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Possible alternative interpretations of the Lippmann-Schwinger integral equation for multiparticle
(n ~ 2) systems are investigated and are shown to be equivalent if integrals which occur are uniform-

ly convergent, as is reasonable. At real energies E, the derivation of the Lippmann-Schwinger equa-
tion from the Schrodinger equation involves various surface integrals at infinity in configuration
space. It is shown that the values of these surface integrals are related to the values of certain
volume integrals at complex energies (E+ie) in the limit e~O, originally examined by Lippmann.
It is further proved that a number of these surface integrals vanish together, a result which —though
plausible —previously had to be assumed. The results of this paper confirm previous studies show-

ing that the solutions to the multiparticle Lippmann-Schwinger equation need not be unique. Be-
cause of am'tain convergence difficulties which can occur, the analysis of this paper is not wholly

valid for "three-body" collisions (defined as collisions involving three independently incident aggre-
gates of the fundamental particles comprising the multiparticle system), or for the even more com-

plicated collisions involving n ~ 3 incident aggregates.

I. INTRODUCTION

Recently'2 we have examined the problem of the
nonuniqueness of solutions to the Lippmann-Schwinger
(LS) integral equation '~ in an exactly solvable three parti-
cle model due to McGuire, ' involving three equal mass
spin zero particles moving on the same straight line and
interacting via pairwise attractive 5-function potentials of
equal strength. More specifically, in Ref. 2 (hereafter re-
ferred to as paper I) we were able to demonstrate explicit-
ly and analytically that in the McGuire model there are
many solutions 4 to the LS equation at real energies E,

qt=tttt Gt~+ ~(E) Viq—t

where ft(E) is the "incident" wave and G +' is the outgo-
ing Green's function; here, and elsewhere in this paper un-
less otherwise stated, we use the notation employed in I.

A "proof ' that solutions to Eq. (1.1) need not be unique
~as given first by Foldy and Tobocman, using operator
algebra techniques. They recognized that the nonunique-
ness was implied by the existence of nontrivial solutions %'

to the homogeneous LS equation O'= —6 +'V;4'; they in-
ferred the existence of such solutions from the vanishing
of certain limits as e~O, where e & 0 is the imaginary part
of the complex energy E+ie These lim. its, known in the

literature as Ligpmann s identities, were derived originally
by Lippmann, also using operator techniques. Gerjuoy
has derived the LS equation (1.1) from the Schrodinger
equation via conventional mathematical operations in
configuration. space; in this derivation the existence of
solutions to the homogeneous LS equation can be inferred
from the vanishing of certain integrals at infinity in con-
figuration space. Gerjuoy did not discuss the relationship,
if any, between his surface integrals and Lippmann's iden-
tities; he concluded the surface integrals would vanish on
the basis of very plausible assumptions about the asymp-
totic behaviors of 6 +' and other relevant functions.
Even today, the asymptotic behaviors of these quantities
have not been established. Therefore Gerjuoy's analysis,
although straightforward and not obscured by operator
techniques, cannot be termed mathematically rigorous, in
the sense, e.g., of Faddeev's ' treatment of the three-
particle LS equation.

The nonuniqueness of solutions to the multiparticle LS
equation has been questioned. ' *" Mukherjee, ' in a series
of publications during the last decade, has insisted that
solutions to Eq. (1.1) are unique. In so insisting Mukher-
jee claims to have found errors in both Gerjuoy's and
Lippmann's rather different approaches to multiparticle
scattering theory; he also attributes errors to later analy-
ses' which extend and confirm Gerjuoy's approach. In
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particular, Mukherjee claims that Lippmann's identities
and Gerjuoy's predicted values of the aforementioned sur-
face integrals are wrong.

Very recently, Benoist-Gueutal" has published renewed
criticisins of Gerjuoy's approach and of the analysis by
Levin and Sandhas' which confirmed that approach.
Benoist-Gueutal does not insist that solutions to Eq. (1.1)
are unique, but she does contend the arguments of Ger-
juoy and Levin and Sandhas' are sufficiently faulty that
whether solutions to Eq. (1.1) really are nonunique
remains a doubtful question.

The disputes about the nonuniqueness of solutions to
the LS equation appear to be associated with ambiguities
in the meaning of the implied limit e~O in the usual
operator form of the LS equation,

V;0' .1

Hg —E —i@
(1.2)

For example, as discussed more fully in later sections of
this paper, it is not clear whether ip in Eq. (1.2) should be
regarded as e dependent when the limit e~O is taken.
Such ambiguities pertain not only to the LS equation
(1.2), but also to various formulations of connected kernel
equations for multiparticle scattering, e.g., to the Faddeev
equations. ' In fact, using one of the possible ways of
taking the limit e~O, Komarov, Shablov, Popova, and
Osborn' claimed that Faddeev-type equations may have
nonunique scattering solutions. Subsequently' it was
pointed out that Komarov et al. reached such a con-
clusion because of a misapplication of the e~O limit.

The study reported in I largely was undertaken to refute
Mukherjee's criticisms. The explicit analytic results of
that study show that Mukherjee's criticisms are not well
taken. At the very least, we asserted in I, it is necessary to
explain why the results of I cannot be extrapolated to ac-
tual three-dimensional multiparticle systems, as well as
why purported proofs that the solutions of Eq. (1.1} are
unique should fail in one dimension but not in three di-
mensions. Benoist-Gueutal" has offered an explanation
of why the results of I cannot be extrapolated to actual
three-dimensional multiparticle systems, but for reasons
which have been stated elsewhere' we do not agree with
Benoist-Gueutal's criticisms.

Nevertheless, these continued criticisms of different as-
pects of Gerjuoy's and Lippmann's results have impelled
us to reexamine the LS equation nonuniqueness problem,
in order to clarify some issues which apparently continue
to be sources of confusion in the literature. As fore-
shadowed above, this reexamination is concerned mainly
with the various ways of taking the e~O limit in Eq.
(1.2). In so doing, we establish a heretofore unrecognized
connection between Gerjuoy's surface integrals and
Lippmann s identities, without recourse to operator tech-
niques. This connection confirms the conclusion that the
multiparticle LS equation has nonunique solutions, in that
Lippmann's identities now are seen to validate the reason-
ing of Ref. 7, and vice versa. Still, a rigorous proof of
Lippm ann's identities or a rigorous evaluation of
Gerjuoy's surface integrals does not seem possible at this
time. Therefore, in future papers' we will show by expli-
cit calculation that in the three particle McGuire model

II. THE LS EQUATION AT REAL
AND AT COMPLEX ENERGIES

The LS equation originally was derivedi 4 in the form
(1.2), but the operator techniques employed throughout
this derivation do not clearly reveal how the implied limit
e~O in Eq. (1.2) is to be interpreted. Later (still basical-

ly operator) formulations' of the LS equation also do not
make the meaning of this limit precise, nor do they
answer various quite fundamental questions which stem
from this imprecision. In particular, it is not even clear
from the operator formulations whether 4 in Eq. (1.2) is e
dependent. In other words, are we to suppose
ip=+(E+ie) in Eq. (1.2) or is ill to be regarded as a
WE}, quite independent of e'? Of course, iA in Eqs. (1.1)
and (1.2) satisfies

(H; —E)g; =0,
so that P; =P; (r;E) does not depend on e.

If 4=%(E) in Eq. (1.2—), the limit e~O must be taken
within Eq. (1.2); otherwise the right-hand side of Eq. (1.2}
would be e dependent while the left-hand side would be E

independent. In the coordinate representation, the opera-
tor (H; E ie) ' must —b—e identical with the Green's
function 6;(r,r', E+ie) satisfying

(H; E is)6; (r, r';E+ie) =—I——:5(r—r') .

(2.1)

(2.2)

Then if %' is regarded as e independent, we must interpret
Eq. (1.2) either as

(a) iII(r;E) =g;(r;E)—lim f dr'6;(r;r', E+ie)
p~o

or

Gerjuoy's surface integrals and Lippmann's (e~O) limits
have precisely the values predicted by these authors, there-
by confirming the connection established in the present
paper as well as further confirming the aforesaid con-
clusion of nonuniqueness.

Section II below presents the derivation of the connec-
tion between Lippmann s identities and the values of cer-
tain surface integrals in configuration space, while at the
same time demonstrating the equivalence (under reason-
able assumptions) of the various ways of taking the e~O
limit in Eq. (1.2). This section is divided into subsections,
wherein the implications of the possible ways of taking
the e~O limit in Eq. (1.2) are examined. At the end of
Sec. II we explain, as the reader now is cautioned to take
note, that because of certain convergence difficulties our
analysis is not valid for arbitrarily complicated collisions
(though we do not doubt our conclusion that solutions to
the multiparticle LS equation generally are not unique);
what we mean by "arbitrarily complicated collisions" is
made precise at the end of Sec. II. A summary of our re-
sults is presented in Sec. III. We also have included an
Appendix proving that a sufficient condition for inverting
the order of the operations limit as e~O and integration
over an infinite interval is the uniform convergence of the
sequence of e-dependent infinite integrals as e~O; this
condition plays an important role in our analysis, and we
have been unable to locate a proof in the literature to
which readers usefully could be directed.
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(b) 4'(r;E) tP=;(r;E) f—dr' )imG;(r;r', E+(e)
e~O

X V;(r')NI(r', E) . (2.4)

(H —E)4=0 .

Let )II be a solution to Eq. (2.8) of form

O'=P, +4,

(2.8)

(2.9)

No other —except Eqs. (2.3) and (2.4)—even remotely ra-
tional alternative interpretations of Eq. (1.2) appear to ex-
ist when (P—=%(E).

On the other hand, if 4:+(E—+if), the limit e~O
cannot be confined to the right-hand side of Eq. (1.2} [as
in Eqs. (2.3) or (2.4)] because then the left-hand side of
Eq. (1.2} would be e dependent while the right-hand side
would be e independent. Now Eq. (1.2) can be interpreted
sensibly in the limit e~O only by introducing

%(E)=lim %(E+ie),
e~O

where %(E+ie) solves Eq. (1.2) written in the form

(2.5)

%(E+ie) =g;(E) 6;(E+—ie) V +(E +i@), (2.6a)

i.e.,

%(r;E+iE)=f;(r;E) (dr'6—;(r,r', E+ie)

X V~(r')%(r', E+ie) . (2.6b)

Hopefully, with the interpretation (2.6b) of Eq. (1.2), the
limit t(E) in Eq. (2.5) will exist and will be a solution of
the real energy LS equation (1.1) having desired proper-
ties. We remark that the existence of the limit in Eq. (2.5)
need not imply immediately that Eq. (2.6a) will yield

lim %(E+ie) =f;(E) lim[6;(E+i —e) V;0'(E+ie)],
e~O g-+0

(2.6c)

i.e., need not imply that

4'(r;E) =f;(r;E) lim J d—r'6;(r, r', E+ie)
g~O

X V;(r')(11(r',E+ie), (2.6d)

A. Implications of LS equation {2.4)

Equation (2.4) is identical to Eq. (1.1), because essential-
ly by definition

6 +'(E}=lim 6;(E+ie), @~0.
p—+0

(2.7)

Thus examining the implications of Eq. (2.4) inevitably
involves some recapitulation of the results in Ref. 7,
which concentrated on the connection between the real en-
ergy LS equation (1.1) and the real energy Schrodinger
equation

because there is no immediate guarantee that the limit on
the right-hand side of Eq. (2.6d) exists. We further re-
mark that the foregoing alternative possible interpreta-
tions of the implied e~O limit of Eq. (1.2) also pertain to
the connected kernel equations. '

We proceed to explore the implications of the alterna-
tive possible interpretations of Eq. (1.2) which Eqs. (2.3),
(2.4) and (2.6b) provide.

where the "scattered part" 4 may or may not be "every-
where outgoing, *' a phrase whose meaning requires discus-
sion (see below}; g; is the "incident wave" satisfying Eq.
(2.1). We seek to determine a sufficient condition for 0' to
satisfy Eq. (2.4). The real energy outgoing Green's func-
tion 6 +'(E) satisfies

(H; —E)6 +'(r, r';E)=5(r —r') .

Rewrite Eq. (2.8} in the form

(H; —E}%'=—V;(P .

(2.10)

(2.11)

Then multiply Eq. (2.10) on the left-hand side by %(r);
multiply Eq. (2.11) on the left-hand side by 6 +'(r, r');
subtract, and integrate over all r. It follows, as in Ref. 7,
after relabeling the variables so that the integrals are over
r', that

%(r)=J)'[6 +'(r, r'), %(r')]

r'6 +' r, r' V; r' 4 r' (2.12)

where W(X, F) is the surface integral over the sphere at in-

finity in configuration space, defined by

J('(X, F)= J dr[F(r)TX(r) X(r)TF(—r)] (2.13)

Moreover, whenever Eq. (2.14) can be satisfied by more
than one independent solution ql to (2.8), the LS equation
(2.4) has nonunique solutions satisfying the Schrodinger
equation.

Proceeding as in the preceding paragraphs, but starting
with Eq. (2.1) instead of Eq. (2.11), we deduce

&[6 +'(r;r'), g;(r')]=/;(r) . (2.15)

But any solution 4 to Eq. (2.8) can be written in the form
(2.9), if there is no requirement that 4 be everywhere out-
going. Comparing Eqs. (2.14) and (2.15), we conclude
that a solution %' to the Schrodinger equation also satisfies
the LS equation (2.4) when and only when the scattered
part N of this solution satisfies

W[ 6 + '(r; r'), 4( r') ]=0 . (2.16)

In other words, when Eq. (2.16) holds the corresponding
4 defined by Eq. (2.9) necessarily satisfies Eq. (2.14)
and —if also a solution of Eq. (2.8)—also satisfies Eq.
(2.4).

after applying Green's theorem in r space to the right-
hand side of Eq. (2.13), wherein T is the kinetic energy
operator in H (or H;); of course, in Eq. (2.12) J(' is
evaluated on the sphere at infinity in r' space, for arbi-
trary fixed r.

Comparing Eqs. (2.4) and (2.12), it is apparent that a
solution )Il to the Schrodinger equation (2.8) also is a solu-
tion to the real energy LS equation in the form (2.4) when
but only when

(2.14)
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and

&[6 +'(r, r'), 4';(r')] =0 (2.17a)

&[6 +'(r, r'), 4f(r')] =0 . (2.17b)

As will be seen below, however, Eqs. (2.17a) and (2.17b}
can be deduced from a precise formulation of the every-
where outgoing condition (involving the Green's function
associated with the full Hamiltonian 8), along with very
reasonable assumptions about the convergence of integrals
like those on the right-hand sides of Eqs. (2.3) and (2.4); it
is not necessary to rely solely on the physically reasonable
interpretation of the phrase everywhere outgoing. "
Furthermore, if the channel f is a true rearrangement of i,
the outgoing Green's function 6 +'(r, r') does not propa-
gate in the charmel f, i.e., 6 +'(r, r') has a negligibly
small projection on the bound state eigenfunctions charac-

In potential scattering the outgoing Green's function
6 +'(r, r') is -e'k"!r' as r'~ao. Still in potential
scattering, the scattered part @of a scattering solution to
the Schrodinger equation is said to be everywhere outgo-
ing" if 4(r') has no component -e '"'/r' at infinite r',
i.e., if 4(r') behaves like the outgoing Green's function as
r'~ 0o along any direction in r' space. Furthermore, ap-
plication of Green s theorem to the three-dimensional (in
potential scattering) integral on the right-hand side of Eq.
(2.13) makes W(X, F) proportional to terms of the form
( YVX —XVF} integrated over the sphere at infinity. In
potential scattering, therefore, whenever 4 is everywhere
outgoing the leading terms in ( XVX —XVY) cancel and
Eq. (2.16) is satisfied; correspondingly, in potential
scattering the solution 4 to Eq. (2.8} whose scattered part
4 is everywhere outgoing surely satisfies the real energy
LS equation (2.4}.'

Even for two-particle systems, in the laboratory coordi-
nate system the "everywhere outgoing" scattered part
4(r') of a scattering solution 4'(r') to Eq. (2.8) having in-
cident wave P;(r'} generally does not behave like the out-
going Green's function 6 +'(r, r') for r'=r'n'~00 along
arbitrary directions n' in r' space, because 4(r')—along
with %(r')—must have the factor e' 'R

expressing con-
servation of momentum of the center of mass R'. For
systems of three or more particles, the asymptotic
behavior at infinity of the scattered part 4(r') associated
with a physically sensible scattering solution of Eq. (2.8)
can be different from the asymptotic behavior of
6 +'(r, r') even in the center of mass coordinate system,
especially when more than two independent bodies (which
may be unbound particles or bound particle "aggregates")
are initially incident. Nevertheless, it is reasonable on
physical grounds to assume —and Gerjuoy7 did assume—
that Eq. (2.16) will be satisfied whenever 4(r') is the scat-
tered part of a physically sensible scattering solution of
the Schrodinger equation, i.e., whenever it is physically
sensible to term 4(r') "everywhere outgoing. "

In particular, if 4; now denotes the everywhere outgo-
ing scattered part of a solution 4, to Eq. (2.8) with in-
cident wave g; in the i channel, and if 4f correspondingly
denotes the everywhere outgoing scattered part of the
solution qlf to Eq. (2.8) with incident wave gf in the f&i
channel, then Gerjuoy assumed

terizing the f channel as r'=r'n' approaches infinity
along directions n corresponding physically to the parti-
cle groupings (aggregates) found in the f channel. Thus,
recalling the definition (2.13) of W(X, Y), Gerjuoy also as-
sumed

&[6 +'(r, r'), gf(r')] =0 (2.17c)

whenever gf is an incident wave in a channel f which is a
true rearrangement of i Equations (2.17b) and (2.17c)
imply

m[6!+'(r, r'), qf(r')] =0 .

We know from Eq. (2.17a) [recall the implications of Eq.
(2.16}]that

(2.17d)

&[6 +'(r, r'), ql;(r')] =g;(r) .

But Eq. (2.17d} then also implies

&[6 +'(r, r'), %i(r')] =P;(r),
where

(2.18a)

(2.18b)

%'g ——%';+A+f, (2.19)

with A, any constant. Since 4; and %f have been postulat-
ed to be solutions of the Schrodinger equation (2.8), %i
also solves the Schrodinger equation. Equation (2.18b)
therefore implies [recalling Eq. (2.14)] that 4'i satisfies the
real energy LS equation (2.4).

In summary, if the assumed relations (2.17a)—(2.17c)
really hold, then the real energy LS uation (2.4) has
nonunique solutions. In a future paper' we will demon-
strate by explicit calculation that Eqs. (2.17a}—(2.17c)
indeed do hold in the McGuire three-particle model
[which, of course, implies Eq. (2.17d) also holds]. We also
have verified Eq. (2.15) in the McGuire model, although
there really is no need to do so because Eq. (2.15) was de-
riued above, not assumed, and the derivations made no as-
sumptions about the asymptotic properties of 6 +'(r, r').

lim[6;(E+ie)V4]= hm6;(E+ie) V% .
e~O e~O

(2.20b)

Equations (2.20) have been proved for potential scattering,
with potentials vanishing sufficiently rapidly at infinity. '

Thus in potential scattering with reasonably behaved po-
tentials, Eqs. (2.3) and (2.4) assuredly are identical. Ac-
cordingly, in potential scattering the interpretation that
%'—:%(E) in Eq. (1.2) inevitably reduces Eq. (1.2) to the
real energy LS equation (1.1). On the other hand, for sys-
tems of three (or more) particles interacting via two-body
forces, the quantity V, (r) need not decrease rapidly as

8. Imphcstions of I.S equation (2.3)

In general Eq. (2.3) is not identical with Eq. (2.4); such
identity requires

lim J dr'6;(r, r';a+i@)V, (r')e(r', E)
e-+0

=I dr' lim 6;(r,r',E+ie) V~(r')%(r', E), (2.20a)
e~O

or, in the more condensed notation of Eqs. (1.1) and
(2.6a),
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r=(rl r2 13) approaches infinity along ail pos»ble d'rec
tions in configuration space; correspondingly, the rapid
decrease of

~
V, (r')%'(r', E)

~

as r'~ao, which makes pos-
sible an easy proof of Eqs. (2.20) in potential scattering, '

can no longer be relied on.
A sufficient condition for Eq. (2.20a) to hold is the uni-

form convergence as e~O of the sequence of infinite in-
tegrals on the left-hand side of Eq. (2.20a), as is proved in
the Appendix. This uniform convergence property is
not readily demonstrable for many-particle systems, even
vgth quite restrictive assumptions about the particle in-
teractions. Nevertheless, even though we cannot furnish a
proof, there are reasons to believe that the sequence of in-
tegrals on the left-hand side of Eq. (2.20a) does converge
uniformly as e—+0 whenever the right-hand side of Eq.
(2.20a} is a convergent integral, as has been argued else-
where in a somewhat different connection. z Moreover,
for three-particle systems at least, it can be shown' con-
vincingly, though perhaps not wholly rigorously, that the
right-hand side of Eq. (2.20a) is a convergent integral and
the left-hand side of Eq. (2.20a) is uniformly convergent
as e—+0, if (for short range interactions) one makes the
following reasonable assumption: Assume that at large
distances the projections of the Green's function 6; on the
bound state eigenfunctions characterizing the i channel
behave like the free-space Green's function in the sub-
space (of the full configuration space) defined by the coor-
dinates of the unbound particles and of the mass centers
locating the various bound particle aggregates in channel
i; these unbound particles and mass centers can go out to
infinity along all directions in this subspace. The conver-
gence of the right-hand side of Eq. (2.20a) in three-
particle systems also follows from arguments given in the
response by one of us' (E.G.} to Benoist-Gueutal's criti-
cisms" of the real energy LS equation (1.1). Actually,
Benoist-Gueutal contends that integrals like the right-
hand side of Eq. (2.20a) are not well defined rather than
necessarily nonconvergent; the aforementioned response'
rejects this contention.

We conclude therefore, for three-particle systems in-
teracting via short range two-body potentials at any rate,
that Eq. (2.20a) is true. Granting this conclusion (whose
nonrigorous foundation we have described in the preced-
ing paragraph), Eqs. (2.3) and (2.4) are equivalent for such
three-particle systems, i.e., for such systems the interpre-
tation %=%'{E) in Eq. (1.2) reduces Eq. (1.2) to the real
energy LS equation (1.1) whether Eq. (1.2) initially is in-
terpreted as in Eq. (2.3) or as in Eq. (2.4). However, the
equality of (2.20b) has additional interesting implications,
as follows.

The (henceforth presumed convergent) infinite integrals
in Eq. (2.20a) are the limits as R ~ oo of integrals over
spheres of radius 8 in configuration space. In other
words, the equality of (2.20a) means

R
lim lim f dr'6;(r, r';E +i e) V;(r')+{r';E)
a~0 R ~ (g)

R= lim f dr' lim 6;(r,r';E+ie) V~(r'}%(r';E) .R~ co a~0

(2.21a)

Rewrite Eq. (2.8) as

(H; E i e—)%—= i e4— V, %—. (2.22)

Now manipulate Eqs. (2.2) and (2.22) much as we mani-
pulated their respective counterparts (2.11) and (2.10) to
derive Eq. (2.12}. To be specific, multiply Eq. (2.2) on the
left-hand side by %(r), multiply Eq. (2.22) on the left-
hand side by 6;{r;r',E+ie), and integrate over r', but
only over

~

r'
~

&R, not over all r' as previously. Denote
the integral in Eq. (2.21b) by F(r;R;e), and choose R suf-
ficiently large that for any specified fixed r in F(r;R;e)
the inequality R &

~

r
~

holds, i.e., so that the integration
volume ~r'~ &R surely includes the point r'=r. Then
the foregoing manipulations yield

F( r;R;e) =Jr [6;(r,r';E+i e), %(r')]s
R

%(r) —ie f —dr'6;(r, r';E+ie) tII(r') .

(2.23)

where the notation &[6;,%]a indicates that the surface
integral obtained by applying Green's theorem to the
right-hand side of Eq. (2.13) is evaluated at

~

r'
~

=R, not
(as previously) at infinity in r' space.

If in Eq. (2.23) we first take the limit e~O and then let
R ~ ao, as on the right-hand side of Eq. (2.21b), then Eq.
(2.23) reduces merely to a rearrangement of the terms in
Eq. (2.12), because the last term in Eq. (2.23) vanishes as
e~O for fixed R, and because the right-hand side of Eq.
(2.21b) [which equals the right-hand side of Eq. (2.21a)]
then becomes the infinite integral 6 +'{E)V;4 on the
right-hand side of Eq. (2.12). On the other hand, taking
in Eq. (2.23} first the limit R~oo and then the limit
e~O, as on the left-hand side of Eq. (2.21b), should make
the right-hand side of Eq. (2.23) simply

—%(r) —limie f dr'6;(r, r', E+ie)%(r'), (2.24)
a~0

because for every finite e the quadratically integrable
Green's function 6;(E+ie) is expected to be exponential-
ly decreasing at infinity [as it surely will be if, as assumed
earlier, 6;(E+ie) behaves at infinity like the free-space
Green's function for the set of unbound particles and
mass centers which go out to infinity in the i channel].

We now conclude, therefore, that whenever %(E) is a
solution of the Schrodinger equation for which Eqs. (2.20)
hold,

But for any finite R the fact that the limit (2.7) exists
makes it possible to pull the limit e~O outside the in-
tegral sign in Eq. (2.2la); ' for this purpose it is sufficient,
and we may assume, that the integrand on the left-hand
side of Eq. (2.21a) is bounded for all values of r' in the
sphere of radius R, except in the vicinity of r'=r where
6;(r,r;E+ie) has an integrable singularity and the limit
(2.7) as e~O does not strictly exist. Thus the equality
(2.20a).becomes

R
lim lim f dr'6;(r, r';E +i@)V; (r')%(r', E)
e—+0 R-+oo

= lim lim f dr'6;(r, r';E+ie)V;(r')%(r', E) .
R~oo e-+0

(2.2 lb)
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&[6 +'(r, r', E),%(r')]

(2.25}

Equation (2.35) means Eq. (2.34) can be rewritten as

(Hi E—i—e)gf (——Vf —V;)Qf i—egg . (2.36)

(H; E i —e—)4; =

i'd@—

; —V;4; . (2.27)

Then, manipulating Eqs. (2.27) and (2.2) as in the deriva-
tion of Eq. (2.23), we readily find

F;(r;R;e)=W[G;(r, r';E +i e),4;(r')]a
R4;—(r) i@— dr'6;(r, r', E+i e)4;(r'),

{2.28)

where F; denotes the integral in Eq. (2.21b) for %=%;.
Equation (2.28) yields, in place of Eq. (2.25),

&[6 +'(r, r', E),4;(r')]
= —lim i e f dr'6;(r, r', E +ie)4; (r') .

g-+0

Thus from Eq. (2.17a} we also expect

—lim i e r'; r, r', E +i e 4; r' =0 .
a~0

Equation (2.1) can be rewritten as

(H; E ie)P; =——ieg; .—

(2.29)

(2.30)

(2.31)

Now the previous manipulations of Eqs. (2.31) and (2.2)
yield

where the left-hand side of Eq. (2.25) again is evaluated
on the sphere at infinity, and the right-hand side of Eq.
(2.25) is integrated over all r'. Thus from Eqs. (2.18a) and
(2.17d) we expect that

—limie f dr'6;(r, r', E+ie)%;(r';E}=g;(r;E}, (2.26a)
a~0

—limie f dr'6;(r, r';E+ie)%'f(r';E)=0, (2.26b)
e~O

where 4; and %f are defined as previously. Moreover, for
4=%';, Eq. (2.22) can be rewritten as

The by now customary manipulations of Eqs. (2.36} and
g.2) yield

D'f (r;R;e)=W[G;(r, r';E + ie),Pf (r') ]& —Pf (r)
R

ie—f dr'6;(r, r';E+ie)gf(r'),

where
R

Dy(r;R;e) = dr'6; (r, r';E+ie)

(2.37a)

llm lliil Dy(r;R;6)= lliil 11111D;f(PR;6),
a~0 R —+co 8 —+oo e-+0

(2.38)

which is the analogue of Eq. (2.21b). Thus, as in Eqs.
(2.25) and {2.29), the pair of Eqs. (2.37a) and (2.38) yields

W[G +'(r, r', E),g~(r')]

= —limie r'G r r'E+ie f r' . 239
a~0

Consequently, if Eq. (2.17c) holds we also expect

—limie r'G; r, r', E+ie f r' =0. 2.40a
g-+Q

Equations (2.17c), (2.37},and (2.40a) imply

tPf (r) =f dr'6 +'(r, r', E)[Vf (r') —V (r')]1tf (r')

(2.40b)

X [ V;(r') —Vj (r')]tPf(r') . (2.37b)

It can be seen that as R~00 the integral on the right-
hand side of Eq. (2.37b} will converge in the limit e~O if
6 +'(r, r') does not propagate in the channel f, as was as-
sumed previously in connection with Eq. (2.17c). More-
over, arguments that implied the uniform convergence of
the sequence of integrals on the left-hand side of Eq.
{2.20a) as e~O also imply that the sequence of integrals
on the right-hand side of Eq. (2.37b) is uniformly conver-
gent as R~oo. In other words, we expect

~[6;(r,r',E+i e),P;(r')]z

=it{;(r)+i@ dr'6;(r, r';E+ie)g;(r') . (2.32)

again assuming that the sequence of infinite integrals
(2.37b} is uniformly convergent as e~O. Similarly we
deduce

ie f dr—'6;(r, r', E+ie)g;(r') =g;(r), (2.33a)

Equation (2.32) is no more than the result of subtracting
Eq. (2.28) from Eq. (2.23). Letting R~oo for finite e
causes the left-hand side of Eq. (2.32) to vanish. Hence
we should have, for any e & 0 (perhaps only for e not too
far from e=O, however),

which, if Eq. (2.17b) holds, implies

—limie r'G; r, r';E+ie 4f r' =0.
g~o

(2.41b)

&[6 +'(r, r', E),@f(r')]

= —limie f dr'6;{r, r',E+ie)4f(r'), (2.41a)
e~O

which, of course, implies

—limie f dr'6;(r, r', E+ie)g;(r')=i}j;(r) .
g—+0

The incident wave gf of Eq. (2.17c) satisfies

(Hf E)pf 0, — ——
where the total Hamiltonian H of Eq. (2.8) is

0=H;+ V;=HI+ Vf .

(2.33b)

(2.34)

(2.35)

Of course, in Eq. {2.39)

W[G '(r, r';E), gf(r')]
= lim liin &[6;(r,r';E+ie), ff(r')]~ (2.42)

R-+ce e~O

from Eq. (2.37a), and similarly for Eqs. (2.25), (2.29), and
{2.30). To our knowledge, equations such as (2.25) [and
(2.29), (2.39), or (2.41a)], relating the limit as e~O of a
product like ieG;(E+ie)'k(E) to the limit as R ap-
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proaches infimty of a surface integral (over the surface of
radius 8 in r' space) involving G;+', have not been expli-
citly stated previously. Similarly, results such as Eqs.
(2.26b) and (2.41b) apparently have not been categorically
stated in the literature. Equations (2.33b) and (2.40a) are
illustrations of Lippmann's identities. In other words, the
foregoing analysis has established a connection between
Gerjuoy's surface integrals at infinity and the e~0 limits
involved in Lippmann's identities.

In a future paper' we will also demonstrate, by explicit
calculation, that Eqs. (2.26), (2.30), (2.40a), and (2.41b)
hold in the McGuire three-particle model, thereby further
confirming the validity of the assumptions (about conver-
gence, behavior of Green's functions at infinity, etc.) made
in deriving those equations, as well as in deriving the Eqs.
(2.17), whose verification in the McGuire model we an-
nounced above. In addition, a future paper will seek to
verify the pair of Eqs. (2.33a) and (2.33b) in the Mcouire
model, although —as in the case of Eq. (2.15) discussed
earlier —Eqs. (2.33) hardly need verification since they
are derived on the sole difficult-to-challenge assumption
that for e&0 the left-hand side of Eq. (2.32) vanishes as
R~ao.

C. Implications of LS equation (2.6b)

Applying the operator (H; E —ie) to—both sides of
Eq. (2.6b), we obtain

(H; E ie)e =—i eiA (H; —E i—s)[G—;—(E+ie)V e],
(2.43)

where the meaning of the condensed notation is obvious
from Eq. (2.6a); of course, H~ in Eq. (2.43) operates on r,
not r'. Because G;(r, r', E+ie) is quadratically integrable
over r' for any e&0 and finite r, the infinite integral on
the right-hand side of Eq. (2.6b} is expected to converge
uniformly for any e & 0 in a domain

~

r
~

&p, p bounded.
Moreover, the uniform convergence property should be re-
tained if G; under the integral sign is replaced by VG;,
where the gradient operates on r. It follows that the dif-
ferential operator on the right-hand side of Eq. (2.43}can
be taken under the integral sign, yielding, by virtue of
Eq. (2.2),

where G (E +i E)=(H E——ie) is the unique quadrati-
cally integrable Green's function satisfying

(H E—i e—)G (r; r', E + is ) =I—=5(r—r') . (2.46)

Moreover, we can verify that %(E+ie) of Eq. (245a)
does satisfy Eq. (2.6b), because this %(E +i@) satisfies Eq.
(2.44a), which can be rewritten as

(Hi E —i e){%— fg ) =——V;4 . (2.47)

Equation (2.6a) now follows from the fact that
G;(r, r';E+is) is the unique quadratically integrable solu-
tion of Eq. (2.2), just as Eq. (2.45a) followed from Eq.
(2.44b). Alternatively, if we are concerned that the right-
hand side of Eq. (2.47) cannot be regarded as a known
function, we can employ our usual manipulations, namely
multiply Eq. (2.47) on the left-hand side by G;, multiply
Eq. (2.2) on the left-hand side by

4(E+ie) =WE—+is) g(E—),
etc. Thus we obtain, as in Eq. (2.27),

dr'G;(r, r', E +is) V;(r')%(r', E+i e)

(2.48)

or

=W[G;(E+ie),4(E+ie)]z 4(r;E+—ie) . (2.49)

Since the surface integral on the right-hand side vanishes
as R~ oo for e & 0, Eq. (2.49) immediately reduces to Eq.
(2.6b}.

We conclude that the complex energy LS equation
(2.6b) has a unique solution %(E+ie), in contrast to the
real energy versions (2.3) or (2.4) of the LS equation,
whose solutions are nonunique for reasons which have
been discussed. We further conclude that the quantity

(E) on the left-hand side of Eq. (2.5) also has been
uniquely defined since (assuming the limit exists) it is the
limit of a uniquely specified sequence of functions
ql(E +is)

That Eq. (2.45a) yields a unique solution to the complex
energy LS equation (2.6b) has been known for a long
time. Moreover, Eq. (2.44b) also can be rewritten as

(H E i e}4=(H—;—E is)g; =(H———E i s)g; —V;P;—,

(2.50a)

or

(H E i e)4= i s——f; —V;%', — (2.44a)
(H E i e)4= ——V—

g fg, (2.50b)

(H E is)%= i—eg—; . — (2.44b)
where 4=4(E+ie) of Eq. (2.48). Consequently, we now
legitimately obtain, as in Eq. (2.44b),

The foregoing manipulations have shown that solutions
ql to Eq. (2.6b), if any, must satisfy Eqs. (2.44). But Eq.
(2.44b) for 4, like Eq. (2.2) for G;{E+ie},must have a
unique solution, because the complex qu mtity 8 +is can-
not belong to the spectrum of the Hermitian operators H
or H;. Therefore Eq. (2.44b) is solved by

4(E+ie) = G(E +i@)V;f—;(E}, (2.51a)

or

%(rE+ie) =P;{E}—f dr'G(r, r', E+ie) V(r')P;(r', E) .

(2.51b)

%(E+ie)= ieG(E+ie}P;(E),—
i.e., by

%(r„.E+ie)= ie f dr'G {r,r', E+—ie)g;(r';E),

(2.45a)

(2.45b)

Alternatively, the analogous manipulations which yielded
Eq. (2.49) now yield

f dr'G(r, r', E+ie) V;(r')g;(r')

=W[G (E+ie),4(E +i e)]a @(r;E +is), (2.5—1c)
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from which Eq. (2.51a) is obtained in the limit R ~ Do.

Equation (2.511) is a formula, not an integral equation,
for 0'(r;E+ie), which we will henceforth denote by
0';(E+ie) to signify that it corresponds to incident wave
il;(E). The corresponding limit defined by Eq. (2.5) is

4';(E)=g;(E)—lim f dr'6(r;r', E+ie)V~(r')P;(r')
g—+0

=f;(E) f d—r'6'+'(r, r', E)V~(r')P;(r'),

(2.52a)

(2.521}

where, as in Eq. (2.7),

6'+'(E) =lim 6(E+ie) (e&0), (2.53)

and where, as previously, we assume the sequence of in-
fmite integrals on the right-hand side of Eq. (2.52a) is uni-
formly convergent as e~0, so that —as in Eq. (2.20a)—
interchange of the order of integration and lime~0 is
justified. Note that we can take the limit in (2.52a) with
confidence, although we could not do so in Eq. (2.6d), be-
cause the integral in Eq. (2.6d)—unlike the integral in Eq.
(2.52a)—involves the unknown function 'l(r', E +i e)
whose limiting properties we seek to establish.

The right-hand side of Eq. (2.52b) is the formula ' for
the unique solution 4; of the Schrodinger equation (2.8}
whose incoming part is f; and whose scattered part obeys
the outgoing condition

Jr[ 6'+'(r, r';E), 4;(r';E)]=0 . (2.54)

This assertion is readily verified via the usual manipula-
tions of

(H —E)6'+'(E)=5(r—r')

and of Eq. (2.8) in the rewritten form

(2.55a)

(H E)@—= —V;Q; . (2.55b)

Thus the function 4;(E) given by Eq. (2.52b), and ob-
tained via the limit e~O in Eq. (2.5), must be identical
with the function 4;(E) just identified, since both func-
tions have the same formula. Equation (2.54) is the
uniquely correct interpretation of the phrase "the scat-
tered part 4; of 4; is everywhere outgoing, " as has been
discussed. In fact, Eq. (2.54) is immediately obtained if
we make the usual assumption that the order of limits
R ~ 00 and e~O can be interchanged in Eq. (2.51c).

We now know that the limit e~O in Eq. (2.5) yields the
function ql;{E) satisfying Eq. (2.521) and the Schrodinger
equation, i.e., we now know that the function %(E+ie) in
the integral on the right-hand side of Eq. (2.6c) does have
a well-defined presumably well-behaved limit t(E)
=4;(E) solving the Schrodinger equation. Thus, making
our usual assumption that the sequence of infinite in-
tegrals on the right-hand side of Eq. (2.6c) converges uni-
formly as e~O, we now can conclude that the limit on
the right-hand side of Eq. (2.6c) indeed is meaningful and
yields

lim[6;(E+ie) V%(E+i e)]= f dr'lim[6;(r, r', E+ie)V (r')%(r', E+ie)]
g-+0 a~0

=f dr'[lim G;(r, r', E+ie)]V(r') lim%'(r', E+ie) =6 +'(E)V~%';(E) .
g-+0 g-+0

{2.56a)

We remark that the incorrect claim' (mentioned in the
Introduction to this paper), to the effect that Faddeev-
type equations may have nonunique scattering solutions,
apparently stemmed'5 from failure to recognize the im-
portance of assuring [as we have attempted to assure in
deriving Eq. (2.56a)] that limits as e~O exist and that the
order of integration and limit as e~O can be inter-
changed.

Equation (2.56a) implies that Eq. (2.6b) actually reduces
to Eq. (2.3) or Eq. (2.4} (which have been shown to be
equivalent under our uniform convergence assumption).
In other words, the 4;(E) which is the scattered part of
the just-identified 4;(E) and which satisfies Eq. (2.54)
also must satisfy

4;(r;E)= —f dr'6 +'(r, r', E)V~(r')ql;(r';E) . (2.561)

But earlier we saw that whenever a solution to the
Schrodinger equation satisfies the I.S equation (2.4), i.e.,
whenever its scattered part satisfies Eq. (2.561), then Eq.
(2.16) must hold. And indeed, from Eq. (2.49), assuming
interchange of lim R —+ ao and lime~0 is justified, we im-
mediately do infer Eq. (2.17a) for 4=—4;(E} just dis-
cussed.

m[6'+', e, ]=e, (2.57a)

from Eqs. (2.8) and {2.55a). Equations (2.57a) and (2.54)
imply

(2.57b)

Similarly we infer, for the solution O'I of the Schrodinger
equation which is incoming only in the f channel,

W[G'+', %y]= PI, (2.58a)

Note, however, that the immediately preceding argu-
ment now has deduced —not assumed as previously stated
in connection with Eq. (2.17a)—that the same 4; which
satisfies the precise outgoing condition (2.54) (involving
the Green's function for the complete Hamiltonian H)
also satisfies the outgoing condition in the form of (2.17a)
(involving the Green's function in the i channel). On the
other hand, just as we deduced (no assumptions were
made) Eq. Q.15) from Eqs. (2.1) and (2.10), so we can
deduce without assumptions about uniform convergence,
etc.,
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~[G(+) y ] (2.58b)

Therefore, if we believe Eq. (2.17d), a function (here sym-
bolized by %f) which apparently satisfies the outgoing
condition involving the Green's function G +' can have
an incoming part and, as Eq. (2.58a) shows, need not
satisfy the outgoing condition involving the Green s func-
tion 6 +; indeed, one such %'f is the solution to
Schrodinger s equation having incoming part gf and
everywhere outgoing part 4f obeying

W[ G'+ '(r, r';E),4f(r';E) ]=0, (2.59a)

the f channel analogue of Eq. (2.54). Equation (2.59a), as
usual, is integrated over the surface at infinity in r' space,
for fixed r.

We shall show that Eq. (2.59a) (along with our cus-
tomary assumption of uniform convergence of infinite in-
tegrals as e~O) implies Eq. (2.17b), which —along with
Eq. (2.17c)—yields (2.17d). For this purpose it is con-
venient to interchange r and r' in Eq. (2.59a}, i.e., to
rewrite Eq. (2.59a) in the form

G'+'=G, '+' —G,'+'V, G'+'=G, '+' —G'+'V, G,'+' (2.60b)

along with

Jr[6'+'(r, r";E),G +'(r', r",E)]=0, (2.60c)

Correspondingly, define

A(r, r', E+ie)=f dr"G(r, r";E+ie)V(r")

where the surface integral now is evaluated at infinity in
r" space. Equations (2.60a)—(2.60c) can be derived via
the manipulations and uniform convergence assumption
we regularly have employed and which no longer need be
detailed. Equations (2.59b) and (2.60b) imply

W[G +'(r, r';E),4y(r;E)] =Jr [A (r,r';E),4f(r;E)],
(2.61a}

where we define

A(r, r';E}=f dr"G'+'(r, r";E)V(r")G +'(r",r', E) .

(2.61b)

S[G'+'(r', r;E),4y(r;E)]

=9 [G'+'(r, r';E), @f(r;E)]=0, (2.59b)
XG;(r",r', E+ie) .

The quantity A (r, r', E +i e) obviously satisfies

(2.61c)

G =G; —G; V~G =G; —6V~6;, (2.60a)

where now in Eq. (2.59b) we are integrating over the sur-
face at infinity in r space for fixed r', we shall use the
second equality in Eq. (2.59b}, obtained from the first re-
calling that the Green's function G'+'(r, r'), like
G +'(r, r'), is symmetric in r and r'.

It is well known that '

(H E ie)A—(—r, r', E+ie}= V~(r)G;(r, r', E+ie),
(2.62)

using Eq. (2.46) and arguing —as in the derivation of Eq.
(2.44a) from Eq. (2.43)—that the operator (H E ie)——
can be taken under the integral sign in Eq. (2.61c}. We
also have the analogue of Eq. (2.50b), namely

where G and G; are evaluated at complex energy E+ie,
e & 0. Correspondingly, at real energy E

(H E ie)4f(r—;—E+ie}=—Vf(r)ff(r;E) .

Our usual manipulations now yield

(2.63)

R R
&[A(r, r', E+ie),4f(rE+ie)]a ——f dr aff(rE+i s) V(r}G;(r,r', E+ie)+ dr A (r, r', E+ie) Vf(r)gf(r;E) .

(2.64a)

In Eq. (2.64a) substitute Eq (2.61c) and .the f channel analogue of Eq. (2.51a). Then,
R OO

M[A(r;r';E+ie), 4f(r;E+iE)],= f dr—f dr"G(r, r";E+ie}Vf(r")g~(r";E)V(r)G;(r,r', E+ie)
R 00

dr dr"6 {r,r";E+le) V (r")G;(r",r';E+i e)Vf(r)ff(r;E) . (2.64b)

Next, interchange the dummy variables r and r" in the second integral on the right-hand side of Eq. (2.64b), and let
R~oo. In that limit the left-hand side of Eq. (2.64b) should vanish for any e&0, recalling that, according to Eq.
(2.60a), A (r, r', E+ie) is merely the difference between the two quadratically integrable Green s functions G(E+ie) and
G;(E+ie) Thus Eq. (2..64b) yields

f dr f—dr"G(r, r";E+ie)Vf(r")gf(r";E)V;(r)G;(r, r';E+ie)

+ dr" drG rrE+ie V r 6 rr'E+ie Vf r" f rE =0, 265a

where r and r" both are integrated over a11 space.
Since G(r",r)=G(r, r"), both integrals in Eq. (2.65a)

have the same integrand. Equation (2.56a) therefore
means that the orders of integration over r and r" can be
interchanged in the integrals on the right-hand side of Eq.

(2.65a}, as we expect from the previously discussed antici-
pated exponential decay of the Green's functions
G{E+ie) and G;(E+ie) at infinity. With the usual as-
sumption that the infinite integrals are uniformly conver-
gent as e~O, Eq. (2.65a) yields
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—f dr f dr"G'+'(r, r"}V&(r")g~(r")V,(r)G +'(r, r')+ f dr f dr"G'+'(r, r")V,(r")G +'(r",r')V~(r)g~(r)=0,

(2.65b)

where we have reinterchanged the dummy variables r and
r" in the second integral of Eq. (2.65b) [compare with
Eq. (2.64b)]. But we also have the analogue of Eq. (2.62),

(I E)A—(r, r';E) = V;(r)G +'(r, r', E), (2.66a)

which —if we mistrust differentiating under the integral
sign of Eq. (2.61b) at real energies —can also be derived by
remembering A =(G +' —G'+') and making use of Eq.
(2.55a) along with Eq. (2.10) in the form

(H —E)G +'=5(r —r')+ V;G +' . (2.66b)

a +b +c~d +e + (2.67a)

the integral G'+'V;g; need not be convergent, even for
short range potentials; here, a, b, c, . . . denote the various
individual fundamental (i.e., noncomposite) particles
comprising the multiparticle system, or denote bound ag-
gregates of those particles. Accordingly, in "three-body"
collisions (2.67a) the interchange of the order of integra-
tion and lime —+0, needed to infer Eq. (2.52b) from Eq.
(2.52a), is not justified. It follows that use of Eq. (2.54)
to represent the physical condition "the scattered part 4;
is everywhere outgoing" also is suspect for collisions of
the type (2.67a).

The just-mentioned convergence difficulties do not arise
in all collisions of the form (2.67a), nor do they arise in all
the integrals involving real energy Green*s functions
which we have been studying. Nevertheless, to avoid any
possible convergence problems, it is prudent to restrict the
analysis and conclusions of this paper to two-body col-
lisions, i.e., to collisions of the form

a+b~c+d+e+ . (2.67b)

For collisions of the form (2.67b), there are no conver-
gence difficulties of the sort just mentioned (we reject'
Benoist-Gueutal's criticisms, " as previously mentioned)
and we see no reason to doubt our analysis. We are confi-
dent that the (free of convergence difficulties) demonstrat-
ed nonuniqueness of solutions to the real energy LS equa-
tion (2.4) for two-body collisions (2.67b) means that solu-

Equation (2.66a} and the real energy analogue of Eq.
(2.63) for 4~(E} imply, via the usual manipulations, that
the right-hand side of Eq. (2.61a) equals the left-hand side
of Eq. (2.65b) equals zero. We conclude that Eq. (2.17b)
must hold. Moreover, since the foregoing proof of Eq.
(2.17b) starting from Eq. (2.59a) did not require f&i (i.e.,
we could have chosen f=t), the proof also has demon-
strated that Eq. (2.54) implies Eq. (2.17a), confirming the
argument immediately beneath Eq. (2.56b).

The above proof that Eq. (2.59a) implies Eq. (2.17b)
completes our mathematical analysis, except for the Ap-
pendix. Before summarizing our results, however, we
must add a very important proviso. When the incident
wave f; represents three or more independently incident
particle aggregates, i.e., when P; represents a collision of
the form

I

tions to the real energy LS equation will be nonunique for
three-body collisions (2.67a), or for the even more compli-
cated collisions involving n ~3 incident aggregates. We
must admit, however, that for such collisions we have not
modified our analysis to avoid or rectify the aforesaid
convergence difficulties.

III. SUMMARY

The results we have obtained may be very briefiy sum-
marized as follows. If we make the plausible assumption
that infinite integrals which arise naturally in the LS
equation and equations related theretc =.g., the integrals
found in Eqs. (2.3}or (2.51b), involving the Green's func-
tions G;(E+ie) or G(E+ie)—converge uniformly as
e~O, then the three versions (2.3), (2.4), and (2.6b) of the
LS equations are identical in the limit @~0. Under the
same assumption, it can be inferred that one solution of
the real energy LS equation (2.4) will be the solution 4; of
the Schrodinger equation whose scattered part 4; [defined
by Eq. (2.9)] satisfies the precise outgoing condition (2.54).
The same 4; will satisfy the analogous condition (2.17a)
involving the i channel Green's function G +', as Eq.
(2.17b) shows, however, the same outgoing condition in-
volving G +' also is satisfied by the everywhere outgoing
scattered part 4y [i.e., a 4~ satisfying the precise outgo-
ing condition (2.54)] of a solution to the Schrodinger
equation having incoming part gj in any channel f which
is a rearrangement of the i channel. Thus, to reach Eq.
(2.17d) and the consequent conclusion that Eq. (24) has
nonunique solutions, only the single additional assump-
tion (2.17c) need be made; both Eqs. (2.17a) and (2.17b)
have now been derived. Equation (2.17c) is especially
plausible, since it depends only on the very reasonable no-
tion that at infinity G +' has negligibly small projections
on bound state eigenfunctions characterizing the f chan-
nel. Furthermore, still assuming uniform convergence,
various surface integrals of the form W(X, Y) defined by
Eq. (2.13), in which now X:G+'(E}, can b—e related to
the limit as e +0 of p—roducts —ie f G;(E+ie)F, as in
Eq. (2.25), for example; such relations can be used, e.g., to
connect the Lippmann identity result (2.40a) with the cor-
responding value of the surface integral on the left-hand
side of Eq. (2.39). '

Finally, and very importantly, although the existence of
functions %~(E) satisfying Eq. (2.17d) implies the real en-
ergy LS equation (2.4) does not have unique solutions, and
although the complex energy LS equation (2.6b) reduces
to Eq. (2.4) in the lime~0 when uniform convergence is
assumed, the function 4;(E) defined by Eq. (2.5) in terms
of the unique '0;(E+ie) satisfying Eq. (2.6a) for e&0 is
itself unique and is the desired solution q';(E) of the
Schrodinger equation satisfying the precise outgoing con-
dition (2.54). However, the uniqueness of this limit
ql;(E) does not mean that conventional methods of solv-
ing the real energy LS equation (2.4)—which methods
generally do not involve obtaining the aforementioned
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lime~0 of 4;(E+ie) —will yield the desired solution
0;(E) without explicit liilpasltloil of tile precise olltgalilg
boundary conditions (2.54); even explicit imposition of the
outgoing condition (2.17a) will not suffice to make the
solution to Eq. (2.4) unique. The necessary boundary con-
dition can be achieved, however, by considering the "basic
set" of LS equations proposed by Glockle, consisting of
Eq. (1.1}and the set of homogeneous equations.

4'f ———O'+ ' V.%f (3.1)

for all rearrangement channels f of the incident channel i.
Of course, the foregoing summary remains subject to

the provisa stated at the end of Sec. II.
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APPENDIX: EQUATION (2.20a)
AND UNIFORM CONVERGENCE

Consider Eq. (2.20a). The volume element dr' in con-
figuration space can always be written as dr'=r'"dr'dv',
where n is an integer depending on the dimensionality of
the configuratian space and d v' is the element of the solid
angle in configuration space. For instance, with three
three-dimensional particles in the laboratory system,
n =8; in the McGuire model of three one-dimensional
particles in the center of mass system, n =1. The essen-
tial point is that dv' always is integrated over a finite an-
gular range; the infinite range of integration in the in-
tegrals of Eq. (2.20a) is completely reflected in the fact
that dr' is integrated fram 0 to oo.

New introduce, to simplify the notation,

Y'+'(r, r';E}=f dv'r'"G +'(r, r';E)V;(r')%(r';E),

(Ala)

Y( r, r', E +i e) =f d v'r'"G;(r, r', E +i e) V(r')W r', E) .

(A lb)

whenever L &La(g). The value assigned to the integral
on the right-hand side of Eq. (A2) is, of course, the num-
ber N(r, E) in Eq. (A3). But granted this assignment
[which now provides a definition of the previously unde-
fined expression on the right-hand side of (A2)] has been
made, introduction of the symbol X(r,E) is superfiuous;
one may as well symbolize this number by the original ex-
pression on the right-hand side of (A2). With this under-
standing, (A3) can be rewritten as

ce L
dr'Y'+'(r, r', E) dr'Y'+'(r, r', E)

if L &La(rI) . (A4a)

Similarly, the assertion that the integral on the left-hand
side of (A2) converges at large r' for specified r,E and
ey0 means

00 L
r'Y r, r';E+ie — r'Y r, r';E+ie

if L &L,(i}), (A4b)

where the subscript in L,(rl) makes explicit the depen-
dence on e (as well as on i)} of the smallest allowed upper
limit in the second integral under the absolute value sign.
Of course, in general both L0 and L, depend also on r,E,
but in the subsequent discussion r,E will be held fixed.

The set of integrals on the left-hand side of (A2) is said
to be uniformly convergent in a domain about e=O if
there exists an e &0 such that —given any i}&0—for
any e in the open interval 0 & e & e one can find an L
depending on rl but independent of e for which

if L &L (i)), 0(@&a . (A5)

In Eq. (A5} we have followed customary practice and ex-
cluded the point a=0 because, in general, a sequence
Y(r, r';E+ie) appearing in a relation like (A2) may not
be well defined when e=O, at which value of e, therefore,
a limiting relation such as (A3) is required to prescribe
Y(e=O} and to assign it a sensible value. This difficulty
does not arise, however, when Y(E+ie) has the specific
definition (A lb).

To prove Eq. (A2) it is necessary to show that —given
any il»0—there exists an ei(i)i}&e such that (now
dropping the awkward and unnecessary variables r, E)

Because dv' is integrated over a finite angular range only,
the integrals (Al) may be presumed to converge. Thus
Eq. (2.20a) takes the form

lim dr'F r, r', E+ie = dr'F'+' r, r';E . A2
e~O 0

The assertion that the integral on the right-hand side of
Eq. (A2) converges at large r' for specified r,E means
precisely the following. There exists a number N, depend-
ing on r,E such that —given any q ~0 however small-
one can find an LD depending on il for which

I.
N (r;E)—f dr' Y'+'(r, r', E) (A3)

f dr'Y'+'(r') f dr'Y(r', e)—
if 0(E (ei(t/i) (E . (A6)

In (A6) one must keep in mind the definitions of the in-
finite integrals therein, as explained following Eq. (A3).
Thus one cannot immediately write

f dr'Y'+'(r') —f dr'Y(r', e)

= f dr'[ Y'+'(r') —Y(r';E)] . (A7a)

However, one can write
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f dr'Y'+'(r') —f dr'Y(r', e)=
0 0

00f dr'Y'+'(r') f—dr'Y'+'(r') — f dr'Y(r', e) —f dr'Y(r', e)
L

+ f dr'Y'+'(r'} f—dr'Y(r';e) (A7b}

in the last set of large parentheses in (A7b) it is legiti-
mate to write

I L
dr'Y'+'(r') —dr'Y(r', e)

0 0

r r'+'r' —r r', ~ . &8

Moreover, because dv' is integrated over a finite range,
and because Eq. (2.7) holds, it is easy to show

lim Y(r', e)= Y'+)(r') .
g—+0

It follows that —given any riz & 0—we can find an

ez(riz) & e such that

I

some value consistent with both (A10a} and (A10b), i.e., L
is fixed at some value L(il, /6} exceeding the larger of
Lo(rii/6) and L~ (rit/6). The important point is that, be-
cause of the postulated uniform convergence, Eqs. (A10a)
and (A10b) can be simultaneously satisfied by appropriate
choice of an L(rit/6) independent of e. Finally, in (A9b),
choose riz 7tit/6——L, where L =L(ri&/6). Since L is a fi-
nite (though possibly very large) number independent of e,
this choice of riz is legitimate. Then, for the term in the
third set of large parentheses in (A7b), using (A8),

L Lr'y'+' r' — r'Y r';e
0 0

~

Y'+'(r') Y(r', e)
~

&—riz if 0& e &a'z(riz) (e'
(A9b)

Now choose ri in (A4a) equal to rl, /6, where ri& is the as-
signed value on the right-hand side of (A6). Then, for the
term in the first set of large parentheses on the right-hand
side of (A7b),

f dr'Y'+'(r') —f dr'Y'+'(r') & ri, /6
0 0

f dr'[ Y'+'(r') Y(r',—e))

r' F'+' r' —Y r",e

'g) 'g)
dr' = if 0&E&E'z(rii/6'L)&E~ .

6L 6

Hence if e & ez(ri, /6L), Eqs. (A7b) and (A10) imply

(A10c)

if L )Lo(ri)/6) . (A10a)

Similarly, choose ri in (AS) equal to rii/6. Then, for the
term in the second set of large parentheses on the right-
hand side of (A7b),

00 I.f dr'Y(r";e) f dr—'Y(r';e) & ri&/6

if L )L (rli/6), 0&@(e . (A10b)

Next let L, which was not specified in (A7b}, be fixed at

f 00 00 g] g] 7JJdr'Y'+'(r') f dr'—Y(r', e)
6 6 6

if 0&e&ez(rii/6L) (e (A 1 1)

Equation (Al 1) demonstrates that the desired inequality
(A6) will hold, provided ei(ri i ) in (A6) is chosen
& ez(ri, /6L), Q.E.D.
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