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In the present work we use the energy density formalism derived from the Skyrme density depen-
dent interaction to study the orientation and energy dependence of the real part of the ion-ion poten-
tial for the 2®U+ 238U system. It is found that both the nuclear part and the total potential (nuclear
plus Coulomb) depend strongly on the relative orientation of the two interacting nuclei. Pockets are
predicted in the total potential whose depths are found to depend on the orientation angle.

I. INTRODUCTION

The static and dynamic deformations give rise to signi-
ficant changes in the Coulomb and nuclear energies. For
example, the form factors describing the coupling between
elastic and inelastic channels in peripheral heavy ion reac-
tions depend sensitively on the static and dynamic proper-
ties of the matter distribution.! Moreover, in recent ex-
periments spontaneous positron emission in heavy ion col-
lision has been measured.> The analysis of the data indi-
cated that the two nuclei stick together for a time of about
10~!% sec or longer. Greiner® has suggested that the pro-
longed nuclear sticking time might be caused by a poten-
tial energy minimum in the nuclear surface—a
“pocket”—depending on orientation which can capture
the nuclei.

Several attempts have been made to derive the potential
between two deformed nuclei starting from an effective
two-body interaction. For example, such potentials have
been investigated in the proximity approximation* and the
double folding procedure.>® As is well known in the case
of spherical nuclei, although the double folding model
predicts qualitative features of the elastic scattering data,
it has been found that a renormalization of the strength of
the real potential to about one-half of its value at the
strong absorption radius is essential to get quantitative
agreement.” The discrepancy may be due to the neglect of
the saturation effects or exchange effects due to antisym-
metrization. Saturation effects can be taken into account
by deriving a folded potential form a density dependent
effective interaction.®

Another method for calculating the ion-ion potential is
by using a Hamiltonian energy density derived from den-
sity dependent effective interaction.” This method has
been applied successfully to derive the real part of the in-
teraction potential between several pairs of spherical nu-
clei.’® Besides the fact that the above mentioned method
takes into account the effect of saturation of nuclear
forces and the exchange effects due to antisymmetriza-
tion, it can be modified easily to include energy depen-
dence of the ion-ion potential.'!

A natural extension of the work done in Ref. 9 is to use
the energy density formalism derived from density depen-
dent effective interaction to study the energy and orienta-
tion dependence of the heavy ion potential between two
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deformed nuclei. This study will be done in the present
paper. For this purpose, we use the Skyrme interaction
with parameter set SIII (Ref. 12) to investigate the real
part of the interaction potential between two 2**U nuclei.
For the >*®U nucleus we use deformed Fermi type matter
density with static quadrupole and hexadecapole deforma-
tions.”> We calculated both the real part of the optical-
model potential and the Coulomb potential. We study
both the energy dependence and orientation dependence of
the 2%U + 28U potential. In the next section we briefly
describe the theory. In Sec. III the results are presented
and discussed.

II. THEORY

The interaction potential between two nuclei separated
by a distance R is given by the difference between their
energies at separation distance R and their energies at
separate distance infinity. Explicitly,

V(K,R)=E(K,R)—E(K,»), (1)

where E is obtained from the Hamiltonian energy density
H according to

E(K,R)= [drH(r,KR) . @

The potential ¥ between the two ions is also characterized
by the average relative momentum per projectile nucleon,
K, which is related to the laboratory energy of the projec-
tile, E\,,, according to

K=(l/ﬁ)\/ 2mElab/Ap ’ (3)

where Ap is the mass number of the projectile and m is
the nucleon mass.

The Hamiltonian energy density H consists of the ki-
netic energy density (#*/2m)7 and the potential energy
density 7. For the potential energy density we take the
Skyrme form.

For calculating the kinetic energy density, we used the
following prescription.'* Having two densities pp (projec-
tile density) and pr (target density) at position r, one may
relate them to Fermi momenta in nuclear matter using the
relation

3

pPrT= Ky, s 4)
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since each projectile nucleon has an average momentum
K, we obtain two Fermi spheres whose centers are
separated by a distance K in momentum space. If the two
Fermi spheres overlap, i.e., at high densities or low ener-
gies, the kinetic energy density is given by'*

T=T(2)‘+‘Kép > )

where the average momentum K and the intrinsic kinet-
ic energy density 7% are given by

Ko= [,KdK / [ dK, ®)

T<2)=?2iﬁ)7 S dK(K-Kg)? . )

p is the total density given by

p=pp+pr - (8)

In case of nonoverlapping Fermi spheres, Eq. (5) reduces
to

T——-T%.Z—i—sz y (9)

where 7% is the Thomas-Fermi approximation for the in-
trinsic kinetic energy density of the considered system.
For overlapping Fermi spheres, a double occupancy re-
gion appears in the momentum space which is forbidden
by the Pauli principle. Therefore, we have to increase the
Fermi radii to become K}P and K}T, so as to keep the

overall density. In this case a simple expression for the
kinetic energy density in terms of pp, pr, and K can no
longer be given. The new radii have to be calculated nu-
merically using an iterative procedure.

The Coulomb potential between the two 2**U nuclei can
be calculated using the double folding model,

VC(R)=(Ze)2fdr1dr2pg(r, piry) , (10)

—
|R+1—1y |
where Z is the charge number of 2*U nucleus. p§ and p§
denote the charge distribution of the nucleons in the
ground state of the projectile and the target, respectively.
The above integral is a six dimensional integral, which is
difficult to solve. However, if one uses the Fourier
transformation technique, it can be transformed to a sum
of terms each term contains one dimensional integrals.
This procedure—which is outlined in Ref. 6—has been
used in the present work to calculate the Coulomb interac-

tion for 238U + 238U system.

III. NUMERICAL CALCULATIONS
AND DISCUSSION

In the present work, we have calculated both the real
part of the optical-model potential (nuclear potential) and
the Coulomb potential for the 23¥U + 238U system.

Equation (1) has been used to calculate the nuclear po-
tential at different values of projectile energy Ej,,. The
Hamiltonian energy density has been derived from
Skyrme nucleon-nucleon interaction. The kinetic energy
density was calculated as described in Sec. II. This pro-
duces the volume part of the intrinsic kinetic energy den-
sity, 7.2, The total intrinsic kinetic energy density 72’ is
calculated using the modified Thomas-Fermi approxima-

tion'® given by

2
T‘z)=aTL2’+B~I—YpEL , (1

where the values of a and B, for different nuclei, are
presented in Ref. 15. This approximation was found to be
suited for ion-ion scattering processes.

The matter distribution of either the target or projectile
was approximated by the Fermi shape,

p(r)=po/(14elr—R(O)/a) (12)

We assumed static deformation for the 23U nucleus and
we expanded the radius parameter R (0) in the usual way,

R(B)=R[148,Y50(60)+64Y4(0)], (13)

where 6 is the angle between the vector r and the symme-
try axis of the 2**U nucleus. We used the recent experi-
mentally determined results (13), §,=0.261, §,=0.087,
Ry=6.8054 fm, and ¢=0.6049 fm. The value of p, is
determined from the condition

f drp(r)=mass number .

The charge distribution of the nucleons, appearing in Eq.
(10), was assumed to have the same form as Eq. (12), but
scaled by Z /A, where Z is the charge number and 4 is
the mass number of the nucleus.

In order to show the orientation dependence of the
238U 428U potential, we considered three different rela-
tive orientation angles, 3;=/,=0° 45°, and 90° (; is the
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FIG. 1. The real part of the potential without the Coulomb
interaction for the 2**U+23%U system calculated at K,=0.537
fm~! (E,,/A=6.02 MeV) for different orientation angles
B=0°, 45°, and 90°.
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FIG. 2. Total real (nuclear plus Coulomb) potential for the
same system at K, =0.537 fm~' for the three different orienta-
tion angles =0, 45°, and 90°.

angle between the symmetry axis of nuclei i and the vec-
tor joining the centers of mass of the two colliding nuclei).
Our results are displayed in Figs. 1—3. Figures 1 and 2
show the results for K, =0.537 fm~!, which corresponds
to an incident energy per projectile nucleon of
E\,/A=6.02 MeV. These figures show strong orienta-
tion dependence of the 2**U+2®U potential. For each
relative orientation, the nuclear part of the potential has a
repulsive core at small separation distances followed by an
attractive part. The range of the repulsive part increases
as the relative orientation angle decreases from 90° to 0°.
As pointed out in Ref. 10, the repulsive part is due to the
lack of distortion in the single particle wave functions and
of the approximations used for the densities. The attrac-
tive part has a range which increases as the relative orien-
tation angle decreases from 90° to 0°. Also, the position of
its minimum together with its depth depend strongly on
the relative orientation of the interacting nuclei. This is
because the position of the minimum is related to the sum
of the half-density radii, while its depth depends on the
volume of the overlap region of the two density distribu-
tions that happen at this position. For example, in case of
B1=pB,=0°, the sum of the two half-density radii is large
while the overlap region is small compared with that for
the other relative orientations, and as a result we have a
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FIG. 3. The real part of the nuclear potential at different en-
ergies for B, =p,=0".

minimum in the nuclear potential located at larger separa-
tion distance which has a smaller depth. Another feature
that affects the depth of V(R) is that we included the
hexadecapole deformations of the 23U nucleus in our cal-
culation. Consequently, the >**U nucleus has flat surface
areas (diamond shaped). For a certain orientation, two
flat areas face each other and in this case the number of
nucleons which come into nuclear contact is considerably
increased in comparison with the situation of two curved
surfaces. This explains the deeper minimum which is ob-
served for the case B;=p8,=45".

The total potential (nuclear plus Coulomb) calculated at
E,,/A=6.02 MeV is shown in Fig. 2. It is seen from
this figure that pockets appear for orientations
B1=PB,=45° and 90°. The depth of the pocket depends
strongly on the relative orientation, the deeper one occur-
ring at 3;=f3,=45" and with a depth of about 15 MeV.
For B;=,=90° the total potential shows a weaker pock-
et whose depth is 4.3 MeV. Thus our calculations support
the positron emission from the 2¥U+23%U combined sys-
tem, which has been observed at E,;, /A ~6 MeV.

Figure 3 shows the energy dependence of the
28U 428U nuclear potential for B;=B,=0". It is seen
from this figure that when the projectile energy increases,
the potential curve goes downwards until E),,/4=46.97
MeV and then it starts rising again as the energy increases
beyond this value.
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