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Density matrix expansion for microscopic optical model potential
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An approximation scheme for evaluating the folding optical model potential for nucleon-nucleus

scattering is developed. The microscopic optical model potential is expressed as a simple algebraic
function of nuclear densities. Nonlocality and finite-range effects are properly incorporated. A few

numerical examples are given.

I. INTRODUCTION

While there have been intensive studies of the micro-
scopic optical model potential for nucleon-nucleus scatter-
ing, ' most of the proton scattering data are still analyzed
with conventional phenomenological potentials and its pa-
rameters are adjusted in each experiment in ad hoc
manner. The reason for its unpopularity may lie in that
(1) the microscopic optical model involves a cumbersome
folding procedure, and (2) there are several unexamined
assumptions which make the theoretical prediction uncer-
tain. %e do not discuss the local density approximation
which we need to resort to when we apply the nuclear
matter scattering matrix to a finite system. This cannot
be termed an approximation in a strict sense, since it only
has phenomenological justification, if any at all. The ef-
fective two-nucleon interaction obtained in this or another
way is, in general, a nonlocal operator. The validity of
commonly used localization procedure has not been
checked. The relation between various approximations to
handle the exchange nonlocality is also not clear. These
approximations need to be controlled before quantitatiue
success (or failure) of the microscopic optical model po-
tential is claimed.

In this paper, we develop an approximation scheme for
the evaluation of the microscopic folding potential with a
general nonlocal effective two nucleon force. Our method
is closely related to the density matrix expansion theory of
Negele and Vautherin which was very successful in the
calculation of the bound state properties of finite nuclei.
The resulting optical model potential is expressed as the
algebraic function of nuclear densities and its radial
derivatives. Nonlocality and finite-range correction terms
are separated from the bulk volume effect. We hope our
formalism helps to make the microscopic optical model
potential more easily accessible.

Though our treatment is based on the nonrelativistic
theory, presently popular relativistic dynamics can be
easily incorporated, since it is known that Dirac dynamics
can be simulated or reinterpreted in terms of a density-
dependent repulsive force or Lorentz-Lorenz correction
to the momentum-dependent effective interaction.

The formalism is described in Se:. II. Illustrative nu-
merical examples are given in Sec. III. The last section
contains concluding remarks.

II. DENSITY MATRIX EXPANSION
OF FOLDING POTENTIAL

r=r& —r2

R= rj+r2
2

r&+r2

2

(2a)

(2b)

(2c)

(2d)

The impulse approximation gives an effective force
which is independent of R. Nuclear matter g-matrix
theory ' gives a density dependent force U(r, r';p) which
is usually used combined with the local density assump-
tion p =p(R ). There is ambiguity regarding at which
point the density should be evaluated. %'e deliberately
leave this point open for later consideration, and hence
suppress the variable R in the effective force U (r, r';R).

We define a matrix element M which represents the
scattering between projectile nucleon and target nucleus,

M = f dri f dr& f dr'i f dr,'5(R —R')P'(r&)

X y„yi', (rp)U (r, r')yb(ri)lP(ri),

where f is the projectile wave function and the pq's are
the target wave functions, the sum running over the filled
target states. The knock-on exchange process is taken
into account by the antisymmetrization of the effective
force,

U ( r, r') = u (r, r')+ U'"(r, —r') . (4)

We assume that the effective nucleon-nucleon interac-
tion U to be used for the nucleon-nucleus scattering is, as
is the case in all calculable theories, local with respect to
the center-of-mass coordinate:

U (r„rz, ri, r2) =v (r, r';8) 5(R—R'),

where ri and r2 are the coordinates of two nucleons in the
initial states, and r'i and r2 those of two nucleons in the fi-
nal states. The relative and center-of-mass coordinates r,
r', R, and R' are defined as
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The optical model potential can be defined as an operator
U which satisfies the equation

M = f drip'{r&)U(ri)g(r, ) .

The term microscopic optical model potential designates
the potential U, which is expressed in terms of effective
force u. One cannot write the explicit expression for U,
however, from Eqs. (3) and (5) as they are. We look for
an approximation scheme to this end vrhich is tractable,
accurate, and hopefully gives us insight into the underly-
ing physics. For pedagogical reasons, we first restrict the

effective force to be local and then generalize to the non-
local cases.

A. Local force

If the nucleon-nucleon force is local with respect to the
relative coordinate, i.e.,

v(r, r') =u(r)5(r —r'),

Eq. (3) takes the form

rl r2 r1 b r2 ~ rl r2 b r2 rl + rl r2 rl b rZ U rl r2 b rl r2 (7)

We define the displacement operator e'v which, for ex-
ample, acts on wave function as

P(r&+r)=e' g(ri) .

This operator can be expanded to its multipoles in the
orm

e'v= g Ai jI(irV)YI~(r. )Yi (V)

3=jo(irV)+ . ji(irV)r V+
irV

=f0(irV)+fi(irV)r V,

where the last line defines the operator fo and fi, which
can again be expanded in terms of r and V as

M~= f dri f dr/'(ri)f(ri)p(ri —r)ue(r),

where the target density p is defined by

p(r)= g Pb(r)P~(r) .
b

Multipole expansion of the displacement operator, Eq. (8)
can be applied to the p(ri —r) in Eq. (10),

p{ri r)=e ' p—(ri)=(fo fir V)p(r/—) . (12)

Noticing that integration by r eliminates all the terms in
Eq. (10) except the first, for example,

rr. A r=0,
one obtains

fu(irV)=jo(irV)=1+ 6r V +», r V + (9a) U~(r, )= f dr fu(ir V )p(r i )u (r) . (13)

fi(irV)= . j,(irV)=1+ ', ', r V'+,~—r4V'+.
irV

(9b)

This is still an exact equation. If expansion (9a) is applied
to second order, one has

U"(r)=p(r) f dr'v(r')+V p(r) ,' f dr'r' u(—r') . (14)

With a change of integration variables, the direct part
(first term) in Eq. (7) is rewritten as

For the exchange part of Eq. (7), a similar technique leads
to the equation

M'"= f dri f dry'(ri)l/f{ri —r)u(r) ply'(r] —r)y$(r/)

—f dri f dr/ (ri)(fo —fir V)g(ri)u(r) g(fo —fir V)fi', (ri)Ps(ri)

= f «i f «P'(ri)fog(ri)u(r) gfofs(ri)gs(ri)+ —,'&'g'(ri)fiVQ(ri)u(r) gfiVQQ(ri)$$(ri)
b b

(15)

To obtain the third line, we used

drr. Ar 8= —, drr A 8 .f 1

If we expand fo and fi by Eqs. (9) and truncate them at
the second order, we get an equation very similar to Eq.
(5.1) of Ref. 2. However, this causes a problem concern-
ing the convergence of the expansion when applied to the

I

scattering kinematics. Expansion equations (9) applied to
Eq. {15)amount to expanding fo and fi in the parameter
(ruku), where ro is the range of force and ko the momen-
tum of the projectile. This parameter is a quantity of the
order of 10 and convergence lxcomes poorer as the projec-
tile energy increases. We propose instead a different ex-
pansion which suits the kinematics of intermediate energy
proton scattering. The differential operator acting on the
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projectile wave function can be replaced by the local
momentum of the projectile,

pared to the potential energy (E ~ 100 MeV}, it is advan-
tageous to expand k around ko. ' Using the relation

iVQ(r)=kg(r) . (16) 6fjo(z}=jo(zo)+(z —zo) Jo(zo)
The energy-momentum relation for the projectile nucleon
ls

where kQ is the incident momentum given by

Z»=ko/2m .

(17)

In Eq. (17), U is the optical model potential itself. When
the projectile incident energy is sufficiently high com-

2 2
Z ZQ~jo(zo )— ji (zo },

0

one obtains

fo(kr) =fo(kor)+ ,' 2m—U(r)r'f,(k,r ) .

If one applies Eq. (19) to fo standing before p in Eq. (15),
one has

U'"(ri ) = f dr+ [fo(irV)gs(ri)]4s(ri)u(r) fo(kor)+ U(r)r'f i(kor }
b

6

The second term in Eq. (15}can be neglected, since

r1 r = r ~ pr =0.
Expanding fo(ir V ) before P using Eq. (9a), one gets

g [fo(irV)ks(r)]Ps(r) = g A (r)A(r)+ g —,
'

[V pi'(r)]ps(r}=p(r)+ —,', V' p(r) —,' z(r)—,
b b

where v is the momentum density of the target defined by

~( r) = Q Vgs(r) Vgs(r) .

(20)

(21)

%e now obtain a recursive equation:

U ("i)=p(ri) f dru(r)fo(kor)+p(r&) f d«u(r)fi(kor)U(r)+IV p(ri) —2r(r&)] i'~ f d«u(r)fo(kor) . (23)

y= —,'2mpo f dru'"(r)r'f, (k, r) . (25d)

The optical model potential equation (24) is written as a
linear combination of nuclear densities. The leading term
Ap represents the bulk volume contribution, BV p the fi-
nite range correction, Cr the contribution from the
momentum density, and y gives the measure of exchange
nonlocality. The coefficients A, 8, C, and y are numbers
if the two-nucleon force u is density independent, while
they can be functions of density if u depends on density.
The most convenient choice of density dependence is

If we combine Eqs. (14} and (23), and replace U in the
second term of Eq. (23}by the leading terms, we arrive at
the following expression for the microscopic optical
model potential,

U(r) =(1+ y)Ap(r)+BV p(r)+ Cr(r),

where the coefficients A, 8, C, and y are given, respec-
tively, by

A= ru r+ ru'"r
Q Qr, (25a)

8= 6 f dru (r)r + —,', f dru'"(r)r fo(kor), (25b)

C= ——,
' ru'" r r Q Qr, 25c

and

u (r) =u(r;p(r, )), (26)

which yields A =A(p(ri)}, etc. Though the momentum
density r is calculable from the target wave functions, it
may be useful in the simplified calculations to express ~ in
terms of p using the Thomas-Fermi approximation, name-

ly

~( r) = ', k»p(r) = ', ck[—p(r)]'~'—,

where
' z/3

3ck=
2

0

(27)

Once coefficients A, 8, C, and y are calculated from
whatever effective interaction u, the microscopic optical
model potent, ial equation (24) is ready to use. The other
more important advantage of Eqs. (24) and (25} is that the
various corrections to the bulk volume effect are disentan-
gled and expressed as separate terms. %e will see in the
next section that, in actual proton scattering of a few hun-
dred MeV, the main corrections to the leading volume
term turn out to be the finite range effect and the nonlo-
cality effect, and momentum density correction is small.

At this point, we want to comment on the relation be-
tween our treatment and that of the original density ma-
trix exPansion of Negele and Vautherin. z Even when ko
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is set equal to zero in Eqs. (25), we do not get the equa-
tions found in the power of Negele and Vautherin, which,
in our notation, read, for example,

9=—,
' f dru"(r)r f3(kfr)+ ,', I—dru'*(r)r f3(kur),

(25b')

f3(x}=1——„x +2

This difference is actually a reflection of the ambiguity of
the r and higher power contributions associated with the
truncation of fourth and higher derivatives of nuclear
density. The choice of the coefficient of r and higher
power terms is, as noted as Negele and Vautherin, a
matter of convenience and can be adjusted to achieve
better convergence in the truncated series. In our treat-
ment, however, this does not cause any practical problem
since the factors f0 and f&

in Eqs. (25) already ensure fast
convergence.

S. L-S force

The two-body I;S force induces a spin-orbit term in
the optical model potential. We only consider the spin-
saturated nucleus. We write the I.-S coupling part of the
nucleon-nucleon effective interaction in the form

I(ri r2) =ui (ri —&2)—(ri —r2) X(Vi —Vi).(si —s2) .
2

To get the third line, we used the relation

xx.AxXS= —, rr2AXB .

Comparing Eqs. (5) and (29), we obtain the direct part of
the spin-orbit potential,

UI, (r, )= ——— p(r&) drr ub(r)1& s& .1 1 d 2 d

6 r) dr)
(30)

We replaced f&(irV) in Eq. (29) by 1, since Eq. (29) al-
ready contains the r, which makes this a consistent level
of truncation to other expressions for central force. It can
be justified by the short-range nature of the I.-S force.

The exchange piece of Eq. (7) is given by

(28)

The direct piece of the scattering matrix equation (7) is

Ma = dri dr f(r, )ui, (r)p(r, r) —rX—V Q(r, ) s&
d d l

2

= —f dri f dr/(r, )ui, (r)f&r. Vp(r, )—rXVQ(r&) s~

l «ifdr r g(~i )uI, (r)f ir V p(r, ) X Vp(r, ).si .

M~"—— r~ x2
' rj y r2 UI" r —r~ —r2 X &

—
2 ~ r& r2 .st

ri rr rj uI'"r
Q $r& ~r& X i r) —) gr) X pre Q rj s&. (31)

Again neglecting fo(irV) and f&(irV) before Pb, we ob-
tain

Ui',"(r, ) = — p(r, }
6 ri dri

X I drr vi',"(r)—,
' [fi(kr)+fu(kr)]li si, (32)

Ua(r) =D p(r)l.s, —1 d
r dr

(33}

which has a form slightly different from the "standard"
result, ' but, of course, reduces to the formula of Blin-
Stoyle' in the short-range limit. The full expression for
the spin-orbit optical model potential is

calculations are within reach of the modern computer,
and are actually now in progress, ' we believe it is useful
to make a well defined approximation scheme to achieve a
comprehensive understanding of underlying physics.

We introduce the new coordinate variable s with the
equation

r2= x) —x,

ri ——r& —s/2,

rz ——ri —r+sl2 .

(36a)

(36b)

(36c)

s=2(ri —ri) .

The following relations between coordinate variables hold:

D= ——,
' J drr vb, (r)

+-,' f drr'v„'"(r)-,'[fi(kr)+ fo(kr)] . (34)

The last relation is ensured by the locality assumption of
the effective force with respect to the center-of-mass coor-
dinate. We take r&, r, and s for the new set of integral
variables,

C. NonlocaI force J dr, f dr, f dr, J' dr&5(R —R')= J dri J dr f ds.

The advantage of the density matrix expansion ap-
proach becomes obvious when we deal with the general
nonlocal effective force. Though straightforward folding The scattering matrix element equation (6) now reads

(37)
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M= r~ r s 'r~ b r& —rUrr —s The coefficients A, B, C, and y are now given by double

integrals

s
Xdb ri —r+—

2
kps

A = f dr f dsu(r, r —s)fp
2

(43a)

8
X1( ri ——

2
(38) B = —,

' f dr f ds(r —,'r—.s+ —,'s }u(r, r —s}fp
2

The definition of the optical model potential equation (5}
then yields

U= f dr f dsu(r, r —s)ge 'vPb(ri)e' '+'~ '
b

C= ——, r s4s U r, r—st 1 2 kps

2

(43b)

(43c)

Xgb(r, )e

= f dr f dsu(r, r —)s(a+b+c), (39)

where

2

b= —g fi(irV}Vpb(ri)fp i r ——V V
3 b 2

&= ufo(t'«)6'(ri)fo i r — V 4b(ri)fo(t'sV)
b 2

1 1
kps

p= 6 2mpp dr ds —,s u(r, r—s}fi 2
(43d)

III. NUMERICAL EXAMPLES

One can easily check that Eqs. (43) reduce to Eqs. (25) by
setting the effective force u local. The physical meaning
of each term is identical to the local case. The nonlocal
correction y has a contribution from the "genuine" nonlo-
cality of the effective force. We can perform the direct
calculation of the folding optical model potential without
resorting to the conventional intermediate step of localiz-
ing the effective force.

X(()b(r i )fo(t's V ),

and

c =
g f i (t'rV)r'Vpb(ri )fp t r — V'V

b 2 2

xpb(ri)fo(t'sV) .

(40b)

(40c)

A. Local force

%'e give two numerical examples to illustrate our
method. Systematic calculations and comparison with ex-
periments are left for future work.

The existing localized effective forces' ' can be easily
transformed into the parameters A, B, C, D, and y using
Eqs. (25) and (34). With the Franey-Love t matrix' at

Ez ——210 MeV, one gets

Expanding fp and fi before the target wave function and
taking up to the order of r as before, one has

a =p(r, )+—r —,' r s+——,
' s [V p(ri) —2r(r, )],

(41a)

A = —174.6—206.3i MeVfm

B= —118 7 76 O. i —MeV. fm

C=4. 1 —3.9i MeVfm

D=22 5 4 7i M. e—Vf.m

y = —0.07+0.03i .

(44a)

(44b)

(44c)

(44d)

(44e)

b= ,'r r(ri)fo(isV), —

and

1c =——r.s~(r, )fo(isV)+~,
6

(41b)

(41c)

%e apply this to the proton scattering on Ca at Ez ——180
MeV. The volume integral per nucleon E and root mean
square radius R of the optical model potential, which are
defined by

where

~= g g r s (1—5J )V;pb(ri )Vjpb(ri )fo(isV)
f d r (Ur)/ A(central potential),

K= ~

f d r U(r)/A '~ (spin-orbit potential),

(45a}

(45b)

is the traceless tensor part of momentum density which
we neglect as being small because of its incoherence. The
final expression for the microscopic optical model poten-
tial with a general nonlocal operator has the same formal
structure as the local case,

U(r) =(1+y)Ap(r)+BV p(r)+Ca(r) .

f d rr U(r) f d r U(r) (45c)

are known to be empirically well determined quantities.
If the matter distribution of Ca is given by a Woods-
Saxon function
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r —8
p(r)=po 1+exp

0

with

Ro =3 69 fm a =o.53 fm, and po=0. 158 fm

the parameter set (44) gives

K,'= —156 MeVfm', Kt'= 1—97 Mevfm',

Rtt ——4.08 m, Rf =3.19 fm,

Ktt ——96—MeV fm, Kt ——20 MeV fm

(47)

10

05
\

0
~ IP+I

0.0

Q
m -05-

Ca(p p)

0 I. . . . I - - . . i. . . i

0 10 80 30

angle (deg)

40 50

R =4.05 fm .

FIG. 2. Spin rotation for the 200 MeV proton scattered from
40Ca

Ka ——195 M—eV fm, Kt ———115 MeV fm

Ra ——4. 17 fm, Rt =4 45 fm, .

Ks ———88 MeVfm3, Kt 44 MeVfm——
(49)

aIld

Superscripts C and SO denote central and spin-orbit, and
subscripts R and I denote the real and imaginary parts,
respectively. These values are to be compared to the
empirical values18

The overall oscillatory structure is reproduced by the cal-
culation, as could be anticipated by the correct values of
K and R. For a better description, we need medium
corrections and possibly the relativistic dynamics. A large
portion of the contribution to 8 of Eq. (44b} comes from
the dircet part [i.e., the first term in Eq. (25b)], and 8 is
as large as A. Actually, convergence of the expansion
equation (14) is just marginal. In some cases, the exact
folding with Eq. (13) might be necessary.

R o=4. 14 fm .

Spin observables calculated with the parameter set (44) are
shown in Figs. 1 and 2 with the experimental values. '

B. Separable force

To make calculations with nonlocal force feasible, one
decomposes the interaction operator into partial waves,

1.0

u(r, r')= g rP~(r)u, (r, r')r, (r') .
1m

(50)

+@0.5
0
0

0.0
~~
N

—0.5-
P

We can reduce the double integrals in Eqs. (43) to single
integrals by (a) expanding the ft's as

ft(
~

r —r'
~

) =ft(r)ft(r')+ r r'ff y /(r)ft+ ~(r'),
21+3

(51)

the function ft being the generalization of fo and f& of
Eqs. (9), which is defined by

Ca(p, p) E& = 180 hleV

I . . i . l . . i
1 0 ft(x)=, '

(2x) jt(x),(21 + 1)!
(52)

0 10 2'0 30 40

angle (deg) and (b} assuming a separate form of the interaction

FIG. l. Analyzing poser for the 180 MeV proton scattered
from ~ca. Solid line is the theoretical curve based on the opti-
cal model potential equations (24}and (33).

ut(r, r')=gt(r)Agt(r') .

Taking only s aod p waves, we have

(53)
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TABLE I. Parameters for the separable potential equation (57). These values are obtained by the fitting of the N-N phase shift at

Eq ——25—300 MeV.

Real

'S

4.7 fm-' 16.0 fm

3S

10.0 fm

3p

12.0 fm '

—1.03)&105 MeV fm

1.6 fm

—2.~)&104i MeV fm

—5.88g 10' MeVfm'

22fm ~

—6.73X10 i MeVfm'

7.70~ 10 MeV

25.0 fm

—3.57&10 i MeV

—2.47)( 10 MeV

50.0 fm

—2.29&(10 r MeV

A =4m'AI(2, 0,0) + I(3,1, 1)~,4m ko
(54a)

4m', ko z 4m'. 4~1 ko8= I(2,0,0)I(4,0,0)+ I(4,0, 1) + I(3,1,0} + I(3,1,1)I(5,1,1),
8

' ' ' ' + 216 4 ' ' +
24

' ' 24 4
(54b)

and

C= — I(2,0,0)I(4,0,0)+ I(4,0, 1) + I(3,1,0) — I(3,1,1)I(5,1, 1),
12

' ' ' ' +
108 4 ' " l2 ' ' 36 4

(54c)

z 4nA, z 4nA, ko
I(2,0, 1)I(4,0, 1)— I(4,0,2) — I(3,1,1) + I(3,1,2)I(5, 1,2) (54d)

where I is defined by

kor
I(n, l,m) = I dr r"gi(r)fm (55)

g&(r)= e
1

Sm
(57b)

The parameters —P's and A, 's—are determined from the fit
of N-N phase shifts in the energy range E =25—300
MeV. They are listed in Table I. The optical model po-
tential parameters obtained for E~ =200 MeV are

A = —125.8 —167.4i MeV fm (58a)

8 = —7.81—11.8i MeVfm

C=2 4 3 Oi Me.V—fm.

y = —0.03—0.09i .

(58c)

(58d}

These are fairly consistent with the values we get from the
Franey-Love t matrix, except for 8, the measure of the

To incorporate the spin and isospin degrees of freedom,
one needs to sum up the contribution from different spin-
isospin channels as

Z = —,', [3Z(1,0)+3Z(0, 1)+Z(0,0)+9Z(1,1)], (56)

where Z stands for the coefficients A, 8, C, and y, and
the indices (S,T} denote the spin and isospin. Our choice
of the functional form of gI(r) is of standard Yamaguchi

type, namely

e-t'
go(r) = (57a)

4m r

and

I

range of the force. These parameter sets give the follow-

ing values for the volume integral and root mean square
radius of the optical model potential,

Kz ———136 MeVfm, KI ———151 MeVfm
(59)

Rg ——3.52 fm, RI ——3.54 fm .

Overly small values of R are the reflection of the small
8 s. This can be the result of either the simplistic param-
etrization equations (57) or the neglect of higher partial
waves I ~ l. We believe that this calculation, though
schematic, gives a fair idea of how to treat nonlocal forces
in the calculation of the folding potential.

IV. SUMMARY

We developed a formalism with which to calculate an
optical model potential for nucleon-nucleus scattering
without the intervening procedure of localizing the effec-
tive nucleon-nucleon force. We could separate out physi-
cal mechanisms which were not carefully treated in con-
ventional approaches. Numerical examples show that the
main corrections to the bulk volume contribution come
from the finite range effect and from nonlocality. The
simple algebraic structure of our expression may hopeful-
ly help in the understanding of the relation between mi-
croscopic and macroscopic optical potentials.
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