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Stability of the ground state of finite nuclei against neutral pion condensation
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The possible occurrence of abnormal nuclear states associated with neutral pion condensation has
been studied in ' C and ' 0 within a Jastrow-type variational approach using an effective interaction
to simulate 6 mixing into the nucleon states. The role played by short range correlations and 5 ex-
citations in producing m condensation is discussed.

In recent years, several theoretical works have been de-
voted to the possible occurrence of abnormal nuclear
states, associated with neutral pion condensation, both in
infinite matter' and in atomic nuclei. In the n. con-
densate the nucleons are assumed to be arranged in a one-
dimensional, solidlike spin-ordered configuration, pro-
duced by the periodic potential associated with the pionic
standing wave. The resulting ground state of infinite
matter is characterized by a localization of the nucleons in

parallel layers. Protons and neutrons in the same layer
have opposite spins and the spin directions change alter-
nately layer by layer. Within the finite size of atomic nu-

clei, such a state reduces to a single layer, i.e., to a strong-
ly oblate portion of nuclear matter made up of spin-up
protons and spin-down neutrons only (or uice versa).

In principle, the stability of the condensed state with
respect to the standard one depends upon the balance be-
tween the additional kinetic energy coming from the lo-
calization and the spin ordering of the particles and the
potential energy associated with the tensor component of
the one-pion-exchange (OPE) interaction between nu-

cleons, which is strongly enhanced in the m condensate.
However, the results of numerical studies performed
within the potential approach, using realistic nucleon-
nucleon (NN) forces, ' ' clearly indicate that, beside this
driving mechanism, two different effects play a crucial
role in determining the occurrence of neutral pion conden-
sation and must be carefully taken into account: short
range correlations and the mixing of the b, resonance into
the nucleon states.

In this paper we extend to the nucleus' 0 the variation-
al study on the stability of the standard nuclear ground
state performed in Ref. 6. Furthermore, using an effec-
tive interaction built up following the prescription of Ref.
3, we give an estimate of the effect of including processes
involving 6 excitations.

We assume a standard description of nuclear systems in
terms of nonrelativistic pointlike nucleons interacting
through a two-body force reasonably accounting for
deuteron properties and NN scattering phase shifts.
Therefore, the A-body Hamiltonian is given by

H(1, . . . , A)=g + —, g v(ij ),
i =1 i+j =1

(2)

with Og~)~ = 1, (0';'O'J ), (T; 'ri), (cr; 'O'I ) (T t) );
SJ =3(a; rj)(crj'r J).—(a; cJJ), SJ(r; r~} The po.tential
employed in numerical calculations is defined as

v(ji)=vRsc(ij )+f(f.rf/f) —1]vopE(ij» (3)

where uRsc is the V6 version of the Reid soft core (RSC)
interaction and the modified OPE potential (x =0.7r;J )

where p; and rri are the momentum of the ith nucleon and
the nucleon mass, respectively, and the interaction v(ij)
can be written in the form

uopE(ij ) = —,
'

m~ (~; rj )[(cr; oj .)e " /x+S[i(i1 3+ /x+3 x/)e "/x —(12/x+3/x )e "/x]I,
4~

m and f being the pion mass and the coupling constant
of the mNN vertex, roughly describes the enhancement of
the OPE interaction associated with 5 isobar mixing. The
effective coupling constant f,fr in Eq. (4) is defined in
terms of the 6 percentage U and of the coupling con-
stants of the n.Nb, and irk' vertices g and h:

f,ff =fu +(4/3)guu +(1/4)hu

with u =1—U . The values of g and III employed in nu-
merical calculations have been taken so as to reproduce
the width of the b, resonance: g=2f and h =(4/5)f.

Clearly, the modified NN interaction (3) can be written in
the V6 form (2). Moreover, as u ~0, u (ij)~uRsc(ij) and
the pure NN potential is recovered.

The variational wave function has been written in a
Jastrow-type product form

4(1, . . . , A)=F(1, . . . , A)4(1, . . . , A), (5)
where 4 provides an independent particle model (IPM)
description of the system, whereas the correlation factor F
is a symmetrized product of two-body operators suitable
to describe the correlation structure induced by the in-
teraction (2}:
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6

F(1, . . . , A)=s g y f' '(&J)0;
J&t=1 k=1

(6)

TABLE I. Quantum numbers {n„n,m) of the HO s.p. states
p„„{r)=R„(z)R„(rj) employed to build up the IPM wave

function of ' C and ' 0, both in the standard and in the m con-
densed phases.

Standard ground state
n, n P?

condensate
nz Pl

12C 0
0
0

0
1

—1

0
1

—1

2
0

—2

16O 0
0
0
0

0
1

—1

2
0

—2
3

—3

The IPM functions employed in numerical calculations
for ' C and ' 0 are Slater determinants of harmonic oscil-
lator (HO) single particle (s.p. ) states. In the oblate con-
figurations corresponding to the m condensate and to the
standard ground state of ' C (see Ref. 6) different oscilla-
tor lengths have been allowed for in the xy plane (b„=bz)
and along the z axis (b, ), whereas in the standard phase of
' 0 one has b„=b„=b,=b, . The requirement for the
volume of the system to be the same in the two phases
clearly implies the constraint (b„) b, =(b, ) . The quan-
tum numbers of the s.p. states employed in building up
the 4 's are listed in Table I.

The expectation value (H ) = ( + { H
~

0' ) /( I'
~

4 ) has
been evaluated within the same approximations employed
in Ref. 6: (i) the two-body correlation functions f' ' have
been taken from nuclear matter calculations assuming
f' '=f' ' and f' '=f' '=f' '=0; (ii) a cluster expansion
of (H) has been performed, retaining only the leading
term in A ' in the two-body cluster contribution.

For any given value of the 6 percentage and of the
volume parameter b„(H) has been evaluated in the
spherical standard ground state of ' 0, whereas in the ob-
late configurations corresponding to the rr condensate
and to the standard ground state of ' C a further energy
minimization, with respect to the Nilsson parameter

e = —3(1 b, /b„) I(1—+2b, /b„),
has been performed. The resulting minima in the stan-
dard ground states at u =0 are (H )/3 = —4.2 MeV at
b, =ho 1.4 fm ——and e= —0.36 for ' C and
(H ) /A = —5. 1 MeV at b, = bo ——1.45 fm for ' O.

Since the cluster expansion of (H ) rapidly converges in
the density region relevant to the study of standard nu-
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FIG. 1. Energy difference between the m condensate and the
standard ground state in ' 0 at U'=0 (no 5 mixing). The full
curve represents the results of the present approach, whereas the
dashed and dash-dot lines refer to the results obtained in Ref. 5

including m and m+p exchange in the residual interaction,
respectively.

clear ground states, the underbinding resulting from our
calculations, whose value in ' 0 is very close to that ob-
tained in Ref. 9 using the coupled cluster approach and
the full RSC interaction, seems to be mainly due to the
inadequacy of the NN interaction. However, it should be
pointed out that the RSC V6 potential incorporates both
the strong short range repulsion and the OPE tensor at-
traction, which are expected to play the major role in
determining the critical density for neutral pion condensa-
tion, so that using a more realistic interaction would prob-
ably not change the conclusions of the present work ap-
preciably.

In Fig. 1 the energy difference E, F., between —the con-
densed and the standard state of ' 0 at u =0 (no b mix-
ing) is plotted as a function of the ratio (p, Ipu) =(bo/b, ),
together with the corresponding results obtained by Tri-
pathi and co-workers. The critical density, in units of
the equilibrium density of the standard phase po, is given
by the value of the ratio (bp/6, ) yielding a vanishing en-

ergy difference. In Ref. 5 the binding energies have been
evaluated within the IPM, using the Hartree approxima-
tion and a one-boson exchange potential, modified at
short interparticle distance by a cutoff procedure, as a
residual interaction. The results clearly indicate that, as
in the case of ' C (see Ref. 6), the inclusion of the full NN
interaction produces a strong increase of the critical densi-

ty p, for the transition to the pion condensate.
The effect of allowing for a 6 mixing into the nucleon

state in ' 0 has been investigated by minimizing the total
energy with respect to the 5 percentage v . The results
are illustrated in Fig. 2, where the density dependence of
the energy differences E, —F., corresponding to different
6 percentages are shown. The solid and dashed lines refer
to the results obtained with the values v =0.6% and
v =1%, the latter corresponding to the minimum energy
at the critical density. It clearly appears that, as in the
case of infinite matter, ' the inclusion of 6 excitations
leads to a lowering of p, by a factor of 2. It should be no-
ticed that these results qualitatively agree with those of
Ref. 5, where a similar effect has been found at v =2.5%
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FIG. 2. Energy difference F.,—F., in ' 0 obtained within the
present approach at u~=0. 6% (solid line) and 1% (dashed line).
The dash-dot line represents the results obtained in Ref. 5 in-

cluding m+p exchange in the residual interaction and taking
U2=2. 5 lo.

FIG. 3. Energy difference E,—E, in ' C obtained within the
present approach at U =0 (solid line), 0.6% (dashed line), and
1% (dash-dot line).

within a coupled channel approach. As can be seen in
Fig. 3, the energy differences calculated in ' C exhibit the
same behavior as those of ' O.

On the basis of the results of the present work, it ap-
pears that both the short range part of the NN interaction
and the excitation of the 5 resonance play a crucial role in
determining the stabilization of the m condensate in finite
nuclear systems and have to be taken into account in a
fully consistent way in order to get any reliable estimate
of the critical density p, . En this regard, it should be
pointed out that our prescription to include 5 mixing ef-
fects in the two-body interaction is quite rough and that
an accurate calculation of p, within the potential model
would probably require the explicit inclusion of the b de-
grees of freedom in the many-body wave function and the
use of realistic transition interactions.

As far as the validity of the approximations employed
in the energy calculation is concerned, it should be noticed
that the inclusion of isobar mixing, moving the critical
density toward lower values, produces an improvement of

the convergence of the cluster series in the transition re-
gion. Although the so-called "wound parameter" x,
whose value roughly indicates the rate of convergence, s is
still quite sizable at p-5po (x-0.2), the energy separation
between the two phases seems to be larger than the error
bars associated with the values of (H), so that the in-
clusion of higher order cluster contributions should not
drastically change our results.

As a concluding remark, we would like to point out
that it seems to be unlikely that a more refined model to
include 6 mixing effects and a more accurate evaluation
of the energy expectation values could bring the critical
density for neutral pion condensation in atomic nuclei
into a region (p-2 —3po) where the standard nonrelativis-
tic potential model is expected to be meaningful. As a
matter of fact, at densities p-5po the possible occurrence
of abnormal nuclear phases other than the pion conden-
sate and explicitly involving the degrees of freedom of the
nucleon constituents, as in a quark-gluon plasma, ' should
also be taken into account.
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