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Under the assumption that the ground state of a many-body system is formed by a condensate of
quartets, the structure of these quartets, as well as the equations that describe the excitations of such
a system, are obtained. It is shown that such a description can be applied to well deformed nuclei.
In particular, it is found that the one- and three-body excitations will have a description that is simi-
lar to the one provided by the Nilsson model. Some experimental differences are predicted.

I. INTRODUCTION

The problem of alpha clustering in nuclei has been one
of the most challenging ones in the field of nuclear phys-
ics. In light nuclei the large stability of even-even nuclei
with the same number of protons and neutrons suggested,
since the early times of nuclear physics,! models consider-
ing the alpha particle as the elementary building block
needed for the description of the ground states and some
special excited states of those nuclei.

Danos and Gillet? found that the quartet model® has
not only a reasonable success in the description of the
low-energy features of nuclear spectra for light nuclei but
that it was consistent with the behavior of nuclear masses
throughout the Periodic Table. In heavy nuclei there are
many indications of the relevance of the alphalike cluster-
ing and we will review some of the most noticeable.

The first one was related to the study of the alpha pre-
formation coefficients by Bonetti and Millazzo-Colli.*
They found that the preformation coefficients evaluated
from (n,a) and (p,a) reactions’ in heavy nuclei and the
values obtained from a statical approach to alpha radioac-
tivity are in excellent agreement. This coefficient has a
rather smooth A dependence showing a strong dip at the
magic number N=126 and the value of the coefficient is
almost 1 at its maximum.

A second indication was provided by Becchetti et al.®’
by the study of the (d,°Li) reaction systematics in heavy
nuclei. They found that the (d,°Li) ground state cross sec-
tion has a general trend and that it decreases with the tar-
get mass A, <1/ Al Superimposed on this general
behavior are systematic variations with local maxima and
minima. Doing distorted-wave Born approximation cal-
culations they were able to separate an ‘“alpha-
spectroscopic factor” that has a remarkably similar
dependence with A to the mass variation of the alpha pre-
formation coefficient when the data overlap. Moreover,
this alpha spectroscopic factor has well pronounced dips
near the magic nuclei 2*Pb, *’Sn, and **Ni.

A third indication comes from several studies of the
binding energies. As we already have said, Danos and
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Gillet found that the quartet picture is consistent with the
behavior of nuclear masses throughout the Periodic Table
and they discussed also the implications of the idea with
many particle—many holes states in the region of 4=100
and 150. Later,® the pairing and symmetry terms of the
semi-empirical mass formulae were replaced by one of the
Casimir operators of SU(4). This quarteting scheme im-
poses a very special dependence on isospin that the fit to
the experimental binding energies seems to favor.

In Ref. 9 the stability of the internal structure of alpha
clusters in nuclei was investigated through the study of
the regularities of the two-nucleon separation energies up
to A=172.

In Ref. 10 the binding energies were studied to explore
in a systematic way all possible modes of excitation based
upon clusters of several nucleons. It was found that if one
considers clusters with more than two particles, only al-
phalike clusters qualify as elementary modes of excitation.
It was also found that the alpha-particle separation ener-
gies suggested that deformed heavy nuclei can be
described as an alpha-particle condensate. This comes
from the fact that for a boson condensate, when the in-
teraction between the bosons is attractive, the ground state
energy will depend quadratically'! on the number of bo-
sons, and therefore the separation energy will depend
linearly on the same number, as is the case in Fig. 6 of
Ref. 10.

Gambhir, Ring, and Schuck!? made a description of de-
formed nuclei as a superfluid condensate of alpha parti-
cles. They assumed that these particles were formed in
the framework of the IBM model, as a superposition of S
and D bosons. In this model they were able to reproduce,
at least qualitatively, the even-odd staggering of the bind-
ing energies. It has been pointed out'>'* that this stagger-
ing can be understood in terms of the symmetry term of
the semi-empirical mass formulae. In Ref. 15 it has been
stressed that when there are many particles outside closed
shells, one must take care of the symmetry energy in the
form of correlations and that the importance of the alpha
correlations and their relation to the symmetry term have
already been noted in Ref. 8, where the symmetry energy

1097 ©1986 The American Physical Society



1098 G. G. DUSSEL AND A. J. FENDRIK 34

follows from the SU(4) symmetry originated in the quar-
tets.

A fourth indication came from the study of >'*Po done
by Dodig-Crnkovic, Januch, and Liotta.'®!” For the cal-
culation of absolute alpha-decay widths in 2'?Po, two
states were considered. One was the product
|g.s.2'%Po)® |g.s.2!°Pb) that takes into account the pairing
interaction between protons and between neutrons. The
other state was |2!°Bi)® |2!°Bi) that takes into account
the proton-neutron interaction.

It was found that the presence of the Bi part of the
wave function has two appealing effects. On the one
hand, the absolute alpha-decay rate is between 10 and 20
times bigger, and on the other hand, an alpha cluster on
the surface appears. In Ref. 18 it was shown that the
pairing interaction localizes the four particles in the sur-
face, but not in a small volume, as they are essentially dis-
tributed throughout the surface.

These calculations'®!7 suggest the existence of two dif-
ferent types of systems as one moves away from the
closed shell. One will be formed by the usual pairing vi-
brations or an equivalent type of description. The interac-
tion between the proton and neutron pairs can be known
from the study of 2'?Po. The other type of description
will be based on the | 21°Bi)® | 21°Bi) basis. In Ref. 19 it
is shown that for nuclei heavier than 2®Pb the energy of
the second type of system is equal to the one correspond-
ing to the first type around the transition region between
spherical and deformed nuclei. In this oversimplified pic-
ture the ground state in the deformed region is a coherent
mixture of many T=0 pairs and the four body cluster has
a collective structure. This very simple calculation can be
considered as an indication that the assumption that the
ground state is a condensate of quartets may be connected
with real nuclei.

The treatments of Refs. 12 and 19 provided a
phenomenological description in terms of bosons. In one
case,'? the alphalike cluster is formed by a mixture of S
and D bosons. In the other case' it is a coherent mixture
of many T=0 pairs and the alphalike cluster will there-
fore have a collective origin. Both treatments were related
to the work of Nozieres and Saint James,”® where the
competition between boson condensation and coherent
wave functions of pairs of bosons is discussed.

An alternative phenomenological treatment based on
the interaction boson model was developed by Iachello
and Jackson.?! They suggested that the clustering aspects
may be taken into account by a dipole degree of freedom
of the IBM. This degree of freedom is originated by the
oscillation of the alpha particle relative to the remaining
part of the nucleus.?

With regard to the microscopic description of the
alpha-clustering phenomena in terms of fermions, there
are few antecedents. The first one is the work of Bre-
mond and Valatin,?* where they used for the ground state
a coherent state, changing the usual BCS structure

[ (Us+Vaalal)|0) (1.1)

a

to

[1Se+Vapa lpa ;p +Vana Zna;n
a

+Taa};pa;pa£na;n)|0) . (1.2)

The operators alp and azm create, respectively, a proton
(or a neutron) with quantum numbers a. The coefficients
S, V, and T were determined, as usual, by minimizing the
Hamiltonian. This wave function contains, as a particular
case the usual BCS one, when S,=[(1—V2)1
— V)12 and To=V 0 Vep.

Flowers and Vujicic®* noted that the energy gained by
the difference between the BCS four body term and the
one corresponding to the usual factorization was very
small, of the same order of magnitude as the Hartree-
Fock corrections of the pairing interaction, and that
therefore, that sort of wave function was not able to pro-
duce large or collective effects. They were interested in a
method to take into account charge independent pairing
correlations in light nuclei where the advantages that one
can get from the Wigner supermultiplet symmetry are
very rich. To be able to use this advantage they worked in
L-S coupling with a wave function of the type

T f i t
P= H H' (Ur+ VII'epqrsaImpal—mqal’m’ral'—m’s) I 0> s
I'mm' pgrs

(1.3)

where € is the antisymmetry tensor. The prime in the
second product merely signifies that the product is to be
taken only over the 24 elements of € that are nonzero.

They found that the quasiparticles have a simple struc-
ture when [ =/’, namely,

aL:Ukalp—%quEmemma_k,ak,a_kq . (14)
This is a natural extension of the BCS structure since now
the Cooper pairs are indeed formed by four particles and
the hole term in the quasiparticle must be replaced by a
particular mixture of three holes.

When /51" they found it necessary to make an expan-
sion in powers of V, retaining only the lowest orders.
They found that the description was quite complicated
and almost intractable.

We can say therefore that there are papers that attempt
to describe deformed nuclei as being due to the presence
of alpha particles (see, for instance, Refs. 21 and 22) or as
a condensate of pairs of nucleons (for instance, Refs. 15
and 16). On the other hand, the Nilsson model provides
the standard explanation of these nuclei, giving a very
precise description of those nuclei. As both ways of look-
ing at the problem of deformed nuclei seem to be anta-
gonistic, our main purpose will be to prove that it is possi-
ble to reconciliate both approaches, by showing that the
Nilsson model also follows from the assumption that the
ground state is a condensate of quartets.

We will develop a method to study excitations of a sys-
tem under the assumption that the ground state is a con-
densate of quartets. It will have some similarities with
BCS, where the g.s. is considered as a condensate of pairs.

The assumption that the g.s. is quartet condensate will
permit the classification of different processes and the
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selection of diagrams that are of the same importance.
This is done in Sec. IL.

In Sec. III we obtain diagramatically the equations that
give in a self-consistent way the excitations of the system
as well as the structure of the ground state. Their inter-
pretation and some general characteristics are discussed.

In Sec. IV we compared the results obtained with the
standard description of deformed nuclei.

II. CLASSIFICATION SCHEME

The nuclear field theory?® (NFT), that assumes that the
matrix elements of relevant operators have an analytic
behavior, is an approach that seems suitable for under-
standing the relative importance of different processes in
heavy nuclei, when it can be considered that the interac-
tion between the nucleons contains only one and two body
terms.

If the ground state of the system is normal, i.e., nonde-
formed and nonsuperconductive, the NFT uses a two-level
model,2® where each shell has a degeneracy N, to classify
the relative importance of the different contributions.
Due to the assumption of analyticity, it is possible to
write the matrix elements of an operator F between an ini-
tial state | i) and a final one | f) as

n

(fIF|iY=a3 fn % , .1

where a and f, depend upon the operator F under con-
sideration.

These constants f, correspond usually to the sum of an
infinite perturbative series in the interaction strength and
in the NFT each diagram corresponds to a particular
power of 1/V'N. In particular, when the collective excita-
tions are described in the random-phase approximation
(RPA) the full n=0 part of (2.1) is taken into account by
the RPA diagrams.

The characteristic of the NFT that allows for this clas-
sification scheme, is that the amplitudes defined by
{ particle-hole|relevant collective state) are of order 1/V'N .
All the dependences of a diagram are given by the number
of amplitudes and the number of fermionic loops that a
diagram has.

When the ground state of the system is supposed to be a
condensate of K pairs,27 the NFT uses a one level model
with 2K particles to classify the processes. In this case,
one can write

m

(2.2)

n
K
N

<f|F’im)=Bm2fmn 1_]1\7

The factor K appears because every time that one pair be-
longing to the condensate is created or annihilated one
gets a factor VK.

In Refs. 27 and 28 an approximation scheme was
developed that permits the isolation of the processes that
contribute to the n=0 series in even and odd systems.
This procedure was called the principal series (PS) ap-
proximation, as it retains the principal series (i.e., the one
corresponding to n=0) in the development (2.2). We will
try to develop a similar approximation when the ground

state of the system is a condensate of quartets. Unfor-
tunately, in this case, there is not any simple model on
which one can rely to see the worth of the classification
scheme. We will then need to extrapolate the concepts
used by the NFT in the two previously discussed cases.

If, as is desirable, the interaction between the quartets is
not of the same order of magnitude as the terms incor-
porated in their definition, it is necessary that the zero or-
der (in 1/N) description of the four particle excitations be
not the product of two two-body structures. If that is not
the case, the concept of four-body clusters is not going to
be useful.!®

To obtain a different zero order description, we use a
scheme where we start with two-body excitations evaluat-
ed in the RPA. From these two-body excitations we iso-
late the R that have a collective character. This number
R is of the same order of magnitude as N. If the interac-
tion is attractive, these states will correspond to the lowest
energy solution of the RPA equations for different spins
and isospins.

We will construct a four body collective excitation as a
coherent mixture of pairs of these two-body collective ex-
citations. This approximation amounts to the assumption
that the amplitudes of two pairs in a quartet is of order
1/VR. To simplify the notation we will represent by
a,b, ... ,c the one particle states, by a,8, ...,y the two
particle states, by r,s, ... ,t the three particle states, and
by L,M, .. .,Q the four particle states.

Now we come to the problem of determining how many
three-particle states will be relevant. If we only consider
the R collective two-particle states we will have RN =L
three-particle states. We will assume that of these L
states there are only S (of the same order of magnitude as
N and R) that are relevant. There are several reasons for
this assumption. One is that in this way the two ampli-
tudes [Figs. 1(c) and 1(d)] are of the same order of magni-
tude as those of Figs. 1(a) and 1(b). This will mean that
each particle state has a small number of partners to form
the quartet. This is also suggested by the framework used
by Flowers and Vujicic** where for light nuclei there was
only a single three-hole partner for each one-particle state.

The ground state wave function will have two different
types of contributions. One will be the coherent sum of
pairs [corresponding to Fig. 1(d)], and a second part will
be given by a “coherent sum” of particles coupled to trios
[corresponding to Fig. 1(c)]. If one considers all the states

(a) (b) (c) (d)

FIG. 1. Amplitudes into different states that are assumed of
order 1/V'N ~1/VR =1/VS.
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formed by two pairs, they will form a complete basis for
the system with four particles and there will be N* states
of this type. Similarly one can form a complete basis with
the N* states formed by coupling particles to all the possi-
ble trios. As we are only considering N states of each
type, there will not be any problem related with overcom-
pleteness of the basis to this order. The double counting
of processes that will be done will be of order 1/N com-
pared with the processes retained, as follows from inspec-
tion.

It must be noted that in the NFT the one?’ and two?®
level models were used to recognize that the amplitudes
shown in Fig. 1(a) are of order 1/V'N and that anytime
an external pair is created or annihilated a factor V'K ap-
pears. The assumptions displayed in Fig. 1 allow the clas-
sification of the diagrams contributing to any process and
in particular to the ground state energy. It is important to
remember that as we will work with diagrams containing
composite excitations we must consider the structure of
these excitations only when they interact with other exci-
tations. For example, the diagram shown in Fig. 2(a) con-
tains the diagram shown in Fig. 2(b). In Fig. 2(b) we have
decomposed the quartet before it interacts with the other
excitations, and as the diagram has been already counted,
it must not be considered.

At this point we will discuss how to calculate the ma-
trix elements needed to evaluate the amplitudes shown in
Fig. 1. Let us assume, for simplicity, that we know the
amplitudes for the quartet, the trios, and pairs, i.e., that
we know

(Qlajazalai|0), (t]ajasa}|0), (a|ala}|0).
Then, from the knowledge of the two-body part of the
Hamiltonian

V=1 > V12,34alira;a4a3 , (2.3)

1234

we can evaluate the different coupling constants as in the
NFT (Ref. 26), i.e.,

(a) (b)

FIG. 2. Different contributions to the ground state energy.
(a) Illustrates a diagram that must be considered, while (b)
shows a process that as been incorporated in (a).

4,

N N T

FIG. 3. Illustrations of different effective matrix elements
between dressed structures.

A= Vanlalala}|0), (2.42)
12
Ap= 3 Vaun(t]ajala} [0)(0]asa,(B) , (2.4b)
1234
o= 5,12 1420304 |0)(0|aazas|r),
12345
(2.4¢)
A= 3 Vse,zs(Ql“Ia;a;a“O)
123456
X(OIa,aSQa)(O|a6a2|B) . (2.4d)
- + + w + -
+ ﬁ + w W +.ee

FIG. 4. Diagrams that contribute to the PS of the one-body
excitations.
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FIG. 5. Diagrams that contribute to the PS of the three-body
excitations.

In a similar way we can define the matrix elements for the
Hamiltonian that is effective between the composite struc-
tures, shown schematically in Fig. 3.

Another concept that in the present situation is ill de-
fined is the concept of loop. We will assume, for classifi-
cation purposes, that each one particle state (m) has as
partner a single trio (#7) and that each one of the R two-
particle states (a) has as partner only one two-particle
state (@). These assumptions make clear which diagrams
have loops and it will help us to decide if a diagram is of
the same order of magnitude as another one or not.

In order to determine which diagrams are the most im-
portant it is necessary to isolate the factors introduced by
the different parts of a diagram. A quartet that is created
or annihilated can generate two types of contributions: ei-
ther VK /N if it belongs to the initial or final state (con-
densate) or 1/V'N, if it is one of the internal quartets that
appears in intermediate states. All vertices corresponding
to the opening of a pair or a trio will be of order 1/VN
(we consider that N~S~R).

Each fermionic vertex yields a factor 1/N and each
loop carries a factor N. It is therefore seen that the prin-
cipal series for a given process will be given by the set of
diagrams where the number of internal connections (inter-
nal bosons or fermionic couplings) is as close as possible
to the number of loops.

Some of the diagrams corresponding to the PS (princi-
pal series) for the fermionic one (three) particle excitations
are shown in Fig. 4 (5) and in a similar way for the boson
excitations corresponding to two (four) particles in Fig. 6

4.0+ PO

FIG. 6. Diagrams that contribute to the PS of the two-body
excitations.

44 R

H

FIG. 7. Diagrams that contribute to the PS of the four-body
excitations.

(7). To clarify this picture, a diagram that does not be-
long to the PS for the one particle excitation is shown in
Fig. 8. This classification scheme then allows for the iso-
lation of more important diagrams that will form the cor-
responding PS when the ground state of the system is a
condensate of quartets.

III. DESCRIPTION OF THE EXCITATIONS

We have defined the principal series (PS) as being given
by those diagrams with the smallest difference between
the number of loops and the number of internal connec-
tions. A PS diagram is characterized by the fact that it
becomes separated into two disconnected parts by cutting
it through any connection.

To obtain the structure of the excitations and its ener-
gies it is simpler to study the poles of the one, two, three,
and four body Green’s functions than to sum explicitly,
using the Raleigh-Schrodinger perturbative expansion, all
the perturbative corrections of the type shown in Figs.
4-17.

In order to determine which diagrams are the most im-

portant it is necessary to isolate the factors introduced by
the different parts of a diagram. A quartet that is created
or annihilated can generate two types of contributions: ei-
ther VK /N if it belongs to the initial or final state (con-
densate) or 1/V'N, if it is one of the internal quartets that
appears in intermediate states. All vertices corresponding
to the opening of a pair or a trio will be of order 1/V'N
(we consider that N~S~R).
Feynman diagrams. One must also take care to include
each process only once, i.e., one must be careful of
equivalent lines, equivalent processes, etc. This method of
transforming the Rayleigh-Schrodinger diagrams to the
time dependent version is what we call by inspection, i.e.,
by making sure that all the diagrams contained in Figs.
3—7 are considered in the processes described by these
multiparticle GF.

In this way we must obtain by inspection the set of cou-
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— — — —

FIG. 8. Diagram that does not belong to the PS of the one-
body excitations.

pled multiparticle Green’s functions (CMPGF). For ex-
ample, the types of diagrams that contribute to the one-
body Green’s function are shown in Fig. 9.

First, it must be noted that it is advantageous to replace
the quartet belonging to the condensate by its dressed ver-
sion. In this way one takes into account many diagrams
and it diminishes largely the type of diagrams that one
must consider. For example, the last diagram of the first
line of Fig. 9 must not be considered, as it corresponds to
the dressing of the quartet. The consideration of the pro-
cesses that dress the one- and three-body excitations
makes the equations much more compact.

As was done in the case when the ground state of the
system was taken to be a condensate of pairs,?® it is con-
venient to choose the zero of the single particle energies A
in such a way that the propagator of the quartets (QP) has
its root at zero energy. This has the great advantage that
one can avoid the problems associated with the asymptot-
ic behavior of the QP at t =+ « and ¢ = — .

The QP corresponding to external lines can be omitted
because they will not have any time dependence and their

only contribution will be given by the vertices. Using
these simplifications, the CMPGF are described by the di-
agrams shown in Fig. 10. One obtains seven coupled
equations. Even if they look very complicated they have a
rather simple structure.

The one, two, and three body GF can be dressed by two
different mechanisms. The first one is related to the
internal structure of the excitations. This is considered in
Figs. 10(a), 10(c), and 10(e), respectively. Afterwards, one
must consider the sawlike diagrams shown in Figs. 10(b),
10(d), and 10(f), that take into account their participation
in the quartet. The last equation gives essentially the
quartet wave function. As was discussed in Sec. II, it has
two different types of contributions. One coming from
the opening of the quartet in one- and three-body excita-
tions and the other one coming from its opening in pairs.
One is making here a double counting of processes but the
error is of order 1/N, as follows from inspection. One
can then say that the equations associated with Figs.
10(a), 10(c), and 10(e) will give the zero order energies or,
equivalently, that it will correspond to the independent
particle part of the effective Hamiltonian for the corre-
sponding propagators. We will now analyze in some de-
tail the diagram 10(a). A two-body Hamiltonian admits
two alternative descriptions, as a particle-particle or as
particle-hole one. (A detailed discussion in a situation
similar to the one present here is discussed in Ref. 29.) In
one case the relevant coherent modes are of the pairing
type while in the other case they will have a multipole
character. For Fig. 10(a) the relevant description is the
multipole-multipole one.

As is usual in deformed nuclei, to understand the main
features of the excitations, we assume that the most im-
portant part of the Hamiltonian is the quadrupole-
quadrupole part, i.e.,

X . .
Himz_—zqy(')qp(f) ’
2 n

(3.1

where g, (i) is the quadrupole operator acting on the ith
particle and the factors introduced correspond to the usu-
al parametrization.

The effect of the diagram shown in Fig. 10(a) will be to
replace the single particle Hamiltonian by

Hy, =H,, —X 3 q,(){Q,), 3.2)
ip

where (Q, ) is the expectation value of 3, q,(i) in the
vacuum. This expectation value is evaluated as shown in

+ oo

FIG. 9. Diagrams defining the PS for the one-body excitation.
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t t
=]+ | =4+ =T+
0 0
(a) (b)
t t

FIG. 10. Diagrams defining the PS for the CMPGF. (a) and
(b) correspond to the one body part, (c) and (d) to the two-body
part, (e) and (f) to the three-body part, and (g) to the QP.

Fig. 11. Once the structure of the quartet is known,
through the use of the diagrams shown in Fig. 10, the
(Q, ) is evaluated with the help of Fig. 11. We can con-
clude that the diagrams shown in Fig. 10(a) will give as
the Nilsson Hamiltonian for the one body excitations.

The treatment of the equation shown in Fig. 10(c) cor-
responds to a RPA between the quasiparticles. It is im-
portant to point out that to make the presentation simpler
we have ignored the anomalous Green’s function that will
appears in a similar way as that in the theory of supercon-
ductivity, and that we show in Fig. 12. If they are includ-
ed, one must do a treatment for the two-particle Green’s
function similar to the one done in Ref. 29. That will cor-
respond to coupling the two-body Green’s function with
the GF corresponding to one quartet more and one quar-
tet less than in the initial GF.

The treatment of Fig. 10(e) can be done in a similar
way. It must be noted that the treatment will not be
essentially different from the one in Ref. 30 for the three
quasiparticle case. If the processes where the anomalous
propagators appear are considered, then one will couple
again the 3P GF to the ones with one quartet more and
one quartet less than the 3P GF. We will assume that
these three equations have been solved and that they pro-
vide us with the zero order energies and wave functions
for the one, two, and three particle excitations.

To write down the remaining equations explicitly we
have to write down the different GF in their Lehmann

N

S
)‘
P

FIG. 11. Diagram representing the expectation value of Q,.

representations. It is convenient to start with the defini-
tion of the Green’s functions®!

G,(BA,1)=(0| T[D,(4,0D)(B,0)]|0) , (3.3)

where T is the time ordering operator and D: (A,t) creates
n particles with quantum numbers A4 at time ¢. The Leh-
mann representation of this GF will be given, as usual, by
(0| D,(4)|e){e | D;(B)|0)

E —E,

(0| D)(B)| £)(f | Da(4)|0)
E+Ef ’

G,(BAE)=i |3

e

+3
f

(3.4)

where the + (—) sign is valid for the one and three (two
and four) particle GF and the states |e) (| f)) form a
complete set of eigenstates of the full Hamiltonian for the
systems with n particles more (less) than the reference

b

b A

(a) (b)

FIG. 12. Diagrams representing the anomalous Green’s func-
tions. (a) Corresponds to the odd systems, while (b) corresponds
to the even ones.
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state with 4K particles |0). The energy of the states | e)
and |f) with respect to the reference state |0) are E,
and Ej, respectively.

It will be convenient to use a more compact notation
for the residues. The state of the e type corresponding to
one, two, and three particles will be denoted by a, a, and ¢
as we said before. It must be noted that the states of the
f type for one, two, and three particles will be therefore
denoted by ¢, a, and a, as a complete basis for one particle
is going to be the same as a complete basis for three holes,
and vice versa. We will denote these as

U,={a |D}(i)|0), (3.52)
V,,=(0|Di()|r), (3.5b)
Xu=(a|D}(D]0), (3.62)
Yau=(0|D}(k)|a), (3.6b)
Zm={t|D}(m)|0), (3.7a)

wm={0|D}(n)|b), (3.7b)

and the GF in the Lehmann representation can then be
written explicitly as

U:anj Vr‘;Vrj
G (ij;E)=i .
Wij;E)=i ;E—Ea+§E+E, (3.8)
XXy YhY.
G,(kl;E)=i akdal  lakla '
2(kIE) '[gE—Ea FrE | (3.9)
ZpmZpm, Tom Tan
G JE)=i , .10
s(mn;E)=i g E_E +§ E 1L, (3.10)

where we have used the fact that the complete set of states
for one particle is the same as for three holes, and for
three particles is the same as for one hole.

All the equations corresponding to Fig. 10 are, due to
the trick that was used to omit the QP, of the convolution
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type. Therefore its Fourier transform can be written
straightforwardly as the product of the Fourier
transforms of the different parts of the diagram. The
only care to be exercised is the use of G(ab;—E) in the
intermediate GF, due to the way they have been grouped.

The equations corresponding to Figs. 10(b), 10(d), and
10(f) can then be written as
G\(ij;E)=G(ij;E)— 3, G"(ig;E)AL

grsh

O(rs; —E)AS G, (hj;E) ,

(3.11)

G,(kI;E)=GY(kI;E)— 3, G (km;E)A2,

mnpo
X G(ZO)(np;—E)Ag,Gz(ol;E) ,

(3.12)
Gy(mn;E)=GY (mn;E)— 3, GSO)(mp;E)ApQ,
pijn
X G\(ij; —E)A%G;(gn;;E) .
(3.13)
The zero order Green’s function can be written as
5
(0 ij
;E = ’ .
Gy (ij;E)=i e —h) (3.14)
G(O)advanced(kl.E)zi_L_ (3 158)
2 ’ E—(wg—2A1) "’ :
S
G(O)retarded kl;E)=—i , 3.1
2 ( ) lE+(a)k—27\.) ( 5b)
)
(0) mn
;E)= . .
G3y'(mn;E) lE—(Em—3M (3.16)

We can write Egs. (3.11)—(3.13) in an algebraic form as

2 U:i Uaj + 2 Vr'; Vrj _ 8 2 AiQn Aan :k Uaj 2 :;:Vrj (3.17)
~ E—E, ~ E+E, —(e, [E —(e;—A)] [E—(E,—3A)] |“ E—E, ~ E+E, '
s TamTan s ZinZm ___ wn s Ag A% s TaTan 5 ZoZnm G.18)
~ E+E,  “ E—E, E—(E,—3\ [E—(&—A)] [E—(E,—3M)] |“ E+E, ' “ E—E, ‘
5% akxaz YorYau . 2w—21) 2 A%, AL s XimXat  YamYa | 00
“E—-E, E+E, YME'_(0,—24) [E +(w,—2M)] [E —(w0x—2)0)] | < E—E, E+E, '
If we use the second equality in Figs. 10(b), 10(d), and 10(f), we obtain instead of (3.17)—(3.19),

2 U:i Uaj + 2 V: Vrj _ 61_1 2 Ai?n Aan 2 T:m Tan E Z:mZm (3.20)
e E—E, - E4+E, E—(e—A) [E—(e;—A)] [E—(e;—A)] | < E—E, ~“ E+E, |’ '
2 T;m Tan + 2 Zr*mZm _ 8mn + 2 Agﬂi Agx 2 U:i Uaj + 2 Vr‘il Vrj

> E—E, ;r E+E, E—(E,—3X) <4 [E—(E,—3M\)] [E—(E,—30M)] |< E+E, ~ E—E,

(3.21
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s XaXar VoY o =2 o A A% XenXam  YenYam
“ FE_E, E+E, V“E'>—(03—20? & [E—(0;—20)] [E—(w0;—2})] E+E, E-E, |’
(3.22)
T
As usual the unknown residues and energies are obtained A2 A2 U
by studying (3.17)—3.22) at theirs poles. Making E=E, 8+ > in " nk S ak Zaj
ij
one obtains w €i+E,—4r | T e—A—E,
AZAS ViV,
—(6—M]Ug= = Uy, (3.23 + =0, (3.282)
[Ea (G, )]Um % E +(E __3}0 ak ( a) 2 )\+E a
AZ AL, T,
2 AanTan 85+ im {\nj am {an
Uaj:m N (323b) J % ei—6j+5 ? 6,-—K—Ea+5
and from E = —E, we obtain ZimZm
+ 3 —"" -0, (3.29)
A2 A9 ~ €, —A+E, +38
E _ * — mi Is * , . 4 ) . )
[Ea+(Ep —3M)]Tam % E,—(e—A) % (3.242) Similarly, if E =*(E,, —3A+8) the result is
A2 A ULU,;
5 + mi‘djn ai Yaj
Ton= E%’( _3“ (324p) " % E,—E,+3 2,," E,+5—3A+E,
|2 Vi
In a similar way, when E =+ E, we have + 2 W =0,
[E, + (e, —M)]V2 ARAG . (3.252) i
(e =M ]Vi= % E _(E 30 " 25a (3.28b)
ARiAZ TesTan
Q Spmn +
v o S AiiZm (3.25b) " 25 € +E,, —4\ ? E, —3\A+E,
g Er+(€]—‘k) ’ Z*Z
rs rn :0
AgAg + ; E, —37\—E, ’
E,~(E,—3M1Zp=3—"——Z%, (3.26
[ 12m ES:E +(g—2)"" ? (3.29b)
E'A'Q v while E = +(wy —2A+8) yields
Z,m:—_—!“‘jn’*g“— . (3.26b) AE AQ X* x
Er—(Em’-3)\') Skl—z n{lnm 2 am* al
While for E =+E wm @k Fon—40) {57 (g =20 =
Y:.Y
AR AS, . __ TamTal |
[Eq—(wr—2A) ]Xak——gm am > (g —2M)+E, ’
(3.27a) (3.30a)
AR AZ XinXa
S, AL Yo ED | 3 =
Xoe= nidkn L a (3.27b) o (g —w, +06) a (wk—2k)+Ea+6
E,—(wp—2A) ° '
: YV
Eq+(wp—20)]Y% = — n’nm *
[ + (0} )] k % Ea—-(a)n—Zk) Yam > (330b)
(3.27¢) Equations (3.28b), (3.29a), and (3.30b) also can be written
as
J AR X an [E,—(e;—M)]
Yak=~*2—f~— , (3.27d) =3 U ——’
Ea—#—(wk—ZM a —(61 )]
and from E =*(¢; +8—A) the ortho-normalization con- [E, +(;—A)]

ditions follow:

Vr'; E e’ 292’



1106

S UsUy+ I ViV
r

a

=S ULUyE,— S ViV4E,, (329"
a r
(E, +(E, —30)]
=2 TanTon [E, +(E,, —3M)]
a
[E, —(E,—3M)]
* , 3.28b’
+ 2 ZmZm (g (E, Z30)] 3.280
S TonTon+ 2 ZmZm
a r
=S Z5ZEy— S ThaTunE, ,  (3.28b7)
r a
[Ea +((L)1-——2A.)]
Su=SXHX
[E w,——27»)]
. —_— 3.30b’
ak Yai [Eq—(wp—20)] (3.306"
ZX;anl"‘ Yc:k Yal = E (X;an1+ Y;k YaI)Ea .
a a
(3.30b")

Equations (3.17)—(3.30) allow the obtainment and nor-
malization of X, Y, U, V, T, Z as well as the energies
E,, E,, and E,, if one assumes that all the needed A¢
coefficients as well as A are known.

To understand the meaning of these conditions, one can
study the particular case when each one-particle state has
only one three-particle partner to form the quartet and
when each two-particle state has a single two-particle
partner.

That is equivalent to assuming that Ag= 8;A; and

GB_SB&Aaa All the sums in this case reduce to a smgle
term (we will assume for simplicity that w; =wy), and the
energy equations reduce to

[E,—(;—ME, +(E;—3M]= | Az ]|, (3.31a)
[E,+ (& —MIE,—(E;—30)]= | Az %, (3.31b)
El—(0p—202=— | Ay |2, (3.32)

and therefore the values for the energies are (E, and E,
must be positive)

(E;—e&;—21)
Eemmrm——
Ei+ei—4h 2 172
+ | + | A;|? , (3.33a)
(E;—€;—2A)
E,=(E;—€;—2\) +E, _——i——+R , (3.33b)
Eq=[(op =207 — [ Ajg | *1'2. (3.34)

In a similar way the residues are
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o 1|, l&+E—4)) (3.35a)
Vi= 2 2R ’ )

2 1|, (&+E—40) (3.35b)
Ui=7 2R ’ :
T,=V,, (3.35¢)
Z,=U,;, (3.35d)

2 1 (a)k —2A)

-~ |1 , (3.36a)
Xak 2 + Ea

2 1 (wg —2A)

B S , (3.36b)
Yak 2 + Ea

We must now write the equations corresponding to Fig.
10(g). Our first task will be to evaluate the vertices shown
in Fig. 3. One must be rather careful to use for each of
the lines the appropriate dressing required by Fig. 10(g).
For example, only the forward part of the propagator is
effective when we have the one particle propagator [that
is associated with Fig. 10(a)]. Then, the effective matrix
elements of the Hamiltonian that are needed can be writ-
ten as

]nr ZZ Zm(]"lH}lm)

T T (jm |H |in) (3.37)
Bgir= EZ Xgnl |H |im) , (3.38)

Crmpina= EXakXB,(mIIH | nk )
Y5 Yalnk |H |ml) (3.39)

where the two-body Hamiltonian must destroy one parti-
cle in each of the two groups and create a new one in each
of the two final groups. As the four particle GF can be
decomposed in two different forms, it will be helpful to
define two auxiliary functions

K (is,jr;0)={0| T[D,(j,t)D;(r,)D}(i,0)D}(5,0)] | 0) ,
(3.40a)
S(na,mp;t)
— (0| T[D,(m,0)D,(B,1)D}(n,0)D}(a,0)1|0) .
To simplify the notation we define (3405}
(0| D](HD}(r |0) =7, , (3.41a)
(0| DY (m)D}(@)]0) =npme - (3.41b)

The functions K and S will be initially calculated using
the series of diagrams shown in Fig. 13. It is possible to
write their Fourier transforms as

K\ (is,jr;E)=K(is ; E); j

— 3 Kolis,E) A, ;K (kt,jr;E) ,  (3.42a)
kt
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Si(na,mB;E)=So(na;E)8,4 mp

— 2So(na,E)Cm,,msl(p%mB;E) »

pY
(3.42b)
where K(is,E) and Sy(na,E) are given by
i
Kolis;E)=—4/——""7"—""—"7, 3.43
olis; E) E—(e,+E,—N ( a)
2w, —2A+E,)
So(na;E)=i—— c (3.43b)

E?—(w,—2A+E,)?

How to label the external lines at time zero and ¢ de-
pends upon which type of residues one is interested in. In
Fig. 14(a) are shown the diagrams to be summed to evalu-
ate K, while in Fig. 14(b) are the ones corresponding to S.
The matrices Ly and Ly; that are shown in Fig. (14) will
have the same poles. Using matrix notation, one can
write for Fig. 14(a)

K =K0+KOBS1BK, +K0.BSIBK1BS|BK| + st

We must remember that the relevant pole of K has
E =0. It will be necessary to change A until the matrix

B(E)S|(E)B(E)X(E)—

has an eigenvalue equal to O for E =0. From the diago-
nalization of this matrix we will be able to evaluate v,
and 7),, except for a multiplicative constant. Afterwards
we must go back to (2.4¢) and (2.4d) and evaluate the cou-
pling constants A,, and A,,B, that in terms of v, and 1,4

FIG. 13. Diagrams to be summed initially to simplify the
evaluation of the QP corresponding to (a) K,(is,jr;E) and (b)
Si(na,mB;E)

1

KyAK+KyAKBS,BK s =(Kg+KpdK | ) ———— .
+KoAK+KoAK BS|BK | + (Ko+Kjp l)l—BSlBKl
(3.44)
T

can be written as

AZp= 2 CuBmallma » (3.46a)
(3.45)

Ag: 2 Air,js?’js . (3.46b)

Js
For the normalization of the residues there are two pos-

sibilities. One is to use the same procedure that was used
in Ref. 29. In this case it will be extremely complicated,

.7
A &

P

Y
At

%\AQ

1&; v©v®+

A
A K

2

(b)

FIG. 14. Diagrams corresponding to the full (a) K (ir,jt;E) and (b) S(na,mB;E).
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as it involves a series expansion around the pole at E =0.
In Ref. 28 was found a simpler procedure to determine
the arbitrary constant through the evaluation of the num-
ber of particles contained in the vacuum, i.e., to use Fig.
12 with the number operator. In this case one obtains

S vio=4K . (3.47)

We have therefore closed the prescription. One can do
a self-consistent determination of the structure of the
excitations as well as for the quartets using Eqgs.
(3.11)—(3.13), (3.37)—(3.39), and (3.45)—(3.47).

IV. CONCLUSIONS

In the present paper we have derived, starting from a
set of rules that permits the classification of the relative
importance of different processes, a set of equations
(CMPGF) that permit a microscopic description of a sys-
tem formed by a condensate of quartets. The method that
was developed, even if very involved, as the problem of
handling four particle excitations is complicated, has a
rather simple conceptual structure.

The treatment presented is also a natural extension of
some of the ideas developed by Flowers and Vujicic.*
The main difference is that we have shown that it is
necessary to take into account in a self-consistent way
that the quartet must also be formed by two pairs.

Another characteristic of the present description is that
it is essentially number conserving, as the main assump-
tions and approximations that we have done are the fol-
lowing.

(1) We assumed that the ground state of the system can
be described as a condensate of quartets.

(ii) We only considered a certain subset of diagrams,
those of the principal series. These are the only types of
diagrams contributing for large values of K and N. To
determine which diagrams belong to the PS and which do
not belong to them, we assume that some amplitudes
(shown in Fig. 1) are of the same order of magnitude.

(iii) We use of a factor VK each time that an external
boson is destroyed and created [one must in fact use a fac-
tor K!/(K —n)'=K" if K >>n where n is the number of
connected initial or final external bosons].

In the limit of K and N very large, the PS set of dia-
grams is the only one contributing to the (exact) descrip-
tion of the system and it will be therefore number con-
serving. In a sense the present description has many simi-
larities with Nambu’s gauge invariant description’? of su-
perconductivity.

The treatment was developed having in mind its appli-
cation to well deformed heavy nuclei. The main charac-
teristics of these nuclei can be understood in terms of a
Hartree-Fock-Bogoliubov (HFB) description, or, to make
a simpler description that retains the most striking physi-
cal characteristics of these systems, one can say that they
can be understood in terms of the Nilsson model.**

As was already said in Sec. III, the equation related to
Fig. 10(a) guarantees that in all the odd systems (one par-
ticle or one hole states) one will have excitations that have
the same structure as the one given in the Nilsson (or
HFB) model.

The main difference between the present description
and the standard model of deformed nuclei is the emer-
gence of a particular set of three-particle excitations that
have a collective character. The number of these three-
particle states will be small, compared, for example, with
the number of usual three-quasiparticle states. One must
then expect a special selectivity in three particle transfer
reactions. Another striking feature of the model is the ex-
istence of sets of three-hole states in the one-particle part
of the spectra. We may also comment, that the obtaining
of the present solution through an expansion around the
normal (particle-conserving) initial state is possible be-
cause the expansion parameters are the degeneracy and
the number of particles and not the interaction strength.

One may ask which was the role that the main features
of the four body correlations play in simplifying the dia-
gram selection. We have assumed that the ground state of
the system is a condensate of quartets. In order that this
assumption make any sense, it is necessary that the in-
teraction between the quartets be not of the same order of
magnitude (in terms of K and N) as the processes incor-
porated in their definition. The particular property that
the Hamiltonian must have is to have as ground state a
quartet condensate. This property reduces the sums ap-
pearing in the diagrams to the small number of collective
states, and therefore the requirement is not on the struc-
ture of the Hamiltonian but on its ground state.
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