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Calculation of mass yields for proton-nucleus spallation reactions
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Nuclear spallation reactions are treated as two step processes involving energy deposition and sub-
sequent evaporation. The first step is calculated in Glauber's multiple scattering formalism with
modification for direct knockout processes. Evaporation is treated by following the mean yield of
particles from the residual nucleus taken as an excited Fermi gas with ground state provided by the
semiempirical mass formula. The spallation mass yield is derived to be an exponential in the mass
of the fragments. The amplitude of the exponential and its slope depend on the projectile energy
and target mass. Experimental data are well reproduced without free parameters.

I. INTRODUCTION II. DISTRIBUTION OF EXCITATION ENERGIES

A high-energy proton penetrates a target nucleus and
breaks it. How does it happen? One usually distinguishes
three mechanisms: spallation, fission, and multifragmen-
tation (Hufner'). Fragments whose mass number A is
larger than Ar l2, where Ar is the mass of the target nu-
cleus, are produced by spallation. For heavy target nuclei,
fission leads to fragments around Ar/2. Light frag-
ments, 10&A &40, are said to originate from multifrag-
mentation. The physics of spallation reactions seems well
understood: In the first step of the reaction the incident
high energy projectile goes through the target nucleus and
deposits a significant amount of energy while ejecting
only a few nucleons. In the second step the excited nu-
cleus equilibrates, at least partly, and then evaporates nu-
cleons and light nuclei until a particle stable final nucleus,
the observed fragment, is formed. The cross section o(A)
to produce a fragment with mass A is called the mass
yield. It is usually calculated with large numerical effort:
An intranuclear cascade circulation is used for the first
step while the decay is treated by an evaporation code (see
e.g., Bertini et al. ). Campi et al. introduced significant
simplifications by applying Glauber's multiple scattering
theory to the first step and by treating decay as a dif-
fusion process in the excitation energy and neutron and
proton numbers. In this paper we work in the spirit of
the approach by Campi et al. , and succeed in deriving an
analytical expression for cr(A). The evaluation of the pa-
rameters of this expression by simple models provides
agreement with experimental data. In this way the depen-
dence of o(A) on the various parameters becomes clear
and the physics of spallation very transparent.

The first, fast step of the proton-nucleus collision is
treated in the spirit of Glauber's multiple scattering
theory. This formalism is a good approxiination for pro-
jectile energies, E„, above O.S GeV. During the collision
the projectile proton interacts with v nucleons of the tar-
get nucleus; the cross section o„ for these events is given
by

d2b T (b) T(b)—
yt

where the thickness function

T(b) =crt I dz p(b, z) (2)

depends on the total proton-nucleon cross section cr[ and
the density p(x) of the target nucleus. The o„are easily
calculated numerically for any shape of the nuclear densi-
ty; some examples are shown in Fig. 1. One observes that
the logarithm of cr„ is well approximated by a linear func-
tion v at least for the large values o„. We therefore write

CTv= CG

and relate the t~o constants c and d to more physical
quantities, the reaction cross section o~ and the mean
number (v) of collisions. They are defined as

trtt ——g tr„= f d b(1 —e ' '), (4)
v)1

(v)=o„' g vo„=
vol

With Eq. (3) used in Eqs. (4) and (5) we find
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&v) =2.57

processes. The dependence of the parameter Eo in Eq. (9)
on E~ will be discussed below.

If the projectile collides with v target nucleons indepen-
dently, the distribution F (E) of deposited energy is ob-
tained by folding Fi(E) v times, which provides

0.0)—
F~(E)= (E" '/Eo)exp( E/—Eo) .

(v —1)!
(10)

0.)

l

208pb

This formula is exact only if Eo is independent of E~
Since the projectile slows down during the passage
through the target nucleus, E~ decreases. We suggest
below a procedure for evaluating Eo for cases in which
Eo depends strongly on the instantaneous projectile ener-

gy.
The cross section do/dE' to deposit a certain amount

of energy E* into the nucleus is a superposition of events
with different numbers of collisions, v; therefore

= g erg„(E') .

0.00)
)0

This sum can be evaluated analytically for the o„given in
Eq. (6) and the F„given in Eq. (10). One finds

FIG. 1. Cross sections a„ for the interaction of the projectile
proton with v target nucleons as a function of v for several tar-
gets. The dots represent the values calculated numerically from
Glauber's expression; the solid line is our approximation Eq. (6).
Nuclear densities p(r) obtained from electron scattering and an
elementary cross section of 0, =30 mb are used for the numeri-
cal calculations.

0

(v) —1 (v)

This approximate formula is compared with the exact
values in Fig. 1 and reproduces them well over nearly two
orders of magnitude. We have not been able to drive the
formula Eq. (6) from the defining Eq. (1).

In each collision between the projectile and a target nu-
cleon an energy E is transferred from the projectile to a
target nucleon, and via equilibration also to the entire tar-
get nucleus. We denote by Fi (E) the distribution of ener-

gy E transferred to one target nucleon and assume it to be
norm ahzed,

EFj E =1 . (7)

Guided by the fact that the elastic nucleon-nucleon
cross section at high-energies behaves like

where q is the momentum transfer and q /2m =E the
transferred energy, we choose an exponential shape

Fi(E)=(I/Eo)exp( —EIEo) .

We also use this form for projectile energies E~ above the
first inelastic threshold in nucleon-nucleon scattering,
where energy is also deposited into the nucleus by inelastic

do oz E'
aE* (v)Eo (v)E. (12)

This result is very simple: Independent of how large the
target nucleus is, the energy distribution is always an ex-
ponential.

The mean energy deposited is given by ( v)Eo, which is
the average energy deposited in reactions for which the
number of collisions takes the mean value, (v). To this
point we have ignored the possibility that some collisions
end with the knockout of the target nucleons and hence
provide no substantial energy to the residual nucleus. The
mean energy deposited should thus be modified to account
for the direct knockout collisions. This can be accom-
plished by replacing (v)Eo in Eq. (12) by (v)(1 f)Eo, —
where f is the fraction of aB collisions that lead to direct
knockout.

We now estimate the value of f by regarding the nu-
cleus as a uniform sphere of radius R in which the nu-
cleons have a mean path A, . Guided by the fact that the
momentum transferred to the target nucleons will be per-
pendicular to the beam directions (z), we divide the sphere
into two regions, the boundaries of which are indicated in
Fig. 2. The inner boundary is generated by rotating about
the z axis an arc achieved by shifting downward a dis-
tance A, the circumference of a circle of radius of R origi-
nally centered at the origin. Target nucleons in the inner
region must travel a distance A. or greater to get out and
hence are assumed not to participate in direct knockout
reactions. On the other hand, half of the collisions in the
outer region, those for which the resulting momentum
transfer is toward the surface, are assumed to lead to
knockout. The ratio of the volume of the outer region to
that of the entire sphere is found to be —', (A, /R) plus terms
of order (A, /R) . Accordingly the estimated fraction of
collisions leading to direct knockout is

f= —, —,'A, /R =—,'A, /R .
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b(Ep}=0; Ep &0.28 GeV

=8+(1—0.28/E~ ) (GeV/e)

0.28 GeV(E~ & 10 GeV . (20)

FIG. 2. Schematic division of the nucleus into an outer
"knockout" and inner "spallation" re8ions.

Typical values for the mean energy Eo' lie between 50 and
100 MeV.

%e proceed to estimate the energy deposition due to in-
elastic proton-nucleus collisions. The formation of an in-
termediate 6 resonance is the dominant mechanism for
pion production from the inelastic threshold for
pN~NNm up to projectile energies E~ of several GeV.
The decay of the 5 resonance is an additional source for
energy deposition in p-nucleus collisions. We take this ef-
fect into account by writing the mean deposited energy as
a sum of two terms,

pN

e] 0'in m 6 —m
0+ pN0'f

It is easily shown that for a uniform sphere

&v) =-', Zu
and thus we take

f=I/&v),

leading to the following modified form of Eq. (12}:

(14)

(15)

dO' ~R E
dE' (&v) —1)E. (&v) —1)E.

(16)

d2E"= ( /2m) d do=
o 0 dz (17)

%e next calculate the single-collision slope parameter
Eo and its dependence on the projectile energy E~:
Eo(E~). According to Eq. (9), Eo is the mean energy
which is transferred in a proton-nucleon collision. For
energies below the first inelastic threshold, the energy
transferred in an elastic collision is

dE
Ep —— E

—1

dE dE, (22)

where dE/dN is the energy change per collision, and we
take

Eo(E) (23)

where mz is the mass of the 6 resonance. The factor —,
'

refiects our assumption that only the slow b, (i.e., when a
target nucleon is excited to a b, ) deposits its energy into
the target nucleus, while a fast b decays outside the nu-
cleus.

While traversing the nucleus, the projectile loses energy.
Since Eo depends on the projectile energy, the mean de-
posited energy per collision changes during the traversal
of the nucleus. If one takes this effect into account exact-
ly one loses the simplicity of the formula Eq. (10). We
take this effect into account approximately by using the
mean value Ez rather than the initial value E~ in evaluat-
ing Eo. To find E~ we average over the degradation pro-
cess from the initial proton energy E~ to its final energy

The upper limit, p/v 2, where p is the laboratory momen-
tum of the projectile, is introduced by defining the faster
nucleon after the collision to be the projectile which
proceeds to the next collision and the slower one to stay
inside the target nucleus. Using Eq. (8) in Eq. (17) one
finds

b bE']= l —P P
2mb 2 2

which has the limits

Eo'-Ep/4 for Ep &0.5 GeV

, mb for E~ )2 GeV—.

The slope parameters b for elastic NN scattering are well
determined (e.g., Igo ), and may be parametrized by

with Eo(E) given by Eq. (21). The final energy Ef is
determined by

' —1

& ) JRf dE
(24)

P

dE.

for example, with E~&0.5 GeV, we find from Eqs.
(22)—(24)

E.(E ) =— ' (1—.-'"'") (25)

In this section we have derived the distribution
da/dE' of energy E* which is deposited into a target
nucleus. Clearly, Eq. (16) and the subsequent expressions
for Eo involve approximations in several respects. In or-
der to gain some confidence in their reliability we corn-
pare the predictions of Eq. (16), using Eq. (25), with the



A. Y. ABUL-MAGD, %. A. FRIEDMAN, AND J. HUFNER

0.004
hJ
CL

loo0 200 300 400 500
E (Mev)

FIG. 3. The distribution of excitation energy E in proton-
'"Tb colhsions at E~=600 MCV. The histogram is the result of
an intranuclear cascade calculation by Bertini et al. (Ref. 2), the
solid line is our analytical result, Eq. (16}.

( (v) —1)E(1

which depends on AT and Ep since the two quantities, e
and (v) depend on AT, while (v) and Eo depend on E~.

We next discuss the magnitude of the parameter e and
its dependence on the target mass. To begin with we con-
sider reactions for which the mass loss is all borne by neu-

trons, since there are extensive data on (heavy ion, xn) re-
actions. In order to determine the mean number of
evaporated neutrons we shall estimate the mean kinetic
energy Ek and the mean separation energy for the emitted
neutrons. For the former we use a Fermi gas model to
describe the excited nucleus, while for the latter we use
the semiempirical mass formula for ground state energies.

In calculating the mean kinetic energy EI, we assume
that the spectrum of neutrons at any temperature is pro-
vided by

n
cc Ekexp( Ek/T), — (30)

results of an intranuclear cascade calculation. Figure 3
shows this comparison. The agreement is quite satisfacto-
ry, except for excitation energies close to the E~

III. THE MASS YIELD CURVE

After the first, fast step of the reaction, the target nu-
cleus is in a state of high excitation energy. It also has
lost a few nucleons which have been ejected during the
cascade. Since their number is small compared to the tar-
get mass Ar, we neglect them. Thus after the first step of
the reaction, the target nuclei present are an ensemble of
nuclei with mass Ar and a distribution of excitation ener-
gies characterized by drr/dE'. A nucleus with a given
excitation energy emits nucleons or light nuclei until a
particle stable final fragment with mass A ( = AT —h,A) is
reached. The ratio,

(26)

of excitation energy ~E' carried away by hA emitted nu-
cleons is the crucial parameter which relates the mass
yield curve to the distribution of excitation energies. If
we assume that a is independent of E* and A, i.e., e is the
same at each step of the evaporation chain, then the mass
yield has been derived by Campi et aI. to be

dE
2T+&a) (32)

With the excitation energy given by E =aT, where a is
the Fermi-gas density parameter (taken between A/12
and A/8), we obtain

2Q T 2QT 2TdN=- —
& )

dT= &) 1 —
& )

d—T . (33)

Using Eq. (33) in Eq. (31) we find (to lowest order in
T..„/&~)):

so that the mean kinetic energy is given by (Ek) =2T.
During the course of the evaporation process the tempera-
ture decreases towards zero from an initial value T,„.
We must calculate the average temperature T,„, during
the evaporation process. This is straightforward as long
as T,„ is much less than the average neutron binding en-

ergy.
The value of T,„ is defined by

T,„= T / E, (31)

where dN is the differential of the neutron yield. Intro-
ducing the average binding energy (8 ) we have

o(A)=c
E =(A& —A)e

(27)
l Tmax

Rv 3 Blsx 6 (g )
(34}

When this relation is combined with the formula for
dcT/dE, Eq. (16), wc obtalll

Finally with T,„=(E'/a)' we obtain the Incan kinetic
energy

'(& )-l)E. '
(& ) —l)E. Ar —A

(28)

This result has an amazingly simple form. The shape of
o(A) is an exponential in the mass A of the fragment.
The slope s of the exponential is a dimcnsionless parame-
ter

(35)

In order to calculate the mean binding energy (8 ) we
use the semiempirical mass formula neglecting the pairing
alld shell corrcctlolls. (Thcsc coITcctlolis alc Ilot cxpcctcd
to play an important role at the high excitation energies
involved in the present study. ) We therefore assume that
the mass defect for the decaying nucleus is given by
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M (Z, A }=a„A —agA —a,z2/A '

—a, (A —2Z) /A, (36)

with a„=14.1 MeV, a, =13.0 MeV, a, =0.595 MeV,
and a, =19.0 MeV. The binding energy of N neutrons
removed from a nucleus of mass A and change Z is given

by [M(Z, A) —M(Z, A —N}]. This difference may be ex-
panded in powers of N:

(z A) M—(z A N)—NaM(z, A) N, a'M(z, A)

aA ' aA'

The projectile ion then determines the mass and charge
for the resulting compound nucleus. In Fig. 5 we show
the results E'/x for two different projectiles using Fermi
gas density parameters of A/8 and A/12 MeV ' for
comparison. Calculated results are shown for two values
of excitation energy —50 and 150 MeV which represent
the approximate range of excitation energy for the experi-
mental data shown. The sensitivity to projectile, and con-
sequently the isospin of the compound nucleus, is ex-
tremely weak. There is some sensitivity to the value of
the gas density constant, but no clear preference is evi-
dent. The largest sensitivity is related to the change in the

+ 0 ~ ~ (37)

aM, a'M=
aA ' aA2

(38)

Neglecting terms higher than second order we obtain
&~): I I I l l I l I l l

1

To find the binding energy for the (N+1)th neutron

BN+ &
we use similar arguments to obtain

aM a'M
(39)

aA

Finally, to find the mean number N of neutrons emitted
in a given reaction, we divide the available excitation ener-

gy by the average energy carried by each removed neu-
tron. %e assume the energy available is E' —BN+~, tak-
ing into consideration the threshold energy for neutron
emission. Then we obtain N from

10-

~/~ oiok

P~s pS

N= ~N+ 1

(E, )+&» '

and using Eqs. (38) and (39),

aM NaM
aA

(40)

aM, a'M' +
aA ' aA'

(41)

which may be solved for N.
We have used the result of Eq. (41) to calculate the

mean number of neutrons emitted by the nuclei ' Ce,
"Po, At, and Po as functions of the excitation ener-

gies. In Fig. 4 these calculated values are compared with
the positions of the peaks of the experimental excitation
functions for the reactions 'i Te(' C,xn}, ' Au(' N, xn),

Re( Ne, xn), and ' Dy( Ar, xn) taken from a compila-
tion by Neubert. The level density parameter used in
determining (Ek) is taken eq~ual to A/12 MeV ' (the
solid curves) and A/8 MeV (the dashed curves). The
agreement between calculation and experiment is good.
The uncertainty in the determination of the peak positions
makes inconclusive any definite preference for one density
parameter over the other.

We have also used Eq. (41) to examine the dependence
on the compound-nucleus mass of the ratio of excitation
energy to the number of neutrons emitted, E'/x, in a
(HI,xn) reaction. For this study we assumed the target to
have charge related to mass by the conditions providing
the valley of stability in the mass formula of Eq. (37}.

I l I I l I l I I l I I

50 100 150

E (MeV)
FIG. 4. The mean number X of neutrons emitted by the

compound nuclei ' Ce, "Po, 'At, and Po as functions of ex-
citation energy. The experimental points are taken from
Neubert's compilation (Ref. 6) of the peaks of {HI,xn) reactions.
The solid curves are calculated from Eq. (40} and correspond to
a choice of a =A/12 MeV ' for the level density parameter
while the dashed curves correspond to a =A /8 MeV
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excitation energy. This variation, however, is small when

compared to the experimental deviation for the quantity
E*/x for each mass (shown by the error bars).

Encouraged by the good agreement between the simple
model and the data for the (HI, xn) reactions, we have
used the evaporation model of Friedman and Lynch to
estimate general Inass loss for heated nuclei. This model
incorporates precisely the same Fermi-gas and semiempir-
ical mass formula, features discussed above for the HI-xn
reactions, but allows for the emission of charged particles
and more massive particles in addition to neutrons. %e
have used this model to calculate the loss of mass b,A, for
given excitation energies and nuclei. Specifically we have
studied Cu, ' Ay, and ' Au. In Fig. 6 we show the cal-
culated value of hE'/hA [or the parameter e of Eq. (26))
as a function of initial excitation energy. Two values of
a, 2/8 and 3/12, were used for comparison. We find e
slowly varying with the excitation energy, thus justifying
Eq. (27).

In addition, we can take specific values of e from the
curves in Fig. 6 in order to evaluate Eq. (28) for direct
comparison with experimental spallation mass yields
presented below. Having obtained an estimate of the pa-
rameter e we next examine the energy dependence of the
slope parameter s(E~,Az } given in Eq. (29} as a function
of incident energy. This dependence has been extracted
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FIG. 6. The excitation energy removed per unit mass
evaporation as a function of excitation energy for the compound
nuclei Cu, '~Ag, and ' Au. The solid curves correspond to
a =A/12 MeV ' and the dashed to a =A/8 MeV '. The ar-
rows indicate the energies used for calculations described in the
text.
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FIG. 5. The loss of excitation energy e per emitted neutron
from the excitation function in heavy ion reactions of the type
AT(HI, xn), Eq. (26), as a function of the mass of the compound
nucleus. The data points have been prepared from a cornpila-
tion by Neubert (Ref. 6). The closed circles are for carbon and
the open ones for oxygen as projectiles. The calculations are
indicated by the following curves: solid for (' C,a =A/12
MeV ',E*=50 MeV); dashed-dotted for (' O,a =A /12
MeV ',E*=50 MeV); long-dashed for (' C,a =A /8
MeV ',E*=50 MeV); short-dotted for (' O, a =A j12
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FIG. 7. The slope s (E~) of the mass yield curve as a function
of the projectile energy E~ for p-Cu collisions. The data points
are taken from Cumming et aI. (Ref. 11).
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from data for p-Cu reactions over a wide range of ener-
gies. We compare the prediction of Eq. (29) with these
data. We evaluated (v) from Eq. (5) assuming the effec-
tive NN cross section in nuclear matter is ~e11 represented

8

&00 ~ ~ & f
(

f I I I
)

I I I I ] I I I I

50—

cr, = 1 —— (Zrrt +Nrrt~")/A, (42)

where EF is the Fermi energy. The experimental
nucleon-nucleon cross sections are taken from Ref. 9.
The total reaction cross section for Cu is taken from the
measurement by Renberg et al. '

Figure 6 provides an estimate of e, and Eo (E~) is
evaluated according to Eqs. (18), (21), and (22). The re-
sulting values for the slope of the mass yield as a function
of energy for interactions of protons with copper" are
shown in Fig. 7. The model is in excellent agreement with
the data. We have limited the comparison to energies less
than 5 GeV, above which energy the mechanism of 5 pro-
duction ceases to be dominant.

Finally in Fig. 8 we dire:tly compare the prediction of
Eq. (28) with experimental' ' spallation mass yields
from 3 GeV protons interacting with Cu, Ag, and Au.
The theoretical results which contain no adjustable pa-
rameters reproduce the experimental points in trend and
magnitude.

IV. SUMMARY AND CONCLUSIONS

As early as 1966 Rudstam'5 proposed to parametrize
the mass yield curve for spallation products by an ex-
ponential,

10—

50 200100
A

FIG. 8. Data and calculation for the mass yield curves for
proton nucleus spallation reactions. The data are for 3 GeV
protons on Cu [by Cumming er al. (Ref. 12)], Hg [Katcoff
et al. (Ref. 13)],and Au [Kaufman er al. (Ref. 14)].

150

—PAT
~0——cr+Pe

where (v) is the mean number of proton-nucleon col-
lisions in a given target nucleus, Eo the mean energy
which is transferred to the target nucleus in one proton-
nucleon collision, and E is the average energy carried away

by one evaporated nucleon. Since Eq. (43) with the pa-
rameters calculated by Eq. (44) reproduces the data in
magnitude and trend, one may say without arrogance that
proton-induced spallation reactions are quantitatively un-

derstood. They are two-step processes, excitation of the
target and subsequent evaporation.

o( A) =croexp(PA), (43) ACKNOWLEDGMENTS

where rro and P were empirical parameters which depend
on the projectile energy Ez and the mass Az of the target
nucleus. In this paper we are able to derive the shape Eq.
(43) from multiple scattering and an approximation to the
evaporation chain. Explicit expressions are given for the
parameters P and oo.
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