in the limit a ~—00 to the first part of the rhs of Eq. (C3), the latter becomes

( ) n —] g
rhs=e ~ " g b~ „, J dg crpib, q 'l[apfb, q']]" J ' J'dqF(b, |i)[rrP[b, |i]]~

p n —] J=[]

—f drlF(b, i))[ap(b, il)]J f di)'ap(b, g')[ap(b, g')]"

I qF, q Op b, q (CS)

To work out Eq. (C5) further, we make use of the identity

f de p(b, r/)[p(b, rl))'= . [p(b, g)]'+', (C6)

where i is an arbitrary positive integer or zero. We will prove this identity at the end of this Appendix. Application of
relation (C6) to the first and fourth integral of Eq. (C5) yields

T

ib, . i-
rhs=e ~ g '

. [op(b, z}]" 1 f drlF(b, i))[ap(b, rl)]J—f drlF(b, g)[ap(b, g)]"
00 00

1

, f dr)F(b, rl)[ap(b, il)]", (C7)

or, by reordering the terms,

rhs=e ~ g '
. [op(b,z)]" ~ f di) F(b, rl)[ap(b, rl)]J

-ib, . ]

(p)„, . 0 n —j
p II —1 zf di)] F(b,q)[ap(b, rl)]" .

p ~ i . [] n —J n.
(C8)

This expression is equal to the left hand side (lhs) of Eq. (C3) concerning the coordinate dependent terms; comparison «
the individual powers yields a recurrence relation for the expansion coefficients bJ„Forj «we . obt»n

&p). b.,. .
(C9)

&p). ] li —j
and, for j=n,

+eil! (p )~ ]; [] Pi —]
(C10)

which is identical to the last of the relations (4.25) by use of Eq. (C9). The coefficient boo is fixed by Eq. (4.16).
Finally, we have to furnish proof of the identity {C6). We will do this by mathematical induction. For i =0 there is

nothing to prove because of the definition (4.5) of the "z-integrated density" p(b, z). Suppose that Eq. (C6) is true for
& —J —1

f drl p(»il)[p(»n)]J '= —.[p{»»l'.
co J

(Cl 1)
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For i =j, we write the lhs of Eq. (C6) as

f dip(b, rj)[p(b, g)]~= f dip(b, g)[p(b, g)]J ' f d7)'p(b, g');

with the help of lemma (C4), this becomes

f dip(b, rj)[p(b, rj)]j=f di) p(b, rj)[p(b, rj)]j ' f dg'p(b, g')

—f dg p(b, rj) f dq'p(b, i)')[p(b, rj')]~

Applying, now, Eq. (Cl 1}to both terms on the rhs, we obtain

z ~ 1 1f dq p(b, 9)[p(b,rj)]j=—.[p(b,z)]j+' ——f drj p(b, ~)[p(b, rj)]j,
00 J J CC

which is the same as

f d& p(»rI)[p(»n)]'= . [p(b, rj)1'+'
—ce j+1

This proves the assertion.

(C12)

(C13)

(C14)

(C15)

APPENDIX D: THE GEOMETRICAL
FUNCTIONS S„FORSMALL

MOMENTUM TRANSFER

%'ith the replacement

e ~(p )./(p )„
the expansion coefficients bj„of Eq. (4.25) become

boo= —1

(Dl)

APPENDIX E: DERIVATION
OF EQ. (5.3)

Applying the gradient to the transport equation (5.2)
yields (we drop for the moment the argument p of the
momentum distribution M„)

V~M„=P[3VpM„+Vp(p VpM„)+mrb~VpM„] .
Bn

(El)

bj
bJH

n
if j&n,

+X bj. ~

j=0

The second term on the rhs becomes

V~(p V~M„)=[(V~M„) V~]p+(V~M„) X (V~ Xp)

+(p V~)V~M„+pX(V~ XV~M„) .

We will prove relation (4.26) by mathematical induction
with respect to the index n. For n =0, Eq. (4.26) is trivi-
al. Suppose now that Eq. (4.26) holds for n =m —1, for
each j between zero and m —1:

(E2)

Both curls vanish. The first term on the rhs of this equa-
tion is simply

1
j~m —i

( I)) ja (D3) [(VpM„).Vp]p=VpM„. (E3)

For n =m and j &m, we have, with the second relation
(D2),

bj, ~-i
bjm =

ill —J

Thus, Eq. (El) becomes

8
V~M„=P[4VpM„+(p Vp}VpM„+mrhpVpM„) .

dB

(E4)
which becomes, with Eq. (D3),

1
bJ = — 5jo .

m!
(D5)

Multiplying this equation by a„,we obtain

a„VpM„=P[4a„.VqM„+p. Vq(a„.VpM„)"
Bn

In the casej = m, we have, with the third relation (D2),

b
m —1

+ g bjlFlm!

which becomes, with Eq. (D5) forj & m,

m —1

m! m!.

(D6)
+

mrs~~

(a„VpM„)], (E5)

a„VpM„= (a„V~M„)—V~M„; (E6)

since cz„commutes with the operators p. V& and b,z on
the rhs. On the lhs, a„does not commute with the opera-
tor 8/dn; instead, we have

Hence, Eq. (4.26) is true; Eq. (4.27) follows immediately. inserted into Eq. (E5), this yields Eq. (5.3).
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APPENDIX F: ANOTHER REPRESENTATION
FOR THE MOMENTUM TRANSFER

In Ref. 16, the momentum transfer suffered by the
beamlike particles present in the overlap region of the two

nuclei under the influence of the nuclear fields was deter-
mined by integrating the force acting on the particles over
the reaction time. The explicit expression was given by
(for momentum independent potentials)

5„(b)=5'„'(b)+5'„+'(b)=—f dr f d'tIF q, ——,tI,
~

— i p rl, + &p &."t

&p &."t00 1 PF 1 (Fl)

here, we have used the notation of the present paper. We will now show, by simple changes of the integration variables,

that Eq. (Fl) agrees with our expressions (5.22) and (5.23) for the momentum transfer. Introducing a new variable g, de-

fined by

&p &.

2 m

where the upper {lower) sign holds for the first (second) term of Eq. (Fl), the latter becomes

(F2)

Interchanging the order of time and coordinate integration and replacing the time integration by a spatial one via

pF+&p &.
II+ m

we obtain

(F3)

(F4)

5„(b)=—f d gp{gi+b, g~~) f dzF{gi,z)+ f d gp(gi —b, g~~) f dzF(gi z)
A A' p n pF+ p n

By use of the "z-integrated density" p and the quantities a'„' and a„'+' defined by Eq. (5.21), this becomes

5„(b)=—f d pip(gi+b)a'„'(gi)+ f d pip(gi —b)a'„+'(gi)
A

which is identical to Eqs. (5.22) and (5.23).

(F&)

(F6)
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