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The transition probability per unit time of a E shell internal conversion process is calculated in an

intense laser field where the interaction energy of electrons ~ith the laser field is comparable to the

binding energy of the electrons in the atomic potential. The intense field E shell internal conversion

coefficient is deduced and some numerical examples are given.

I. INTRODUCTION

Rapidly growing interest is being shown in studying nu-
clear processes in the presence of intense laser or other ra-
diation fields. An intense radiation field can reduce the
multipolarity of gamma transitions, ' modify P decay,
and, through changing the atomic surroundings, affect
internal conversion. The infiuence of a laser field on
internal conversion has, until now, been investigated only
in the following special case. If (such as in the 75 eV
isomeric state of U) the binding energy of the electrons
participating in the conversion process is very small, and
with the help of a laser we remove one of the electrons
giving a significant contribution to internal conversion,
then the coefficient of internal conversion will be dimin-
ished.

In the present work we deal with the direct modifica-
tion of internal conversion caused by a laser field. With
intense lasers the interaction energy of the electrons with
the laser field is comparable to the binding energy of the
electrons in the atomic potential. For internal electrons
(K, I., etc. shells) it is still the Coulomb potential of the
nucleus that dominates and the modification of the elec-
tron states due to the laser can be treated by perturbation
theory. For free electrons, however, we can use the Vol-
kov solutions which are determined by the radiation field.
Decay of the excited nucleus may take place via generat-
ing transitions between such (i.e., laser perturbed Coulomb
and Volkov) electron states instead of by multipole radia-
tion.

Exact treatment of the original internal conversion pro-
cess is very complicated. Based as it is, among other
things, on solutions of the Dirac equation, one has to take
into account the finite size of the nucleus as well as the
shielding effect of charge clouds. This is the reason
why, in the present calculation, instead of the precise
treatment of internal conversion, we shall use a simplified
but highly intuitive model to describe the laser induced
modifications of the process.

II. DESCRIPTION OF THE MODEL

Here, A is the vector potential of the external radiation
field

A =a [e)cos(tot —k R)+e2sin(tot —k.R) j

corresponding to a circularly polarized plane wave.
We assume that the interaction between the nucleus and

the electron is of Coulomb type, arising between the indi-
vidual protons of the nucleus and the electron,

Z e 2 Ze 2

Ht= g — + (3)
/R —x, i

where x denotes proton and R denotes electron coordi-
nates,

As in and out electron states for the process we take
two different approximate solutions of Ho, since no exact
solution &s available. The bound states are taken as
hydrogen-like states including modifications due to the
laser field. These states are considered initial states of
the above process and can be written in the form

with

fL)

L = —ao

(4a)

(t, )
y (g)J (bg y) iLp i((+o+hEo)ls cot]t—

Here, Pq(g) is an unperturbed H-like wave function with
energy Eo, and bEo is the power shift due to the laser
field (in the present problem one can neglect this contribu-
tion). Furthermore, we use the following notation:

~

Eo+bEo
~

=K; JL is the Bessel function of order I.,

Ho, is the sum of the Hamiltonians of the unperturbed
nucleus Hatt (its explicit form is not necessary for the fol-
lowing treatment) and the single eltx:tron Ht), participat-
ing in internal conversion,

2
Z8 1 e+ p ——A

2@i

The Hamiltonian of the system "nucleus + electron
+ radiation field" is H =Hq+Ht, where Ho Hott+——

eQ Qg
~o &0

A'c ' Z (4c)
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where aE is Bohr's radius, and 5 and (p are polar angles of
the vector g'=R/ao in the coordinate frame defined by

ei, e2, k. For the sake of simplicity, we deal with s-states
only. In this case $0 depends only on f .(The above is
true if shielding of the radiation field is negligible. )

As final states of the process, we take nonrelativistic
Volkov solutions given as

g(N, L) (N)+ b+I a (L) 3g

After carrying out time integration, this takes the form

SfN" = i—H,".)bu f(")2~5(Z +E r—.b+(L, —N)(ri ),

where we introduced the notation

Blat —— f HI ';UI ' (10)

with

(N) 1 c((~ol&)p f) . i[(x—uok g)N+(¹o EIs)t—j
Vf —— e

V
JN s1118 e

and fico,& E, ——Eb (E—, and Eb are the energies of the ini-
tial and final nuclear states) and the caret denotes the
space dependent part of the wave functions.

To determine transition probability per unit time, we
have to calculate the quantity

eap
Nf CIAO

(5c)

Vp dpdQ~

(2~)
(2n') HI, ,bHI, b'5(N, L)5(N', L')

Here, V is the normalization volume, p is the electron
momentum, m is the rest mass of the electron
(E p /2m), and I and 8 are polar angles of p in the
coordinate system defined previously. The above states
are in Coulomb gauge.

For the sake of further simplification, we deal with the
case when pao/i)i«1 and kao«1: that is, we can re-
place exp[i (aop g/i)i)] and exp[i (aok gN)] by unity.

After these simplifications, (5b) reduces to

u(N) J (Psin8)eixNei(Nru EIR)t—1
f ~ N

In other words, the wave function corresponding to the
outgoing electron does not depend on electron coordinates
within the interaction volume relevant for the process.

In the subsequent sections we shall determine the tran-
sition probability per unit time of internal conversion and
the internal conversion coefficient in the presence of an
intense laser field with the help of the states given in this
section.

N, L,N', L'

(N)+ (N')
V P

(2W)'

5(N, L)5(N', L') =—5(cu(N N'))5(N, L—),

the sums over N' and L' can be executed and we can ob-
tain the following result in the usual way

d(ufl(mls ~mb ) = g )io
I
HI ab

4m' (L, ) 2 mp (N, L)
(2ir))i)

XJN(psin8)d(cos8), (12)

where 5(N, L) denotes the Dirac delta function in (9) and
5(N', L') has the same meaning, but N' and L' are used in
the argument instead of N and L.

As u f ' and u f ' have no g dependence and are of the
form given in (5d), furthermore, dQ& ——dXd(cos8), the
integration by X can be carried out, giving 2rr5I I . Using
this and the identity

III. CALCULATION OF THE TRANSITION
PROBABILITY PER UNIT TIME

For the derivation of the transition probability we use
the scattering matrix formalism. The matrix element to
be determined is, in first order,

Sf; —— uf" p~'HI/;'u;d R d~dt .i'
Here, g'; and ff are nuclear wave functions for the initial
(a) and final (b) states, respectively.

d1= g dx)'' dx~,
proton spin

and x&, . . . , x, are proton coordinates. Using expressions
(4a) and (Sa) for u; and uf, we can write Sf; as

Sf = XS~"" (7)
N, L

where

oo l

Hl, b=g g I Q (a,b)I' ',
l=O m= —l + (13)

where

where the symbol p(N, L) denotes that p has to take a
value determined by the argument of 5(N, L); no is the
density of the initial state, which is 2 in our case as only S
states are investigated, and m„m~ are the magnetic quan-
tum numbers of the nucleus in states a and b, respective-
ly. From formula (12) it can be seen that the outgoing
electrons have cylindrically symmetric distribution around
the laser beam as the symmetry axis.

The main contribution to HI, b comes from values of R
larger than the nuclear coordinates xj; thus, we use the
approximate form of the expansion of 1/~ R —xj ~

in
terms of spherical harmonics (Al) (see Appendix) valid if
xj &R, which is true for all the nuclei except the heavy
ones. In this way
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Q/m{a b)=e g f "/1/m(&/, /p/)Pf f~(d'r (14)

is the inatrix element of the electric multipole moment of
order I,m between nuclear states a and b, and

I/
'= f U,' '(g)F/ (5,/p)g' 'dgd/pd(cos5) . (15)

i/i ——S/L(y)(1+b )" ' y, I L—=even

i~L ——0,I —I. =odd
(21)

With the aid of a further integral formula, (A4), the in-
tegral over g can be carried out in (19) and we obtain, as a
result,

IV. I/ SHELL CASE

If U; is the wave function of the innermost electron
shell, i.e., it is a E shell wave function which is given here
as a laser modified, 1S hydrogen-type one, then with the
aid of (41), (15) has the form

y =b /(1+b ),

S/L(y) = g F//. ky
k «(I —L)/2

(22a)

(221)

(L) {L)
Ibn =Cll

where

iI'~'= e ~JL b sin e' ~

X &~ (4, /p)g' 'dgd/pd(cos8)

(16a)

(161)

with

(2k +L —I + 1)!
/Lk = ~ /Lf/Lk

(L k)/k /2gk+L

X,E& +k+1, ; 1+I.+k;yL —I I+L —1

(22c)

For L & 0, I/i (and also i/L ) can be obtained from (18).
From the nuclear electric multi. pole matrix elements

Q/m(a, b), we can take those nonvanishing ones which
have the smallest I and we can neglect all the others in
(13). Thus, I is determined by the nuclear states a and b.
Averaging over the magnetic quantum number of the ini-
tial nuclear state (a) and summing over the magnetic
quantum number of the final state ( b) as usual, we obtain

4~ Ii I &a IIQ/Ilb & I

'
2l+1 (2J.+1)(2l+1) '

2 —IC= 3, ao
(mao)

The integral over qr gives 2n5 I, which means that

I
L

I
& I can occur in (13). By summin!F over m in (13),

we get terms containing I/' ' of type I/ L only. Because
of the identities J / ——( —1) JL and F
=( —1) 1/

l

lmthe relati

I(L) I(—L) L 0 (18)
I H/, ./,

I'=

where {aIIQ/IIb) is the reduced matrix element" of the
electric multipole momentum of order I. With the aid of
the above and (12) we obtain

32a, p(x, L) ., 1&a IIQ/I lb & I

'
{2I+1}~ ~ l l

—(2J +1}

holds, which means that it is sufficient to deal with I/' '~,
L &0, and it is denoted I/L (and the corresponding i/'

as i/I, ) in the following.
With the use of (A2} (see Appendix}, JL (basin@) can be

factored into bg and 8 dependent terms. The integral
over cos8 in (161) has nonzero value if I L=even, —
which can be seen from the forms of the spherical har-
monics (A7a) and (A71), i.e., the Y/m has P/l l(cost)-
type cos8 dependence. Thus with the use of (A3), (161)
has the form

g,L=&,L e- 2m
0 ILk

k «(I —L)I2

)&J//(P sin8)d(cos8), (24)

),L=O, I-L, =odd

where
1/2

21+1 {I—L)!
4m (I +L)!

(by gk+ i —/dg

I —L, =even, L &0
(19)

(20a)

with

f Jz(Psin8)d(cos8)=Tl/v
l
(P), (25)

where A.z is the Compton wavelength of the electron, a is
the fine structure constant, and the prime over the sum
denotes that summation over I must be carried out for
I L=even in the —I &—L & I interval and the sum over
X must be carried out from that minimum (generally neg-
ative) N value which is determined by energy conserva-
tion, i.e., by the argument of 5 in (9).

The integral over cos8 can be carried out with the aid
of formulae (A5) and (A6) as

2 LI {k+—,
' )k!(I+L)!

f/Lk
I ((L I}/2+k +1)I ((L +—l)/2+k + —, )(I —L)!

(20b)

2P
Tl/v l(p)= J2l/v l(x)dx .

2P o

Thus the total transition probability per unit time is
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32,p(x, L} , . I &uIIQill» I'
fik, c(2L+1) N L & ap) '(2J, +1)

XT~~ ~(P) . (27)

V. INTERNAL CONVERSION COEFFICIENT
IN INTENSE RADIATION FIELD

The intense field internal conversion coefficient is de-
fined as the ordinary one, viz. ,

Ny;(las)

Nf((7' }
(2&)

Sm(l + 1)
f [(2I +1)t!]fi

(29)

where to~;(las) is the total transition probability per unit
time of the internal conversion process in an intense radia-
tion (laser) field [for the 1Sstate given by (27)] and io/;(y)
is the same for ordinary y emission and it is given' as

I &u IIQz I Ib & I

'
C (~,+1)

i

12

FIG. 2. Thequantity IgSFI vs b for I=3,S,7.

Using formulae (21}, (22a), and (22b) and E(N, L)
=E„E+(N— L)%co, w—e can get

Thus, aiz can be obtained from (27)—(29}as
' 21+1/2

41 [(2/ 1)!!] aE, Z,rr

ir(l +1)(21+1) E„ u'~'

2E (N, L)
il(L ~T)N ~(P) ~ (30)

X g' 1+(N L)—
N, L

~2I —I
'

r.
' 2l+&/2 ' ' 1/2

eff awe 86
1/2 Ea

fico
~Fi ~L, ~(b}T(x ~(P»

(31)

where E,=iiic, Ez —E, —Eb, an—d Z, rr is the effective
nuclear charge, ' which is introduced in order to take into
account the shielding of the nucleus to some extent. We
took ao ——az/Z, tr. The effective charge eZgff corresponds
to the charge of the nucleus in a hypothetical hydrogen-
like ion in which the electron has the same binding energy
as in the real atom while the electron has the same quan-
tum numbers in both systems.

tg SF[

where b, =E„gand—
gP (1+bi)i —z ~L, ~~2 2I [(2I —1)!!]'

~(I+1)(21+1) ' (32)

VI. RESULTS AND DISCUSSION

The quantities in formula (31) are grouped so that be-
fore the sum the laser independent, i.e., nuclear (E„,I) and
atomic (Z,rr, b ), parameters occur, and the part after it
depends on the multipolarity ( I), on the two laser intensity
dependent parameters b and P, and on the ratio of the
laser photon energy and the outgoing electron energy in
the laser fry case (Ace/6). Our result is valid only in the
so called optical frequency range because of the assump-
tions and computation methods employed.

Generally, fico/b ~&1 and
I
L

I
&1 ~&X for most

TABLE I. The values of the coefficients AI in formula (3S)
( I is the order of multipolarity}.

FIG. 1. The quantity IgSFI vs b for I =2,4,6.

0.249
1.087 x10-'
3.110x10-4
S.320x 10-'
2.299x 10-'
2.6SOx 10-'
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TABLE II. Intense field E shell internal conversion coefficients computed with laser intensity
I=10"%/cm2 and laser photon energy E = 1.16 eV. Nuclear and atomic data necessary to the calcu-
lation are also given. (For the notation, see the text).

148p

'„Ho

(keV)'

47.3 37.44

45.19

(keV)

9.86

16.22

4.38

28.7h (M4)

41.3d
(95% p)

5.02h

Zeff
b

51.49

56.34

62.18

&]as

1&10

3 g10-'

2g 10-'

'Reference 15.
bReference 16.

&~s =&S

where
21+1/2 - - ]/2

Z 2I —i —1 /2
eff

y

1

SFi QS——Fr~i ~, I L=even —.
L= —1

(33)

(34a)

(34b}

values of N; therefore the L dependence in the square root
can be neglected and the sums over L and N can be exe-
cuted independently. This leads to the result

the beginning (see Sec. II) are valid. Table II gives the en-

ergy of the nuclear transition, i.e., the outgoing y (Er)
and its multipolarity (El), the E shell binding energy (E),
the energy of the outgoing electron (h=E& E), th—e
half-life of the nuclear state (r) and its decay mode, ' the
effective charge (Z,rr) belonging to the E shell, ' and the
intense field internal conversion coefficient (a~„) obtained
from formulae (33) and (34). For the computation we
used b = 1.45 X 10 I' Z,p E~~ and pp

——3.39
X10 I'~ 5'~ E~„obt i aend from (4c) and (5c), respec-
tively, where I is the laser intensity in W/cm, b, is in
keV, and E~ is the laser photon energy in eV. The a~„
values in Table II are computed with

2P($)T= g I Jzixi(x)dx,
N )—hi%a)

with

(34c)
I =10' W/cm, Eh, ——1.16 eV (A, =l.06 pm) .

The same ai„values can be obtained in the case of

I =10'6 W/cm2, Ei„——0.116 eV (A, =10.6 pm) .
' 1/2

ea 25
mc'

aiid

P(N)=Pp 1+(N L)—

SI'i=Hi(l+b )' (35)

Here, with the notation p=p(N), it is shown that p may
have an N dependence because of P-p(N, L) [see (5c))
which will be neglected later on. The L dependence of p
is neg1ected too.

In order to obtain numerical values for the laser modi-
fied internal conversion coefficient for some nuclei, the
sum over I. was executed and the SF1 values were numeri-
cally computed for the values of b &12. The results (for
example, SI'i versus b) are depicted in Figs. 1 and 2 for
I =2,3, . . . , 7. For b ~ 12 the following approximative
formula is used:

In Table III our results and the ordinary laser free EC

shell internal conversion coefficients' are given.
Thus, our results indicate that in the range of the avail-

able optical frequencies laser assisted internal conversion
coefficients are less than the usual internal conversion
ones.

Finally, we investigate the following special case where
the influence of an external radiation field may signifi-
cantly modify the process. In some nuclei (e.g., 'q7Ag) the
energy of the outgoing gamma (E„=25.47 keV, E3 for
'&7Ag} is less compared to the E shell binding energy
(E =25.514 keV, Z, rr42. 77for 4~Ag) and thus it is not
enough to produce K she11 interna1 conversion. In our no-
tation it means that 6 &0. However, if

~

b
~

is in the or-
der of magnitude of the laser photon energy (in the above
mentioned case it is

~

b,
~

-44 eV), the originally energeti-

TABLE III. Comparison of the intense field K shell internal
conversion coefficients (given also in Table II) and the ordinary
ones.

where the numerical values of the coefficients Ai are
given in Table I.

Instead of carrying out the suin over N in (34c), we give
an order of magnitude estimation' leading approximately
to T 1.

Our numerical results are given in Tables II and III for
those nuclei where 6 «K and our simpliflcations made at

]35B
56

]48p

1608
67 0

'Reference 17.

Ct~

172 I,

' (1000)

33.4

1g10-'

3~10

2g 10-'
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cally forbidden (a,s ——0) E shell internal conversion pro-
cess may pass off via absorption of the necessary amount
of laser photons. With a similar train of thought as
above, we can obtain the laser induced internal conversion
coefficient of this process in the same form as in (33), but
with

' 1/2
ea 2%co

mc

SF2 ——45 Xy /50176. With the values of E~ and I men-

tioned above, we obtain ais ——1.8X 10 T, which gives

a1s ——2g 10 with the above T-1 estimation. Similar-
ly, with Ei~, ——1.16 eV and I = 10's W/cm2,

o'1s =1.1+ 10 gives a1s ——1+10 T.
As a consequence, internal conversion of this type

seems to be a candidate for a process where the influence
of an external radiation field may modify a nuclear pro-
cess.

P=P (N L+—6/irio2)'~,
2I +1/2 ] /2+Ee 8fRu

eff
y r

(36)
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We can conclude that the E shell internal conversion
coefficient, which is originally zero, can have a nonzero
value in this case.

In order to obtain numerical values, we make estimates
for the '47Ag case with Ei~ ——5 eV and I=10' W/cm2.

It means that X & 8 in (34c), i.e., the process needs the ab-

sorption of more than eight laser photons. At this laser
intensity and photon energy, b =6.8 X 10, y
=4.3 X 10,and therefore SiL, (y) can be approximated as

APPENDIX

, =X X
XJ'

~ E=O m= —I +

(see Ref. 18),

r& (1I (Al)

The following mathematical formulae are used in the
article:

Su, (y) =Fir,k,p
furthermore, the hypergeometric function 2Fi(a, b;c;y) in

FILk can be approximated by unity. These give for SFI
in the case of 1 =3 the following approximation:

k
1 1 —A,

J„(Ax)=A,"g, J„+k(x) x
k=0

(see Ref. 19),

(A2)

1

x (1—x ) ~ P„(x)dx =
0

( I)-2---lr +1 r +2 r(1+m+v)

o+m —v+2 r o+m +v+3
2 2

(A3)

(see Ref. 20),

r( ) F v+12 1 12+v
1

p

f 00
+P21

2 2
' + 2 „2

Q +P
e J„(Px)x" 'dx =

p Y r( v+ 1 )(&2+p2)(v+p)/2

(see Ref. 21),

~ ~
/2

J„(Psin8)sin8d8= —g J2„+2k+,(2P) (A5)

1/2

(@ ) ( 1)~ 21+1 (1 —m)!
4m. (1+m)!

XPp(cost)e™, m &0, (A7a)

(see Ref. 22), (@,y)=( —1) I'i (5,q&), m &0. (A7b)
00 2P

2 g Jr+2k+i(2p)= f J„(x)dx
k=0

(see Ref. 23 ),

(A6) Throughout the paper Y~ denotes the spherical harrnon-
ics, J„the Bessel function of the first kind, PP the associ-
ated I.egendre polinom, I' the gamma function, and 2Fi
the hypergeometric function.
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