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Pionic retardation effects in two-pion-exchange three-nucleon forces
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Those two-pion-exchange three-nucleon forces which arise from nuclear processes that involve

only pions and nucleons are calculated. Among the processes which contribute are pion seagulls

(e.g., nucleon-antinucleon pair terms) and overlapping, retarded pion exchanges. The resulting po-
tential is shown to be a (v/c}2 relativistic correction, and satisfies nontrivial constraints from special
relativity. The relativistic ambiguities found before in treatments of relativistic corrections to the
one-pion-exchange nuclear charge operator and two-body potential are also present in the three-

nucleon potential. The resulting three-nucleon force differs from the original Tucson-Melbourne po-
tential only in the presence of several new nonlocal terms, and in the specification of the choice of
ambiguity parameters in the latter potential.

I. INTRODUCTION

Three-body forces (3BF) in nuclear physics' consti-
tute a topic which is nearly as old as nuclear physics it-
self. The earliest calculations used models which are now
known to be inadequate, and were supplanted by efforts to
incorporate the rapidly developing phenomenology of ha-
dronic reactions during the 1950s. The latter work and
much of the later work emphasized the importance of the
pion, the lightest known hadron, and the internal struc-
ture of the nucleon (i.e., the 6 resonance}. Paralleling the
motivation of long-range three-body forces between
atoms, the pion-mediated three-nucleon forces have the
longest range and might be expected to be the dominant
component of such forces in the dilute trinucleon systems.

A recurring theoretical problem was the off-shell
behavior of the pion-nucleon (n'-N) interaction. The
familiar pseudoscalar (PS} and pseudovector (PV) interac-
tion vertices have identical on-mass-shell forms, but very
different off-mass-shell behavior. Without further gui-
dance, vastly different three-nucleon forces can be con-
structed using these dissimilar forms. The pure PS form
has a strong coupling to negative-energy states (z graphs)
which leads to a large even-isospin pion-nucleon scatter-
ing length. Accurate experimental studies long ago
showed that both of the isotopic scattering lengths were
quite small. The discovery of (Goldstone mode) approxi-
mate chiral symmetry led to an understanding of this re-
sult ' and of the sinall mass of the pion. While these
discoveries did not completely specify the form of the
pion-nucleon interaction, they provided sufficient con-
straints that formulation of the long-range three-nucleon
forces was far less arbitrary.

The modern era of this topic began with the dictum of
Brown, Green, and Gerace that, no matter which
theoretical m-N m.odels are used, they should be consistent
with (broken) chiral symmetry. That is, they should pos-

sess well-defined chiral limits. The first potential of this
type was constructed by Yang. ' Later, the Tucson-
Melbourne group emphasized that one should also incor-
porate as much appropriate phenomenological input's
(which includes chiral-symmetry-breaking information) as
possible. The implementation of both rules led to the
Tucson-Melbourne three-nucleon potential' ' via the
use of PCAC and current algebra to determine the form
of the (off-shell) pion-nucleon scattering amplitude for
small pion and nucleon momenta. This amplitude medi-
ates the three-nucleon force and is shown in Fig. 1(a),
which depicts only one of the many possible pion-charge
configurations that give this force its rich isotopic struc-
ture. Among the possible processes subsumed by the
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FIG. 1. Various physical processes contributing to the 2m3BF
which are subsumed by the "blob" in panel (a) are depicted in
(b)—(f), and (i). Shorter range processes are illustrated in (g)—C,h)
and (j)—(1}.
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determined by the pion mass p and the pseudoscalar ~-N
coupling constant g. Hence these contributions are rela-
tivistic corrections.

It has been known for a decade that relativistic
corrections in nuclei are subject to a generic problem,
which has prevented a proper study of their size and in-
fluence. The problem is precisely the one which arises in

mapping the Bethe-Salpeter equation (a four-dimensional
equation) into an "equivalent" quasipotential (three-
dimensional) equation. A succinct statement of the prob-
lem is that there are many such equations. In the more
limited context of relativistic corrections, the statement is
that an ambiguity in how to handle the re1ative times in a
relativistic many-body system [or, equivalently, the fourth
(time) components of the four-momenta transferred be-

tween nucleons] leads to a unitary ambiguity in all opera-

"blob" are the disconnected graph [i.e., the pion-exchange
Born term of Fig. 1(b)], the Fujita-Miyazawa b,-mediated
interaction in Fig. 1(c), the z graph or nucleon-
antinucleon "pair" process in Fig. 1(d), and the p- and cr

meson mediated forces in Figs. 1(e) and 1(f). Shorter-
range processes such as those of Figs. 1(g), 1(h), and
1(j)—1(1) are also possible. For future reference we will
denote those processes represented by Figs. 1(b), 1(d), and
1(i) as "purely pionic processes, " because they involve
only pions and nucleons.

Overlapping pion exchanges' depicted by the time-
ordered graph of Fig. 1(i) present a special problem. The
latter processes are clearly related to Fig. 1(b), but contain
the modification due to retardation, the finite time re-
quired for a pion to propagate between two nucleons.
Moreover, we expect intuitively that Fig. 1(b) is simply
the iteration of the one-pion-exchange potential (OPEP) in
the three-body system and should therefore be excluded.
That is, it is not a "true" three-body force because it is
merely an unavoidable consequence of solving the
Schrodinger equation with two-body forces in a many-
body system.

These disparate considerations lead to three theoretical
problems which have continued to plague us. (1) The con-
struction of a pion-nucleon amplitude with good proper-
ties for small momenta is adequate to describe the long-
range behavior of the force, but is clearly inadequate to
specify the short-range behavior. (2) Our intuitive
analysis of Fig. 1 forces us to consider time-ordered
graphs such as panel 1(i) at the same time that we "sub-
tract out" the interaction of the OPEP, Fig. 1(b). The
former processes are nontrivial and represent a kind of
medium modification of the OPEP. (3) We will see subse-
quently that the purely pionic processes, when the Born
terms are subtracted, have the schematic form V /Mc
or f /Mc2, where V is the (two-body) OPEP, M is the
nucleon mass, f is the (pseudovector) n-N coupling con-
stant (f =g/2M), and the dimensionless renormalized n

N coupling constant has the value

tors .The rules of quantum mechanics dictate a solution
to the problem: unitary transforrnations cannot alter ma-
trix elements, provided that the wave functions and the
operators are consistently calculated. Our current diffi-
culty is that the so-called "realistic" potential models,
used to calculate the wave functions, do not have the re-
quisite form to guarantee that the matrix elements can be
unambiguously calculated. The two-body potentials to or-
der ( v /c) must be momentum dependent, and this
momentum dependence is not arbitrary. Moreover, the
pion-exchange part of the nuclear charge and isoscalar
current operators suffer from the same problem. For
completeness, we list in the Appendix the two-body rela-
tivistic corrections to the OPEP, and the complete OPE
charge operator, both of which were calculated in Ref. 24.
These operators depend on two arbitrary parameters, p
and v, which label the ambiguity and which must cancel
from any matrix element.

Because there is a confluence of problems associated
with the purely pionic terms, we will restrict this work to
those processes. We therefore take m =mz ——ma ——oo,
deferring until a later paper the explicit b,-, o-, and p-pole
terms. That is, we will work with those processes in Fig.
1 which contain only nucleon pole terms, pion-exchange,
and pion seagull terms. Much of the final result has been
derived before' for a specific choice of p, with the excep-
tion of the medium-modification, or retarded pion ex-

change, processes. The method we have chosen to per-
form this calculation was used in the first complete [to
order (v/c) ] treatment of the pion-exchange two-body
force and is particularly well suited for calculating the ef-
fect of medium modification of the one-pion-exchange po-
tential, to be discussed later. The basic elements of this
approach consist of a Foldy-Wouthuysen reduction pro-
cedurez6 (an expansion in powers of 1/M) to define the
pion-nucleon vertices and the use of time-dependent per-
turbation theory to tie together the nonrelativistic nu-

cleons with pions. The Foldy-Wouthuysen transforma-
tion on the relativistic (four-component) equations of
motion for a single nucleon interacting with a pion field
results in a two-component equation. The latter is first
order in time and no longer involves explicit antinucleon
degrees of freedom. Those degrees of freedom have been
"frozen out" and lead to seagull-like terms in the effective
Hamiltoruan which results. This approach contrasts with
the calculation of Ref. 17, which constructs the entire
three-body amplitude corresponding to a three-body force,
subtracts the (so-called) forward-propagating Born terms,
and then makes a small momentum expansion, while ig-
noring retardation in the pion lines. We will see in Sec. V
that the results of these two very different approaches are
nearly identical.

The basic elements of the calculation, including the
Foldy-Wouthuysen expansion of our basic vertices, is
presented in Sec. II. The troublesome Born term subtrac-
tion is dealt with in Sec. III, while the seagull contribu-
tions are treated in Sec. IV. These diverse elements are
combined in Sec. V, where we display explicit forms for
the three-body potential operators, verify the constraints
of special relativity, and make comparisons with previous
results. In Sec. VI we present our conclusions.
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II. VERTEX FUNCTIONS Npv ——e Nps,iS
(3a)

f M.
A detailed discussion of chiral (effective) Lagrangians is

not needed for the purpose of this work, and we defer it to
a later paper. A11 that is necessary is the observation that
PV coupling manifests a "soft" pion-nucleon interaction,
which is the simplest way to build in many of the conse-
quences of chiral symmetry for the m-N interaction, par-
ticularly for our purposes here. This does not mean that
models with PS coupling are wrong. Indeed, it is a rela-
tively easy task to show that the nonlinear cr model
(based on PS coupling) can be transformed by means of a
simple pion field transformation and a unitary nucleon
field transformation into the (unrenormalized) Weinberg
nonlinear model (based on PV coupling}. These models
are therefore physically identical. The renormalized
pion-nucleon coupling terms for the latter model have the
approximate form

We wish to determine the leading-order (in powers of
1/M) contributions to the purely pionic parts of the two-
pion-exchange three-body force (2ir3BF). In order to do
this we use the "rules of scale" developed previously.
%e treat the nonrelativistic t~o-body potential energy V
as the same order of magnitude as the kinetic energy, T
( —1/M). Thus, relativistic corrections to the Hamiltoni-
an are schematically of order 1/M (i.e., 1/c correc-
tions), and can be explicitly of order 1/M (the kinetic en-

ergy), V/M (two-body potential), or V /M (two- and
three-body potentials). Consequently, we will limit expli-
cit powers of 1/M to first order. Moreover, we will cal-
culate only three-body forces, which limits our require-
ments for pion-nucleon vertices to orders f, f/M, f, and

2/

Nps ——e ' Npv, (3b)

where

S =y5h (g)r.g', (3c)

and thus

1+iy5hs g
(I+h2g2)'" '

H'= (a.p+PM)+2t'13ysfMr m(1 —p)

fpy5r fir+—(a V)rr]

+f' p'+, —1 ~ nX[~+.(a V)n]
gA'

with h (0)=1 and g'= Af m'. For our purposes we can take
h = 1, because we will work only to order f2. Clearly, one
is not required to work with pure PV or PS couplings, and
a linear combination may suffice. Converting Eq (2) t.o a
Hamiltonian and performing the transformation (3b) with
A, = 1 —p results in

LN =-N fysy"d„r —n 2y"~ rr—xr)„n N,
gA'

(2)
213f Mrt (1 —p) +— (4)

where the first term displays the (y"8„}PV form, w(x, t)
is the (isovector) pion field, and N is the nucleon field.
We use the conventions of Ref. 30. The second term, a
seagull, is necessary for the pion-nucleon scattering ampli-
tude to exhibit the correct behavior' at the (off-shell)
Adler-%eisberger point.

In the absence of a sigma term, the n N amplitude at the
Cheng-oashen, Adler, and %einberg symmetry points'
are equal to the PV Born terms, calculated using the first
term in (2). Alternatively, the reduced amplitude, defined
as the difference of the full amplitude and the PV Born
terms, mill vanish at these points when there is no sigma
term. Note that me have used a renormalized seagull cou-
pling by introducing the axial vector coupling constant
gz. %'e also note that the latter process enters into some
effective Lagrangians via a p-exchange process. ' Freez-
ing out the p leads to Eq. (2).

The essence of the transmogrification of the nonlinear
o model discussed above is the nucleon field transforma-
tion. It has the form

In addition to the free Dirac Hamiltonian [HD], the next
two terms are the usual PS (for @=0) and PV (for @=1)
~-N couplings, followed by the Adler-Weisberger term
(for lan=1} [i.e., the seagull term in Eq. (2)], while the
remaining term is necessary to cancel the large unphysical
z-graph part of the ~N amplitude in PS coupling. For
p=O and gz ——1, we reproduce the nonlinear o model
Hamiltonian to order f; the additional term which arises
for gz&1 (i.e., renormalized) converts this to an effective
Lagrangian which satisfies the chiral constraints at the
symmetry points, as it must, because the unitary transfor-
mation cannot alter the physical content of the model.

The parameter p in Eq. (4) is precisely the same param-
eter which labels one of the ambiguities in OPE relativis-
tic corrections in a nucleus, and has its origin as a frac-
tional (i.e., I —p, } Weinberg (or Dyson) transformation.
We can construct nuclear operators from this Hamiltoni-
an by performing a Foldy-Wouthuysen transformation.
The pionic terms to order f /M are given by
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2 2 2

H„= —f(cr V)r m — (1+p)Icr.p, r ~I+ 2
r m Xw+ (1 —p)n"V tr+ (p —I+1/g„)(p', rXnV' n]

+ "
2

cr e"'Ir e" (V'vrV rr )
'— (crXp rr Ver I+
f'(1 — )

2Mg~ 2M

In addition, we have dropped several terms nominally of
order f2/M which involve two time derivatives. A time
derivative of a pion field can be thought of as order 1/M
and, consequently, these terms should not be kept. %e
note that the final result has the form

Hq Hpv ——i (p ——1)[Uii, H pv +HD] —(p —1)UIt,

where

(6a)

Uii —— jcr p, r nI .
4M

(6b)

Note that four of the seven terms in Eq. (5), including
three of the five seagull terms, are modified by the unitary
transformation. The operators in Eq. (5) are the basic in-
gredients for our perturbation theory calculation. The
first (p-independent) term in Eq. (5) defines the basic n-N
vertex, J, while the second term defines its relativistic
correction, J' .

III. PERTURBATION THEORY

Given the mN vertices developed in the preceding sec-
tion, we can now connect them together using time-
dependent perturbation theory to form physical ampli-
tudes. The amplitudes are represented graphically by
Figs. 2 and 3. The individual vertices are depicted in Fig.
2, with panels (a) and (b) representing the rr-nucleus ver-
tices of order f (J ) and f/M (J' ), respectively, while
panels (c) and (d) show the seagull vertices of order f2 and
f /M, respectively. These are tied together in the usual
way with pion propagators to form nuclear amplitudes.
We emphasize that the double lines depict nucleus wave
functions and Green's functions. Explicit forms for the
Green's functions, the n-nucleus vertices, and the ap-
propriate Feynman rules are given in Ref. 24, where Figs.
3(a) and 3(b) are discussed in detail. We present here a
succinct symmetry of that work with those minor modifi-
cations necessary to extend our procedures to order f,
and work out a simple example.

SDJfZA
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In the absence of pion exchange we suppose that the
nuclear Hamiltonian is given by 00. To Ho we add the
one-pion-exchange potential V to form the basis Hainil-
tonian H used to calculate the wave functions and Green's
functions (double lines) in Fig. 3; consequently, we must
also subtract V and treat it in perturbation theory to-
gether with the other pion-exchange processes shown in
Fig. 3. Thus the pion-exchange potential V is a "counter
term" of order f (represented by the circles with over-
scored crosses) and is the analogue of mass counter terms
in quantum field theory. The problem with this pro-
cedure (and Rayleigh-Schrodinger perturbation theory in
general) is that the meson exchanges generate energy-
dependent potentials, and such potentials have undesirable
properties: the orthonormality relationship for the wave
functions explicitly involves the potentials. Alternatively,
these potentials are not Hermitian in the usual sense, and
are state dependent. Eliminating this energy dependence
is accomplished in precise analogy to the mass and wave
function renormalization procedures of quantum field
theory, leading to an energy (state) -independent pion-
exchange potential.

The operator corresponding to the pion exchange in
Fig. 2(a) can be constructed easily using the Feynrnan

1

M
(b)

I'r I I 1 1K/Nj&~/JA

/
I

EViXWj/JS

I 10Dj&/j/JS

(c)

/

(d)

FIG. 2. Basic pion-nucleus vertices for one pion, panels (a)
and (b), and two pions, panels (c) and (d). The solid circles
represent the nonrelativistic forms, while squares represent rela-
tl vis tie corrections.

FIG. &. Time-ordered pion-exchange graphs of order fi are
shown in panels (a) and (b), with the ~ representing the OPEP
counter term. The remaining contributions are of order f; they
are the disconnected 2m-exchange graphs, (c)—(f), the overlap-
ping graphs of (g)—(i), and the seagull graphs of (j)—(l), respec-
tively. The cross hatching indicates virtual nuclear excitation
driven by retarded pion exchanges.
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rules, or taken directly from Eq. (35a) of Ref. 24. We
find that the "pionic self-energy" X, or equivalently the
retarded one-pion-exchange potential V~(E), is given by

d qi J„(qi)im) (m
i
J ( —qi)

(7a)
(2~)'2E, Ei+(E E—) i—e

J, ~m)(m ~J,f—i Ei+(E~ E—) ie—'

6
n

and from Eq. (52) of Ref. 24,

where

V =&~+ ~ f [Ji [»Ji])
J„H'——,

' H, 0 J,J,
Z = V.' —f, [[H,J, ],J,),

d3q1 J~(qi)J~( —ql)JiJ)—
(2~)'2E',

V' = — JiJi,
V~= — J)J

(9b)

(9c)

(9d)

(9e)

It is a simple exercise to use the explicit form of the
operator J to demonstrate that the two-body parts of Eq.
{9c) coinprise the usual nonrelativistic OPEP. All one-
body terms here and elsewhere will be ignored, because
they contribute only to the nucleon mass.

The energy-dependent factors in Eq. (8) can be elim-
inated in two ways. One method adds the energy-
dependent V (E) to the Hamiltonian in Schrodinger s
equation,

[E—Ho —V (E)]%E——0,
and then manipulates it to order f /M into the usual
Schrodinger form:

t E (H ——,[V', [H, V' ]—))Iqi=0 .

is the usual nonrelativistic pion-nucleus (many-body) ver-
tex. The energy E occurring in the propagator of Eq. (7)
is the energy of the initial state and Ei is the pion energy,
(qi+}u )'~2. The schematic form written in (7b) will be
useful later for the two-pion exchange case. Clearly,
V (E) is a complicated many-body operator.

We next expand the propagator as a power series in
{E E)/Ei to—second order, because (E E)-1/M-
Using closure we find, to this order,

V (E)=V + ,
' [E H, Z—I+(E— H)V"(E —H)+—

(8)
Uii

— f [H, JiJi ], (14)

the disconnected diagrams calculated using J generate an
effective three-body force contained in Eqs. (9a) and (11},

V =&~—s[V~ [»V~))+ f [Ji H]'+&'[»Uzl

(15)

together with the contribution in Eq. (12) from J':
V'„=i [H, UE]+i f IJi, [H,J', ]I . (16)

The terms containing Uz and Ux are first-order uni-

tary transformations, have vanishing expectation value,
and could be eliminated by performing the inverse of that
transformation. Can we simply ignore them for this
reason'/ In Eq. (9a) the problem actually lies with the
third term and the identity

[H, [H, JiJi])/2=[H Ji) + I Ji, [H, [H Ji))I/2.
(17)

%e can eliminate the final two terms in (15) in terms of
another with a different structure. Physically, the
[H,Ji] term corresponds to the pion retardation taking
place equally at both m.-N vertices in the OPEP, while per-
forming the substitution of Eq. (17) into Eq. (15) leads to
a single contribution which corresponds to retardation
taking place asymmetrically. The former is equivalent to
ehminating the commutator (i.e., v= 1 ) and is labeled the
"soft" representation, while the latter corresponds to the

Alternatively, the perturbation series for V (E) defined

by Figs. 3(a)—3(fl can be rearranged so that only a series
for b, V (E)=V (E} V—„remains. The renormalization
procedure of Ref. 24 then leads again to Eq. (11), which
completes the treatment of the disconnected diagrams,
Figs. 3(c)—3(f), constructed using J .

We repeat the calculation replacing J„[solid circles in
Fig. 2(a)] by J' [solid squares in Fig. 2(b)] in Eq. (7a).
This produces a new contribution to V, denoted 5V':

b, V' =i [H, UE]+i f t Ji, [H J'i ]I, (12)

where

Uz= —
z fo[J'i JiI . (13)

The disconnected diagrams play no role to order f /M.
This completes our treatment of Figs. 3(a)—3(fl.

These results are virtually identical to the correspond-

ing calculation culminating in Eqs. (57) and (65) of Ref.
24. The only difference is the double commutator term in

Eq. (11). Moreover, if we examine the second term in

(9a), we find that, after excluding one-body terms, only
the potential energy in H contributes; it does not generate
three-body contributions and we can ignore this term also.
In Ref. 24 two-body contributions of order f /M to b, V'

were calculated.
The last term in Eq. (9a) has a special significance; it

gives the effect of retardation, or medium modification of
the pion propagator, on the one-pion-exchange potential.
Moreover, if one defines (with v=0 for the moment)
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(18b)

The first of these terms exactly cancels the second term in

Eq. (15), while the undesirable second term has the form
of a unitary transformation. This term is unique in form
and, unlike the others, can (and should) be removed by
unitary transformation, since it leads to a momentum-
dependent two-body potential of 2ir range. Note that
(18b) would vanish if the meson-nucleon vertex were spin
and isospin independent. Repeating the same process for
the m-N vertex J' leads to a vanishing result: V =0.

IV. SEAGULL CONTRIBUTIONS

The seagull n Nve-rtices, Figs. 2(c) and 2(d), are all that
remain from Eq. (5). Those contributions which involve
seagulls of order f /M can be easily evaluated, because re-
tardation plays no role. We define the seagull in Fig. 2(c)
so that a term of the form

S ~xym x y

in the Hamiltonian generates a momentum space vertex
with the properties

~ ~(qi q2)=~i2 =~2i =[~ ~( —qi —q2)l . (19)

"standard" representation (v=O). Note that those parts
of the two-body potential in H which commute with J
do not generate a three-body force in the soft representa-
tion. A similar problem exists for b, V', which can be
rearranged into various forms using commutator identities
or by the unitary transformation UE. The two-body parts
of Eqs. (15) and (16), which are relativistic corrections to
V, are derived by replacing H with T. These terms do
not give us any guidance about which values of p and v to
use (see the Appendix). No values of these parameters
produce a potential which is momentum independent.
Consequently, we are unable to make a choice which cor-
responds to a "realistic" potential model. Insisting on
consistency requires the use of a two-body Hamiltonian
which contains essential momentum dependence that fol-
lows from the requirements of special relativity.

Having dealt with the medium modification graphs, we
must still contend with Figs. 1(b) and 1(d), as well as the
overlapping time orderings (TO s) of Fig. 1(i). The
derivation of these contributions is exceptionally tedious,
and we will only quote the final result. The unretarded
part of the graphs 3(g)—3(i) is a local two-body 2n. -

exchange potential and will be ignored, as will the Z
terms which arise from the energy dependence of the
propagators. Those terms can be removed by the pro-
cedure we discussed earlier and lead to high-order contri-
butions (in 1/M) than we have agreed to keep. We find

~V~'= 8[V' [H V~]]+i[H V2.], (18a)
In the static limit, Figs. 3(j)—3(1) give the following con-
tribution:

E2J-(-qi)J.'(-q2)~'(qi, q&) E~&'(q„q,)J:(-q,)J'.( —q, )
+ E &

+J ( —qz)& @(qi,q2)J„(—qi)0 Q 1+ 2

J]J2~, S)2~ (20)

where the last form is developed by using the symmetries
(19) and dropping one-body terms.

The Adler-Weisberger effective interaction has a time-
derivati~e term which generates the seagull in Fig. 2(d) of
the form

S ~ x,y m x, t w~ y, t

(22b)

As before, the Vq'~ term is unique and can be removed by
a unitary transformation, V2'. Seagull diagrams involv-
ing two time derivatives are of higher order and can be ig-
Qor ed.

where

(21)
V. RESULTS

A tedious repetition of the previous calculation leads to
unretarded seagull terms which are two-body (only), and
retarded three-body terms

b, V =i[H, Vp' ]—i J J IS if, I[H,Ji],J~2}}, (22a)

where
b V = g r;.&JA,Jk+~I, ~; xr/B, jk,

i~j ~k
(23a)

Our formal expressions in the preceding sections must
be evaluated in order to generate explicit forms for the
three-body force. Because these forms are lengthy and
there are numerous separate terms, we define
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b ijk = —(v+1)IPk ('Vkj —Vk ) "0(xk )"o(xkJ ) j ~ (26b)

A 'jk (cT V'k )(crj Vkj )a Jk + (irj Vkj ) I ~;.p;, c;,k j

(23b)

~ijk (iri 'Vki)(irj Vkj)bijk+(~j Vkj ) t~i Pi» dijk j

(23c)

The unretarded seagull diagrams [Eq. (20] generate
c =d =0 and

a i&g
= ( 1 —

iM )[h p (xk& )Vki h o (xk» ) +h 0(xki )Vkj h 0(xkj )]
—(I —p)I hark &&1k'Vk ho(xk;)ho(xkj) j

and

(24a)

~ljk = ( jj I/gA)[pk'(Vkj —Vk ) ho(xkl)"0(xkJ) j
SG 2

+(2/gq )rrk Vkiho(xki ) X Vkjho(xkj), (24b)

hp(z)=2 e'q'*=e "
/4mz .

0
(24c)

and

—
t a'k x Pk 'Vk ho(xkj )ho(xk; ) j ), (26a)

The retarded contributions from Eq. (22a} provide one ad-
ditional seagull term. We ignore all contributions of
shorter than two-pion range, which arise from [ V,J ],
and find a'=c'=d'=0 and

bijk (2/gA ) IP' Vk' hp(xk )ho(x'kj }j

which completes the seagull terms.
Additional forces are generated by the verte»' in Eq.

(16), which are dependent on the parameter ji,, as are the
first three terms in Eq. (24). The second term in Eq. (16)
produces c' =d'"=0 and

a ijk (}u+I )( [ho(xkj )Vk;hp(xk; )+ho(xki )Vk, ho(xkj )]

ct'k ——(p, +1)crk.Vk;h, (xk, ) x Vk; h p(xk ),
b»jk (ji+——1)IPk.Vkj, ho(xkj)ho(xk;) j,
dpjk = —(p, +1)Vk,hp(xk, ) Vk;hp(xk;) .

(27b)

(27c)

(27d)

This completes the treatment of p-dependent terms.
The remaining components of the three-body force are

determined by the parameter v and explicitly involve re-
tardation of the OPEP. They are obtained from Eqs. (15)
by replacing H with T+ V; we find

~V"= J, I[»Ji] [V Ji]j

The first part of (28) (for v=1) comes from [J,,H],
while the second term has its origin in the unitary
transformation alone. The various comm utators are
straightforward to evaluate, but the final result is not sim-

ply related to the OPEP because of the index 2 on the
Fourier transform integral, which requires a digression.

In Ref. 24 we noted that this form arises from expand-
ing the relativistic OPEP propagator in momentum space
about the point qo ——0:

Adding Eqs. (24) and (26) together produces a result in-
dependent of p. The entire dependence on that parameter
resides in the first (unitary transformation) term in Eq.
(16). This result is clearly necessary in order that the
transformation on the nucleon lines performed in Eq. (4)
have a sensible interpretation. The first term in Eq. (16)
produces a three-body force b, V" when H is replaced by
V, with the form

aflak
———(p + 1)[h p(xk; )Vkjh p(xkj )

—jrrk &&pk'Vkj "0(xkJ }"o(xk }j]

+=[f F N(q'}l(q'+ j ')]—qo, [f'F'N(q'}/(q'+ j ')]+ ' 'd
(29b)

dq
which tells us how to treat the retardation consistently, even when a mN form factor is included. Introducing this form
factor leads to the following replacement for any function, f(q):

f d qqf(q) i d qf(q) +~N(q )

2(2m }'2E4 (2n. )'2 ' q'+ji,

d3=
2 f,[Vef(q)l, z z f,Vqf(q) .

2(2n. )' q'+ p„
(30)

V'-f'/[(q'+ j ') qo] =f'/(q'+ —j .')+—qÃ/(q'+I .')'+
=f'/(q'+jj') qo, [f'/(q'+p')]- , (29a)

dq

for some "value" of the parameter qp. The entire, lengthy renormalization procedure developed in this work has been
devoted to defining what we mean by qp in a many-body systein. If we introduce a m-N form factor, F N(q —qp), in
the usual way ' we generate
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We emphasize that this procedure is the only one which correctly incorporates the n N form factor in the retarded

OPEP, where instead of Eq. (24c) we have henceforth

3 iq z F (qi)
( ) 2f iq.x f dpe wNq

(31)
(2m} q +Ji,

Using this prescription for treating retardation, we obtain the final form of b, V"„,with c"=d =0 and

«Jk = —(1—»(Vkj. Vk )Vkjho(xkj) xk Jio(xk;)

v)pk''Vk'+(1 v)pk''Vk'+2p''Vk' irk'Vkjjio(xkj')Xxkiho(xki }j

b'jk (I v)(Vkj Vk'i)~k'Vkj'~o(xkj ) Xxk'~0(xki)R

+[2(1 v—)pk; Vk.;+(1—v)pkj Vk;+2p; Vk;, Vkjjio(xkj) xk;&o(xki)j ~

(32a)

(32b)

where pk; =—pk —p;, etc.
All but two of these terms are proportional to 1 —v and arise from the double commutators in Eq. (28}. The first term

in (28) generates the two terms in (32) proportional to p;, which will not vanish when v= l. Adding the results of Eqs.
(24)—(27) and (32) produces our final result for

av. =av'. +av'. +av.'"+av~+sv". ,

which is

&ijk (iM 3)ji0(xki )Vkj J(iokxj ) (I v)(Vkj Vki )Vkj Jio(xkj ) xki Jio(xk')+(iu 3}Ierk X pk Vkjji0(xkj )Jio(xki }j

—I2(1 —v)pki Vk;+(1 —v)pkj"Vkj+2p; Vk;, o'k Vkjho(xkj) Xxk;ho(xk;) j, (33a)

cjk ——(@+1)irk XVkh o( xk) Vkjho(xkj),

bijk = i o'k Vk; jio(xk; )XVkjho(xkj) —(1—v)(Vkj Vk;)irk Vkjho(xkj )Xxk;Jio(xk;)
2

gA'

(33b)

2
I pki'Vki Jio(xki)ho(xkj) j+(Jj 3)l pk Vkj ~o(xk'j )Jio(xki }j

gg

+[2(I &}pk"Vk—+(I &}pkf Vkj—+2p'Vk Vkjho(xkJ} xk Jio(xk }j (33c)

d Ji, = —(p+ 1)Vkjho(xkj)'Vk; Jio(xk; ) ~ (33d)

The final result is quite complex: 15 terms, of which five
depend on p and six on v, 11 are momentum dependent,
and only four are local. The terms proportional to the un-
itary parameters p and v can be easily checked, because
they are generated by commutators. Moreover, six terms,
including the c and d terms, can be completely checked
by verifying the requirements of special relativity, which
we do below.

If we change momentum variables to relative (ir;) and
(nuclear) center of mass (P) for the ith nucleon, and de-
fine m, =AM, we find

P Vp
V(P) = —

2
—i[X„(P),h] i [Xo(P)—, Vo], (36a)

2m,

where Vo is the nonrelativistic part of V, Ji is the nonrela-
tivistic Hamiltonian, and Xo and g„are the potential-
independent and potential-dependent parts of I, respec-
tively. The latter consists of two terms, given by Eq.
(A21) in the Appendix. It was verified in Ref. 24 that the
two-body relativistic corrections to the OPEP satisfy
(36a). The three-body parts must satisfy

p; =m;+MP/m, , (34) I'iN(»+&9'. v']=0. (36b)

%p-= [1—iX(P )]Co, (35)

to order (U/c) . The requirement that the energy eigen-
value have the obvious form [P +(m, + Ji) ]' leads to

the terms proportional to P in the potential, V(P), play a
special role. It was shown in Ref. 24 that the wave func-
tion of a many-body system must have the form

Inserting (34) into (33) generates V&N(P) and performing
the commutator verifies (36b). Because momentum
difference terms (e.g. , pk;) do not contribute to ViN(P),
only six of the 11 momentum-dependent terms are
checked in this way. %e emphasize that these six terms
are verified completely by the requirements of special re-
latl vl ty.
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The final check is a comparison with previous Tucson-
Melbourne results. %'c have arranged our expressions so
that nucleon "k" rescatters the pion. Thus our "k" is
equivalent to the label "1"of Ref. 17, while "i" and "j"
correspond to "2" and "3." A detailed comparison with
the results of Ref. 17 determines that JM= —1. This is no
surprise, since that choice corresponds to working vrith

on-shell (i.e., "free") spinor amplitudes. Moreover, all of
the 1 —v terms as well as the p; Vk; terms in a,JA, and b,Jk
are not present, because retardation in the pion propagator
was not considered in that work. In addition, the

ok)&pk Vi, term in a;ii, is also missing. With those ex-

ceptions, our "purely pionic" results are in agreement
with Ref. 17 for p= —1. The pi pi term in the potential
of Ref. 18(a) is incompatible with the requirements of re-
lativity and should be dropped; we have no such term.
See also the comments of Ref. 18(b).

Finally, we note that there have been a number of in-

complete or inconsistent calculations' of the overlap-

ping and disconnected diagrams. All of these calculations
founder on their treatment of the energy-dependent terms
in Eq. (8), determined by V'. If the formalism which is
used replaces H by T (this is the usual case), there is no
obvious way that these terms can cancel, as they must.
Note that the function V' is proportional to derivatives of
the Bessel function, Ko, while all of our results depend on

Kii2, which is simply expressible in terms of exponen-
tials. All previous calculations of the various time-
ordered second-order (in f ) processes obtained erroneous
results determined by V'; the errors are signaled by the
appearance of the functions Ko and Ki in their potentials.
The iterated OPEP has the form V GV„, and since the
Green's function G behaves as (p /M) '-M, these pro-
cesses are of order MV„. As we emphasized earlier, our
three-body force is of order V /M, or a 1/M [i.e.,
(U/c) j correction. Unless one introduces an energy-
dependent potential, there are no operators of order V

(i.e., a U/e correction). This has been noted recently by
Glockle and Yang, who state that the time-ordered pro-
cesses should not be kept unless a correct relativistic treat-
ment is made; we have performed such a calculation here.

The parameter v labels the inanner in which the effects
of retardation of the pion propagator are treated, and cor-
responds to the folded diagram ambiguity of Johnson.
As previously noted, the soft representation (v= 1) elim-

inates many 3BF contributions, and that is true in this
work as well. Most of the terms we have calculated that
are not found in the original Tucson-Melbourne work are
eliminated by choosing v=1. The latter work made no
attempt to calculate the effect of pion-propagator modifi-
cation.

The procedure we have advocated here differs in princi-
ple from that of Ref. 17. In that work the (off-shell) m.-N
scattering amplitude was expanded in powers of pion and
nucleon momenta. In contradistinction, in this work we
have expanded in powers of 1/M. The results are un-

changed by the difference in expansion philosophy. In fu-
ture work, when we reincorporate the additional degrees
of freedom (0, p, etc.), this will not be the case.

Having gone to great lengths to define the (properly
subtracted) 2ir3BF corresponding to purely pionic terms,
we should note that to the best of our knowledge none of
the momentum-dependent terms in hV have ever been
numerically estimated. It is not clear that they have a sig-
nificant size compared to the 6 or o contributions, for ex-
ample. It is important that these estimates be made.

Finally, it is obvious that a consistent treatment of
operators and wave functions needs to be performed in or-
der that nuclear matrix elements be well defined. That is,
wave functions should be calculated using two- and
three-body potentials with the same values of p and v as
the operators whose matrix elements we wish to calculate.
It is not clear how important the ambiguous terms arc n
our three-nucleon force. No numerical estimate of any of
the previously calculated pieces has been made.

The work of one of us (S.A.C.) was supported in part
by the U.S. National Science Foundation, while that of
J.L.F. was performed under the auspices of the U.S.
Department of Energy.

APPENDIX

VI. DISCUSSION AND CONCLUSIONS

The results of the preceding section complete the treat-
ment of the purely pionic 2n3BF term; in addition, the
Appendix contains the two-body relativistic corrections in
the OPEP of order V /M . Both sets of potentials de-
pend on the arbitrary parameters p and v. The (unitary)
form of the result guarantees that matrix elements of the
complete potential in a consistent calculation are indepen-
dent of those parameters. The parameter p, labels the (in-
complete) transformation from the Weinberg nonlinear
model to the nonlinear 0. model, with p = 1 corresponding
to the former (PV) and p =0 to the latter (PS). We have
adopted a (renormalized) form of these equivalent (effec-
tive) Lagrangians which guarantees the proper form at the
symmetry points. The Tucson-Melbourne potential in its
original form corresponds to p= —I, and is missing one
nonlocal term which depends on p.

V = V' + V + V + V" + V" + V"', (Al)

where the leading-order (nonrelativistic) OPEP is given by

~f ti2ni V cr2 Vho(r), (A2)

We present here the results of previous calculation of
the (two-body) relativistic corrections to the OPEP of or-
der V„/M and to the charge operator. We present the
former in two forms: for a general many-body system
and for the center of mass of a two-body system. We fol-
low Ref. 24, Eqs. (61)—(65), and (57)—(60) for V"', and
write
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2= 2
2 g &, &&rr, Vijoj .V';j [p;, hp(x;j ) j

4M

~—[p, V j/2M (A3)

j I l p/& ol Vljhp(xtj ) j
l+j

f2
ti2(Ioi p o2 Vhpj+jo2p, oi.Vhpj}.

8M

Moreover,

The remaining contributions depend on the parameters p
and v:

jjf2

, X "jj,[p';, I;.p; hp(x;, )jj
8M

f'(j —1). . . pV" =—
2M Q r; rjrrj Vijhp(xj)o; Vi V

=2i(ji, 1)—[V, Uz], (A6)

where

~p . , UF ip.[——T, UE],
P'
M ' (A4) where V is the spin- and isospin-independent nonrela-

tivistic potential, which, together with the kinetic energy,
forms h. In addition,

V" = — g r; rj oj V,j [p; V,j, j crj p;, h p(x,z ) j j +i (ji, + 1 )[h —2 V, UF ] i (p—+ 1)[ V, UF ] .f'(p+ 1) 0 0

f+J

The retardation potential has the form

2

V~ =i[h, Ux](1 —v)+ z gr; rjoj Vjcrj Vj[p; Vj, Ipj;xjhp(xj)j ]~i [h, UR](1 —v) — [T,U„],—

(A7)

(A8)

where

Ua ——— [h, V"—]= [h, g~; rjoj.Vjo; xjhp(xj)
2 8

1 wj

8M g ri +joi Vijoj Vij [pit xij hp j + g ('rk ri + &j )oi Vkioj 'V'kj Vkj hp(xkj ) xkihp(xpi )

i+j i~j~k

(&; rj)o—i Vk;ojV'k. jok x'Vkjhp(xk ) xk;hp(xk;)

t g io' iVcT2 Vtp;fhp 'j
4M

(A9)

In the two-body (limiting) forms we have defined r=x, 2,

p=p, = —p2, t,~=a, v2, and V=Vi2 ———Vpi. The terms
proportional to iu and v sum to the cotnmutators i [h, UE]
and i [h, Ua ], as they must. Moreover, the two-body form
of Uz satisfies the additional relationship

For completeness we include the corresponding
momentum-dependent and ambiguous terms for a scalar-
and a vector-exchange potential:

V= +&+ V', + Ip', V', —V,'j/2M'

U~ =2'+ Ua

where the Gross transformation is given by

(A10)

where

+i ( —, —v)[h, UG]+ —[Vi + Vs, UG],
2

UG=
8M Q [pi, xij V (&j) j ~ [p, 'rV j . (All)
8M, , " " 4~

Adding the (two-body case) terms together, we obtain, for
the GPEP,

V = V —[p~, V j/2M +i [(1—v)V +( —,
' v)T, UG]—

+i[(p Zv 1)V—+(jj,——2v+1)T, Ux] .

(A14)

is expressed in terms of the nonrelativistic components,
Vs and Vi, of the scalar- and vector-exchange potential.
No analogue of the parameter p is appropriate for ( u/c)
corrections to these potentials. Equation (A12) was de-
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rived to order f only; consequently, the potential V
should not include the OPEP. This equation nevertheless
illustrates all of the ambiguity problems we discussed ear-
lier.

It is possible in Eqs. (A12) and (A13} to eliminate by
means of a choice of representation certain of the
momentum-dependent terms from [T,U], at the cost of
introducing shorter range local terms from [ V, U]. The
latter terms for the many-body problem generate three-
body forces, however. Any representation for which
P=p —2v+1 vanishes will lack the [ T, UE] terms, while
choosing v= —, [no-retardation representation] eliminates

[ T, UG]. The choices @=0,v= —,
' eliminate both.

Perhaps by way of coincidence, the Fl pion-exchange
charge operator corrections to deuteron forward photo-
disintegration (to be discussed below) were shown to be

Fo(q)= g —,'(GE+Gx~k)e
k

where the nucleon intrinsic charge form factors are
Gx ——Gg+Gg, GE=Gg GE, —GE Fi ———qiF2/4M2, and
G~ F, +——F2. Here, p, n, s, and U refer to proton, neu-
tron, isoscalar, and isovector, respectively. The true (pion)
exchange charge form factor is

(A15)

very small for P=O. The various representations we have
discussed here and elsewhere ' are v=[0, —,', 1], [stan-

dard, no retardation, soft]; and p = [—1, 0, 1, 3], [free, PS,
PV, soft].

Pion exchange also influences transition operators, such
as the nuclear charge density p, i,(r) or, equivalently, the
charge form factor F, i(q). The impulse approximation
form factor operator is

2

g(~, X~, ),~,"V,~,"V, p,"V,, f d xe' '*ho(fx —x;f)ho(fx —xj f)
fQJ

where F is the pion charge form factor and Tio contains only a single F N. In addition, there are a seagull term and two

recoil graph (vertex} contributions:

2

F = gF,"(@+1)(~;Xrj)3In; p;, e " 'oj"Vjho(xj)I+i(1 p}o;q—e'J".V 'Jho(xq)e '(r( r~F)+rj~Fi),
4M,.~.

2F'"= (p+1) girl. VJIirr; qe 'ho(xj)(F'i(r; z, )+Firj) F~(a~ X—r~)iIcr;.p;, ho(xj)(e '+e ')I I,
8M

(A17)

(A18)

2fFi iqxF =l (1—&}[Fo Ux ]+ g (t X'rJ )3rJ; V'Jnj'V 1 (p&', x~ie 'ho(xj ) I4~ & J & &J J J J' J
(A19)

where the former recoil graph contribution (A18) arises
from J' and the latter (A19) from J . Note that the
latter three terms depend on p and v. It is easy to show
that all of the p dependence in (A17) plus (A18} has the
form i@[F0,UE], as one might surmise. In addition, there
is a contribution from nuclear motion,

These results for F,i, assume a chiral coupling model
(PV}; pure PS coupling leads to an unphysical result
which involves the nucleon anamolous magnetic mo-
ments'4 I'2.

Specializing to the deuteron ground state, one finds

F (q) =—
I X,(q), Fo(q) I,

where

X„(P)=— gx,' P V;,.
2fP2

+ g~; ~,o,"p~,"V,,i,(x,, ) .
f'( —1)

j~j

(A20)

(A21)

F,i, (q ) =Fo+i (1—v)[Fo, UG]+i (p 2v 1)[FO,U—E] .—

(A22)

The previously found ambiguities affect every term but
the impulse approximation. The choices p=3, v= 1 [soft,
soft] completely eliminate the exchange terms. These are,
however, not the choices which eliminate the undesirable

p terms in the potential of Eq. (A12).
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