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Soliton matter as a model of dense nuclear matter
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%'e employ the hybrid soliton model of the nucleon consisting of a topological meson field and

deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of den-

sity. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the
transition of matter from a color insulator to a color conductor above a critical density of a few
times normal nuclear density. There is no latent heat associated with the transition.

I. INTRODUCTION

There has been a great deal of interest, in the last
several years, in a remarkable notion that was advanced
by Skyrme more than twenty years ago, that nucleons are
soliton solutions of a non-linear field theory in which the
only fields present are mesonic. ' He established the ex-
istence of a soliton solution to a simple meson field
theory, with which he constructed an anomalous con-
served current, and conjectured that it represents the
baryon current. His ideas were advanced long before
quantum chromodynamics (QCD) became a candidate as
the theory of strong interactions. Curiously, they have re-
ceived their justification and reinterpretation through
developments in QCD. The generalization from SU(3) to
SU(N) gauge theory by t'Hooft and Witten' established
the equivalence of QCD to an effective meson field
theory. Balachandran et al , using. the method of
Goldston and Wilczek, demonstrated that the topological
meson configuration polarizes a quark field coupled to it
so as to induce the same baryon charge, and Witten6
showed that the Skyrme soliton has spin —,

' .
Although the correspondence of QCD to an effective

meson field theory is established in the above quoted
work, the effective fields and their Lagrangian have not
been derived. It is remarkable then, that the properties of
the Skyrme soliton, a solution to a very simple Lagrang-
ian having only four meson fields, the scalar sigma and
the triplet of pions, have a close resemblance to the nu-
cleon. These properties include the magnetic moment,
charge radius, g factors, and a large number of resonance
states, that agree with experiment at the 30% level. Im-
pressive progress is being made also in the degree of
agreement of the soliton-soliton interaction in its various
spin-isospin components with the N-N interaction. It is
conjectured that as additional fields are appropriately cou-
pled, the agreement in all these nucleon properties and
resonances will improve. ' In any case the 30% level is
already very interesting, in as much as it might have
turned out that the soliton had little or no resemblance
whatever to the nucleon.

What we find particularly appealing in these develop-
ments is that, having a Lagrangian that describes the
internal structure of the nucleon (soliton), one can investi-
gate interesting questions concerning how the internal

structure of free nucleons change when they are assembled
to form nuclei or dense matter, and how the properties of
matter reflect these internal changes. Several of the more
interesting questions concern possible changes in quark
behavior in free and bound nucleons, as suggested by the
anomalous muon scattering on nuclei as compared to nu-
cleons, " and the onset of deconfinement in dense matter.
Of course we will not believe literally the predictions of
the theory. It is in the large N-limit that the coupling of
the meson fields becomes small and the mean field ap-
proximation is assured to be accurate. We live in a three
color world and we know of no criteria by which we may
judge how far from the limit we are, aside from the
empirical success at the 30% level. In any case we do not
expect that our model of matter as consisting of solitons,
will rival the lattice gauge calculations for quantitative
predictions of phase transitions. However, when a physi-
cal theory is very complex, as is the theory of strong in-
teractions, it is always useful to have a model with which
to form at least qualitative pictures of how the theory
works. The model may suggest ways of probing nature
that the exact theory, solved on large computers may not
do. In this paper we will report on the start that we have
made on such a program. ' It is far from finished and
there remain serious problems to be overcome. However
the picture of color conductivity that emerges seems in it-
self to be a novel and interesting one.

II. REVIE% OF THE SKYRMION

Before introducing our model of matter, we will recall
some of the salient features of soliton models of the nu-
cleon. Briefly, a soliton is a solution to a non-linear
theory whose energy density has a finite spatial extent,
and which is stable in the sense that if several soliton solu-
tions are constructed in different regions of space and al-
lowed to come into proximity so that they interact, after
they have moved apart they are restored to their original
form. It was Skyrme who first suggested that baryons
might be understood as soliton solutions of a field theory
having only mesons as the fields. ' How do baryons
emerge from such a theory? We shall be content here to
merely exhibit the conserved anomalous integer quantum
number, which Skyrme conjectured to be the baryon num-
ber and which Witten recently confirmed. Skyrme stud-
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ied a theory based on a scalar and triplet of pseudoscalar
pi mesons. Construct the two by two matrix,

U= (cr(x)+i r m(x)), o +H=f

and from this define,

Lq ——U BqU .

Skyrme constructed the Lagrangian,
2 2

tr[L„L"] + tr[L„,L,]

(2)

(3)

The first term is an unfamiliar way of writing the kinetic
term for scalar and pion fields. It turns out that there are
no stable finite size soliton solutions for a theory possess-
ing only the first term, and the second term was added to
provide stability against collapse of the solution. We want
to draw attention to the fact that it is of fourth order in
derivatives of the fields, and that a sixth order term or
higher would also stabilize the solution. This term plays
no other essential role. In particular the quantum number
is unaffected by it.

To show that there is a soliton solution, one makes the
very peculiar ansatz that a solution of the form

Uo e"' "'=——cos8(r)+i r r sin8(r) (4)

exists. That is, that the isospin components of the pion
field point in the radial direction,

o=f cos8(r), m=rf sin8(r) .

For that reason the solution is called the hedgehog. That
it is a solution can be shown easily by calculating the
canonical form of the energy from the Lagrangian, substi-
tuting the ansatz for the fields, and minimizing. This
yields an equation for the chiral angle, 8(r), which has a
solution that smoothly connects the boundary values

8(0)=0, 8( ao ) =n n .

The energy is finite and can then be seen to be localized in
the vicinity of the origin where 8(r) is non-vanishing.

Vfhat is very interesting, is that in addition to the
Noether currents that correspond to the invariances of the
Lagrangian, the theory possesses an anomalous current,

Bq eq~yr tr[L L~Lr]1
P 24 P+ 'Y

where E'p&py is the antisymmeiric tensor in all indices. By
construction this quantity is divergenceless, independent
of the equations of motion,

the winding number. This terminology can be understood
by noting that Eq. (4) maps ordinary 3-space onto a unit
3-sphere in the four-dimensional space (o,~im2m3). The
origin is Inapped onto the pole on the o-axis, and all
points at infinity either also onto this pole or the other,
depending on the integer n in the boundary condition [Eq.
(6)]. The magnitude of n determines how many times the
surface of the sphere is traversed when r goes from 0 to
00 ~

Our purpose in reviewing this material is to introduce
the conserved topological charge, which is associated with
the SU(2) character of the theory, and will carry over to
modifications of the theory which leave this character in-
tact. The Skyrmion as such is not interesting to us for the
purpose set out in the beginning, because it has no quarks,
and we want to see how the quarks begin to leak out of
the baryons as the density of matter is increased. This is
perhaps relevant both to the deconfinement phase transi-
tion as well as to anomalous lepton scattering from nuclei
(EMC effect). Therefore, we would like to have a soliton
with quarks that are confined, but not through the artifi-
cial mechanism of an impervious bag. In the absence of a
known soliton solution possessing true confinement, we
opt for a model in which the quarks are deeply bound in a
topological soliton field. The hybrid soliton model fills
this requirement.

+tP(x)I i y„d~ g[cr(x)+i y5—r m(x)] Ig(x). (l0)

This consists of the first term of Eq. (3) and in addition
the Lagrangian of the quarks, which are Yukawa coupled
to the scalar and pion fields. The quarks have a constitu-
ent mass of m=gf„. What Kahana et a1., ' and Birse
and Banerjee' showed is that there is a solution in which
the quarks are deeply bound to the topological soliton

lt00

1000

III. SOLITON WITH QUARKS

The hybrid soliton, ' ' like the Skyrmion, is based on
the chiral sigma model, ' but now including the fermion
sector, which here are quarks. In the limit of large scalar
meson mass, the Lagrangian is

and the charge, corresponding to the ansatz [Eq. (5)] is

8= I d r80(r)= —[8(r)——,sin28(r)]o"=n . (9)
0

This soliton therefore has a conserved quantity which is
integer and which Skyrme conjectured to be the baryon
number. It is topological in nature, and in the case of the
hedgehog soliton [Eq. (4)] is also sometimes referred to as

Soo I

5 5.5

FIG. 1. Soliton mass as a function of coupIing constant g for
f =94 MeV.
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field of the mesons. For a certain range of the coupling
constant, g, this state has lower energy than the spatially
uniform field solution. In this range of coupling, the soli-
ton has the nucleon mass (Fig. 1).

The soliton carries its conserved topological charge.
Kahana and Ripka' showed that the baryon charge on
the soliton when the Dirac sea and the valence 0 orbital
are filled is equal to the topological charge. Indeed, ac-
cording to Balachandran et al., the spatial distribution of
baryon and topological charge should be identical. The
topological meson configuration polarizes the vacuum in
a very precise way.

For the hedgehog configuration [Eq. (5)], the meson

field equations reduce to one non-linear differential equa-
tion for the chiral angle 8(r },

2 2

(r 8')' —sin28= — ((F —6 )sin8 —2FGcos 8)r
4m

This is coupled to the Dirac equation for the quark
spinors,

Iiy„c}t' m—[cos8(r)+i y,r r sin8(r)] If(x)=0 (12)

or, using the expressions for the Dirac matrices in terms
of the Pauli matrices,

m cos8

icr V— im s—in8v"r

r

icr—V+tm sin8~ r 1('U ijlU

—m cos8 4L

where
~

v) is a spinor eigenstate of the sum of spin and

isospin, having eigenvalue zero,

(s+t)
i
v) =0. (15)

That such a peculiar combination comes in, follows from

the coupling of the quarks to the hedgehog meson field in

which the isospin components point in the radial direc-
tion. The differential equations for the F and 6 are

—F +m F i s8n=(E+mcos8)6, '

(16}

6'+ —+m sin8 6=(e—m cos8)F .2
7

We normalize the solutions so that

F2+62 p2 y
—3 (17)

We call the state [Eq. (14)] a positive parity state after the
transformation of the large coinponent. The state of op-
posite parity satisfies equations like Eq. (16) but with

m ~—m. This can be understood by noting that

i cr rG(r)
F(„)

where fU and PL are the upper and lower components of
the Dirac spinor. There is a zero "spin" solution
(c'=0,(a+t) =0), having the form,

F(r)
P(r)= . ~

v),

generate. This can be seen as follows. Because of Eq.
(15),

~
v) has eigenvalue (s+t) =0. Therefore,

( ls i & lt —-'
&
- ls —i & lt 2 &) . (20}

2 5
C
CQ

2
CQ

&.5

Thus
~
v) is a combination of u and d quarks. We can

assign color to wave functions like Eq. (20) in 9 ways; the
first component can have any color, and so can the
second. Choose any three of these. One then finds that
any of the remaining such wave functions has either a u

or d quark of a color already appearing in one of the first
three. So only three such spin-isospin functions can be as-
signed to a level [Eq. (12)]. We may therefore introduce
color by assigning both components of Eq. (20) the same
color, and the states are therefore

~
v, c ) with c =r, b,g.

The solutions for the free soliton in this model have
been discussed previously. ' ' There are several quark
levels that are bound by the soliton field in the energy in-
terval between +m and —m. One of these, a 0 level, is
pulled down from +m, by interaction with the meson

which according to the parity operator,

P =yoP(r~ —r), (19) 0.5

has opposite parity to Eq. (14). Inserting y5 into the
Dirac equation and commuting one of the y&'s to the left,
it is found that f satisfies the same equation as 1( except
that the sign of m is changed.

The eigenstates satisfying Eq. (15) are triply (color) de-

0.5 1.5 2 2.5

r (fm)

FIG. 2. Chiral angle as a function of radius for the free soli-
ton.
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fields, and for a very extended soliton, migrates to —m.
%'hen this level and all below it are occupied, and the
boundary conditions applied to the chiral angle requiring
it to differ by n in the interval between r =0 and r = ao,
the resulting soliton has baryon number unity. ' In this
theory, it represents the nucleon. Its mass is given by

'2

M=3m+ m I dr r +2sin 8, (21)

where e is the energy of the 0 quark orbital, and the in-
tegral is the field energy of the mesons. At the stationary
points of M, the field equations are satisfied. [Of course,
to derive the field equations in this way, we must express
the Dirac eigenvalue in Eq. (21) in terms of 8 and the
functions F and G.]

In this work, we solve the coupled equations [Eqs. (11)
and (16)] variationally, by parameterizing the chiral angle.
We note from M and the boundary conditions on 8, that 8
should smoothly join its boundary values, with most of
the change occurring at small r. Therefore we represent 8
by four parameters, the radius R at which it becomes
equal to ~, and three other parameters, a, b, c, that mea-
sure its deviation from a straight line joining the points
(0,0) and (R,m. ) at equally spaced intervals between r =0
and R. The chiral angle is then represented by a cubic
spline passing through these points. For a given such set
of parameters, the Dirac equation is integrated under the
eigenvalue condition that it decay exponentially at large r,
and that it is everywhere finite. The minimum value of
M is sought, at which point the field equations are satis-
fied. The same method can be used for the solution of the
soliton in matter, except that the boundary conditions on
the Dirac equation are different, as discussed below.

There is only one parameter in the theory, the value g
of the coupling constant between quarks and the meson
fields, since we take the experimental value for f =94
MeV. The computed soliton mass as a function of g is
shown in Fig. 1. Throughout the remainder of the calcu-
lations, we fix g=5.96 to yield a soliton mass of 940
MeV. The chiral angle as a function of radius for the free
soliton is shown in Fig. 2. The pion and sigma fields, and
the large and small components of the quark valence orbi-
tal 0 are shown in Fig. 3.

IV. CRYSTAL APPROXIMATION TO MATTER

where,

=cos2k (a +b ), (22a)

Q~=(m+ V)' —e', K'=e2 m', — (22b)

and k is the so-called crystal momentum. In the non-
relativistic limit, this reduces to the formula of Kronig
and Penney. The allowed values of the particle energy are
those for which the left side does not exceed in absolute
value, unity, so that the spectrum has the well known
band structure. A typical spectrum as a function of the
sparing between the attractive regions is shown in Fig. 4.
The parameters of the problem are chosen so that the fer-

Free soliton

general state of such a system inust be extremely compli-
cated to describe. It is a many-body problem in which the
quarks within the individual solitons are moving in in-
teraction with each other through the meson fields, while
the solitons are moving about under the infiuence of the
interaction of their constituent quarks with those of
neighbouring solitons. It is possible that, at sufficiently
high density, the solitons would arrange themselves into a
crystalline lattice, because of the repulsion at short range.
This would simplify the problem. In any case, we shall
study this particular configuration. If the physical system
does not arrange itself thus, we shall assume that the
internal structure of the solitons (nucleons) that emerges
under this assumption may describe the average, or typi-
cal, structure of nucleons in matter of the corresponding
density.

Since the quarks are deeply bound in the soliton, by of
the order of their constituent mass, they are relativistic.
We have therefore a relativistic solid state problem.

As an initial orientation on what to expect, we solved
the Dirac equation in one dimension for a particle in a
periodic square potential. ' This is a problem that had
been solved long ago for the Schroedinger equation by
Kronig and Penney. ' The analytic solution for the eigen-
value spectrum is given by

E'+ V'—
sinh2Qb sin2Ea +cosh2Q bcos2Ea

Now we wish to assemble a large number of such soli-
tons to form dense matter. Our problem is very different
from the usual nuclear many-body problem. There the
nucleons are regarded as point particles having no internal
structure. In some cases an internal quantum number is
associated with the baryons to account for the appearance
in dense matter of isobars and hyperons. However no
dynamics is associated with this degree of freedom. In
reality, the nucleons do have an internal structure, the
quarks and gluons, and their state of motion will be polar-
ized by neighbouring nucleons when the density of matter
is sufficiently high. In general therefore there is a sublev-
el to the one that is customarily treated in nuclear physics,
and that level is the focus of our interest. However the

-05
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FKr. 3. Dirac spinor components F and 6 and meson fields
o. and m, for free soliton of mass 940 MeV.
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mions become relativistic toward the top of the well. As
in the non-relativistic case, the levels of the isolated wells

spread out into bands vnth each mell contributing a level

to the band. For close spacing, the bands tend to touch.
The band structure persists into the positive energy spec-
trum above the top of the potential, with the gaps tending
toward zero as the energy increases.

A. signer-Seitz approximation

We turn now to the solution of the problem at hand,
the spectrum of quarks in three-dimensional soliton crys-
tal matter. The hedgehog meson configurations are cen-
tered at lattice points thus generating a periodic field in
which the quarks move. From solid state physics we
know that the solution of the Hamiltonian for a periodic
system must obey Bloch's theorem. Therefore the quark
spinor must be of the form

B. Existence of a topological crystal solution

For the free soliton, with quark wave functions that de-

cay exponentially at large r, Kahana, Ripka and Soni'
showed that the non-linear equation for the chiral angle
[Eq. (11)]admits of a solution that satisfies boundary con-
ditions at the origin and infinity that correspond to in-

teger topological charge [Eq. (9)]. Here we demonstrate
for the crystal boundary conditions, that this is still so.
The demonstration is necessarily more complicated. In
the vicinity of the Wigner-Seitz boundary, r =R, we may
approximate I' by a polynomial and select the dominant
term at R. For the present instance of zero spin quark or-
bital, we even have, from Eq. (16), that F(R)=constant.
Hence, defining for convenience,

(27)

the equation for the chiral angle near R takes the form

Qi,(r) =e'"'ui, (r), (23) r P"+2rg' = (2 cr )P, — (28)

8(0)=0, 8(R)=m . (24)

where k is called the crystal momentum and uz(r) is a
periodic spinor function having the period of the lattice.
That is to say, the solutions are plane waves with a
periodic modulation.

To solve Eq. (16) on the lattice we employ the Wigner-
Seitz approximation. Thus the actual problem is replaced
by a spherically symmetric one which is solved for 1=0.
This is the ground state of the band. The translational in-
variance by multiples of the unit cell also places a condi-
tion on the chiral angle. So that there be unit topological
charge centered at each cell site, it must satisfy

where c is a constant whose value can be read from Eq.
(11). Expand the solution in a power series,

(29)

and find the relation between coefficients,

(n +n —2)a„=ca„ (30)

The coefficient of a„vanishes for n =1 or n = —2. This
implies that a

&
and a 4 vanish, and that a ] and a 2

are arbitrary. That is to say, the series breaks up into two
pieces and P is given by the sum of two series, the coeffi-

The boundary condition for the Dirac spinor can be de-
rived as follows. We note first that the Dirac gamma ma-
trices in the three-current, gyes, connect upper and lower
components of the Dirac spinor. For the ground state, we
require that this current vanish, implying that one or the
other component of the spinor should vanish on the cell
boundary. We note also that upper and lower components
have opposite parity. It is clear that to obtain a solution
that is periodic in its relation to adjacent cells, the odd
component must vanish at the cell boundary. There is no
additional freedom, nor is any needed. The other com-
ponent will take on the value dictated by the differential
equations. For the spin zero case, [Eq. (14)], the odd com-
ponent is G and we therefore require that G(R ) =0. Ac-
cording to the coupled Eqs. (16) this then yields

m+V

rn = V = 5 frn ', 8 = 0.5 fm

V—

28

G (R )=0+~F'(R ) =0 . (25)

The large component therefore satisfies the same condi-
tion as is required of the Schroedinger wave function in
the non-relativistic theory. At the origin, it is evident
from Eq. (16) that G(0)=0. This in turn requires that
F'(0)=0 Therefore th.e boundary conditions

G(0)=G(R)=0
0.03 0.1

b (fm)
1.0 10

ensure that the Bloch theorem is satisfied, i.e., that both I'
and 6 are periodic.

FIG. 4. Band structure in a periodic square potential for rela-
tivistic fermions.
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C. Band width

The signer-Seitz approximation allows us to calculate
the eigenvalue of the ground state of each band (1=0).
Denote such an eigenvalue for a particular band by ep.
We need to estimate the band width and we approximate
the spinor of crystal momentum, k, by

ziti, (r) =e'"'up(r). (31)

cients of one of them being proportional to a, and the
other to a i. Hence, if the series converge, the function

P near r =R contains two arbitrary constants. The ratio
of a i to a z can be chosen to make tI} vanish at R, i.e.,
8(R)=n.. The value of the remaining constant can then
be used to aim in an inward integration "shooting"
method to find the solution for which 8(0) = 0.

tions to the Dirac equation in this case are eigenfunctions
of

A, =E+(s+t), (36)

I
I & =+~.,o

I3& = +i.+i,» (38)

Then the matrix elements of cr V and r sea.n be written
in the space of these functions, '

which we can call the grand spin or simply "spin."%e in-
troduce the eigenfunctions of "spin, "

Pr „=
I
P, (s, t)~;A, &,

and for convenience we introduce the notation,

(~ +k2)1/2 (32)

Now consider a cubic crystal of N solitons along each
direction, i.e., a cube of matter of dimensions I.=2RN.
The allowed values of the component of crystal momen-
tum in any of the three directions are

In the Schroedinger theory the energy of such a level is
calculated as the expectation of the Hamiltonian. Howev-
er the Dirac Hamiltonian is linear in momentum and me
have therefore to calculate the expectation of the square
of the Dirac Hamiltonian. This yields as an estimate of
the energy of the level with crystal momentum, k,

(a V)J=

(r ~)~J ——

where,

—aDo —PDp

—aDi PD

pD2 ——aD

0 0

a —p
—p —a
0 0
0 0

PDi —aDi 0

(39)

(40)

2m 4m' '-L -L'' L 2R
(33} A, +1

2A, +1

' 1/2

(41a)

Therefore our estimate of the band width for a cell radius
R ls and

b, =(ep+(7r/2R) }'~ —
I

ep
I

(34)
d A, +2 d

Di —— +, D
dr r '

dr
(41b)

For the valence levels, and those above it, the %igner-
Seitz approximation locates the bottom of the band.
However for the levels belonging to the sea, it locates the
top of the band, just as the sea eigenvalues in the free case
are —(m +k )'

An alternative approximation to the band width, that is
valid for large separation of the solitons, is obtained by
imposing the boundary condition,

F(R)=0, (35)

instead of Eq. (26}. This corresponds to making the large
component an odd function with respect to lattice sites,
rather than an even one.

D. General spin

The form of the spinor having zero "spin„" and the
coupled equations for the two radial functions that appear
in it mere written above. Here we wish to write the equa-
tions for a general value of the "spin." It is evident that
the eigenstates in the present problem are eigenstates, not
of the total angular momentum, but of the total angular
momentum plus the isospin. This is so because of the
hedgehog configuration of the meson fields, in which the
isospin is correlated with the radial direction. The solu-

WU=fi(r)
I
1&+f2(r) l2&,

QL i g, (r )
I
3 &——+ ig2 (r )

I
4& .

(42)

The parity of these components is opposite, and the parity
of the Dirac function is customarily characterized by that
of its upper component. Substituting this Dirac spinor
into Eq. (13), and using the above matrix elements, we
find the coupled radial equations,

a(D2+m sin8)g, p(D, +m si—n8)g2

= —(e—m cos8)f~,

P(D2 msin8}gi+a(D —
i
—m sin8)gz

= —(e—m cos8)fz,

a(Do —m sin8)f i +P(Dp+ m sin8)f2 (e+m cos8——)g i,

p(Di —m sm8)f i
—a(D, +m sin8)f2 —— (@+m cos8)g2 . —

The upper and lower components of the Dirac spinor for
general "spin" are mritten,
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matter becomes increasingly a color conductor. This is a
somewhat different picture of quark liberation in dense
matter than usually envisioned, in which the nucleons dis-
solve into a homogeneous quark matter. In the present
model, the basic nucleon structure remains; only the
quarks rather than being confined to the individual soli-
tons (nucleons) become free to migrate throughout the
matter, and would do so under the influence of an exter-
nal color field. We believe that this picture is more gen-
eral than the present assumption of a crystal structure, on
account of the conserved topological quantum number
carried by the meson fields.

The transition in phase between color insulator and
color conductor is a second order one, in this model.
There is no latent heat associated with the transition since
it corresponds to the onset of a degeneracy between filled
and empty quark orbitals. Instead, at each crossing of an
occupied with an unoccupied band, the energy density, as
a function of soliton (nucleon) density, will have a discon-
tinuity in slope.

We employed a soliton model of the nucleon to study
the quark behavior in dense rnatter. To render tractable

the many-body problein of interacting nucleons with a
quark substructure, we assumed that dense matter can be
approximated as a crystal. In this picture, the quark lev-
els of the isolated solitons disperse into bands as the densi-

ty increases. At a critical density of about three times nu-
clear density, matter undergoes a transition from color in-
sulator to color conductor, due to the intersection of occu-
pied and empty quark bands which broaden with increas-
ing density. There is no discontinuity in the energy densi-

ty at this transition point, though there is a discontinuity
of the slope of the energy as a function of density.
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