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Covariant time-ordered perturbation theory
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By reformulating Kadyshevsky's perturbation theory for the S matrix in quantum field theory, a
covariant version of time-ordered perturbation theory is obtained. The new graphical rules are just
like those of time-ordered perturbation theory except for the replacement of three-momentum-
conserving 5 functions with covariant three-dimensional 5 functions and the use of invariant denom-
inators instead of energy denominators. The new rules are illustrated by deriving an approximate
three-dimensional integral equation which describes the scattering of two identical scalar particles
which interact by exchanging a different scalar particle.

I. INTRODUCTION

In the standard S-matrix perturbation theory used in
quantum field theory, ' the various terms in the series are
represented by Feynman diagrams. As is well known, for
these diagrams the total four-momentum is conserved at
each vertex and the intermediate particles are virtual in
the sense that they are off-the-mass shell. Integral equa-
tions for scattering amplitudes can be obtained by sum-

ming series of diagrams. The well-known Bethe-Salpeter
equation arises in this way. Since all four components of
the four-momentum of an intermediate particle in a Feyn-
man diagram are independent variables, the two-particle
Bethe-Salpeter equation becomes a four-dimensional in-
tegral equation when the conservation of the total four-
momentum is taken into account. One of the distinctive
features of this equation is the appearance of a relative en-

ergy variable which is not present in the standard integral
equation of nonrelativistic potential scattering, i.e., the
Lippmann-Schwinger equation. i

A highly desirable feature of Feynman diagrams is that
the corresponding contributions to the S-matrix are indi-
vidually covariant. This is accomphshed by lumping to-
gether intermediate states with different numbers of parti-
cles and antiparticles. A disadvantage of this is that when
series of diagrams are summed to obtain integral equa-
tions, it is difficult to justify the omission of various types
of diagrams, since there is no one-to-one relation between
internal lines and intermediate states.

To a Feynman diagram with n vertices there corre-
sponds n! terms of tiine-ordered perturbation theory
(TOPT). Each of the n! diagrams of TOPT looks like a
Feynman diagram with a particular ordering of the ver-
tices. At each vertex of a TOPT diagram the total three-
momentum is conserved and the intermediate particles are
real, i.e., on-the-mass shell. Energy denominators are as-
sociated with intermediate states, in contrast with Feyn-
man diagrams where propagators correspond to internal
lines.

Individual terms in TGPT are not covariant. In order
to obtain a covariani result it is necessary to sum the dia-
grams corresponding to the various orderings of the ver-
tices. Integral equations obtained by surnrning series of

TOFT diagrams have fewer variables than those derived
from Feynman diagrams, but of course there are problems
with covariance.

Several years ago Kadyshevsky developed an S-matrix
perturbation theory which is a covariant reformulation of
TOPT. In the diagrams of this theory appear the parti-
cles associated with the underlying quantum field theory,
as well as so-called quasiparticles or spurions. The total
four-momentum of the particles and quasiparticles is con-
served at each vertex, and the physical particles in inter-
mediate states are real. Due to the presence of the quasi-
particles, the total four-momentum of the physical parti-
cles is not conserved at each vertex.

In contrast to TOPT, individual Kadyshevsky diagrams
lead to covariant expressions. Summing series of these di-
agrams leads to integral equations with fewer variables
than those derived from Feynman diagrams. ' In partic-
ular, for two-particle scattering the integral equations are
three-dimensional and no relative energy variable appears.

The appearance of the quasiparticles in the Kadyshev-
sky diagrams makes them much more complicated than
Feynman diagrams or the diagrams of TOPT. The pur-
pose of the present work is to reformulate Kadyshevsky's
approach so as to eliminate the quasiparticles. By so do-
ing a covariant version of TOPT is obtained whose graph-
ical rules are much closer to the rules of TOPT than those
of Kadyshevsky. In fact, the new rules are the same as
those of TOPT except for the replacement of three-
momentum conserving 5 functions by covariant three-
dimensional 5 functions and the use of invariant denomi-
nators instead of energy denominators.

The covariant time-ordered perturbation theory
(CTOPT) developed here becomes identical to TOPT in a
special set of Lorentz frames, called A, frames. These
frames arise as the result of introducing a timelike unit
four-vector, denoted by A., which assigns an invariant time
direction. A A, frame is one in which A, =(1,0). If the A,

vector is chosen to be parallel to the total four-momentum
of the system, a A, frame is the same as a c.m. frame.

One of the nice features of the formalism developed
here is that it leads more directly to covariant few particle
integral equations than Kadyshevsky's approach. This as-
pect of the CTOPT will not be fully developed here, but
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will be the subject of future publications. Here we shall
be content with a simple example.

The covariant formal expansion of the S matrix is
developed in Sec. II. The graphical rules are presented in
Sec. III in the context of a simple field theory in which
scalar "nucleons" emit and absorb scalar "mesons. " The
rules are illustrated by deriving an approximate integral

equation for "nucleon-nucleon" scattering. A brief dis-
cussion and suggestions for future work is given in Sec.
IV.

II. BASIC FORMALISM

We begin by considering the S operator defined by

S =1+ g ( —i)"f d xid x2 d X„HI(xi)8[X (xi —xi)]HI(X2)8[k (x2 —xi)] 8[k.(x„ i
—x„)]Hi(x„),

where HI(x) is a Lorentz invariant Hamiltonian density,
8(~) is the unit step function, and A, =(Q,A, ) is a timelike
unit vector with the properties

A, =1, Ao)0.
Since A, is timelike, we can always find a frame in which
A, =(1,0). We will call such a frame a A, frame, and will
distinguish quantities evaluated in these frames by a sub-
script A,.

It is well known' that there exists a unitary operator
U(a, b) which transforms the Hamiltonian density ac-
cording to

U(a, b}Hi(x)U(a, b) '=HI(ax+b),

where the set of parameters symbolized by a and b occur

in the coordinate transformation

x'"=a"„x"+b" .

It should be kept in mind that we are working in the in-
teraction representation, so that U(a, b) involves the free-
field momentum and angular inomentum operators. If in
each of the integrals occurring in (1) we make a transfor-
mation according to

x =a(A, )xi,
where the components of xi are evaluated in a A, frame,
then from (3) it follows that

S =U[a (A, )]SoU[a (A, )]

with

Si, ——1+ g ( i)"f—d'x„d'x» d'X„„H,(x„)e(r» r»)H, (x—»)e(i» i„) —e(t„,„—r„,)H, (x„,) .

Equation (7) is a well-known expression for the S operator, and it is equally well known that it can be rewritten in the

i = + X, d xiid x» d x.iTIHI(xii. )Hi(x»)4 4 4

n=1
(8)

where T symbolizes the time-ordering operation. This
operation is Lorentz invariant as long as

[Hr(x)»1(x')]=0 for (x —x')i ~0,
w»ch in turn is a consequence of microcausality. 13y put-
ting (8) into (6) and using (3) and (5), we find that

S=l+ $ dXidX2 dx2 n
n=i

necessary to combine the time-ordered diagrams corre-
sponding to a particular Feynman diagram so as to obtain
an explicitly covariant result. We will see that when the
matrix elements of the terms in (1) are evaluated, a gen-
eralization of time-ordered perturbation theory is obtained
in which the time-ordered diagrams are individually co-
variant.

It is straightforward to show that (1) can be rewritten in
the form

XT[HI(xi)HI(xi) HI(x~)] .

(10)

Thus we have shown that Eq. (1} is equivalent to the
standard expression for the S operator given by Eq. (10).
It is well known that the Feynman diagram approach to
quantum field theory can be developed by using Wick's
theorem to work out the matrix elements of the terms in
(10). These diagrams have the virtue of being individually
covariant. This is in contrast to time-ordered perturba-
tion theory [which can be derived' from (7)) where it is

Xe(r, r, ) 8(r„,——~„)V,(~„),

where

Vi(r)= f d x Hi(x)5(r —A, x),
= f d xHI(X+AD}5(A, .x) .

(12a}

S=l+ g ( —i)"f dr, d~, . dr„V, (ri)8(7i —ti)vi(7z)
n=1
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S(rp, vp) =1,
S =S(ao, —e) ) .

(13b)

(13c)

These equations, which supply a covariant reformulation
of the interaction picture, have been previously derived by
Kadyshevsky, but in a less direct manner. This formula-
tion can also be obtained by specializing the s~acelike sur-
faces in the Tomonaga-Schwinger equation' ' to those
defined by A, x =r.

From (12) and (3), it follows immediately that

Vi (r) = U(A~}Vi U(Ar}

where

(14)

In going from (12a) to (12b), we have used (2). It is clear
that (11)can also be obtained from the equations

BS(v,rp}
i = Vi (~)S(r,rp),

O'T

) &ii PT. (16)

where P" is the free four-momentum operator.
Although it is somewhat beside the point, it is interest-

ing to note that the operator S, defined by

Sg(r, rp) = U(Ar) S(z,rp) U(Zap)

satisfies the equation

BS,(r, rp)
i =(A, P+ Vi„)S,(r,rp),

BT

(17)

where we have used (13a), (16), and (14). This gives a co-
variant reformulation of the Schrodinger picture.

Upon putting (14) into (11)and using the identity'

i(A, P-A, Q)~

( i) dyei(i. P i, QH-'
CO A, Q+ie A, P—

Vi ——Vi(0)= f d xHi(x)5(A, .x) . (15) 2ni5—(A, P. }(Q)—, , (19)

Since U(Ar) describes a space-time translation, it is given
I

(S—1)
~ Q & = —2mi5(A, P —A, Q)

we find

1 1 1
X V, +V„,

Q
. „PV, V, ,Q+. ,PV„,Q+, PV, ~Q&, (20)

where
~

Q& is any free state with a well-defined total
four-momentum Q, i.e.,

»
I
Q&=Q~

l Q& . (21)

III: AN EXAMPLE

Equation (20) is the basic result. In a A, frame, i.e., where
A, =(1,0), A, Q =E, A, P =Hp, and Vi„Hi where E——, Hp,
and Hi are the total energy, the free Hamiltonian, and the
interaction Hamiltonian, respectively; so in this frame (20)
reduced to time-ordered perturbation theory. In the next
section we will give rules for the graphical interpretation
of (20) when Vi arises from a simple field theory.

5~(q)= I d~x e"'*(NA, x),
(2~)3

(26a)

3 (26b)

where q is a linear combination of on-mass-shell four-
momenta. From (26a), it follows that

(k2+p2) i/2 E (p2+ 2)1/2

When these decompositions are used in (22), and (22) is
put into (15), we encounter

For the interaction Hamiltonian density we take

Hr(x) =g:it'(x)P(x)P(x):, (22)
4(q) =5i;(q') (27a)

where P(x) and it)(x) are Hermitian and non-Hermitian
scalar fields, respectively. Their Fourier decompositions
are given by

P(x}=J [a(k)e ' "+at(k)e' ' ],d k
[(2n} 2a) ]'/

Q(x)= J [b(p)e 'i' "+dt(p)e'i"],d JP

[(2~}'2E,]'~

(24)

i{,'=ah. and q'=aq, (27b)

so that 5i(q) is a covariant three-dimensional 5 function.
If we choose the prime frame to be the A, frame, we see
that

5i(q) =5'(qi) .

It will be convenient to have the relations between the
components of a four-vector in a A, frame (xpi, ,xi, }and its
components in a general frame (xp, x). It should be kept
in mind that the A, frame is not unique, since given any A,

frame another one can be obtained by carrying out a rota-
tion of the spatial coordinates. A simple choice is ob-
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tained by choosing the parameters of the Lorentz
transformation from the general frafne to the A, frame to
be

{c)For every vertex except the last, include a factor

(2m) 5i{hq}, (37)

p=A, /Ag, y=Ag,

far which the relations become

xone. =pro —k x=k x,
XR

Xg=X+ ++1
—Xo

(30a}

(30b)

where hq is the total four-momentum leaving the vertex
minus the total four-momentum entering the vertex. The
factor for the last vertex is already included in (34). Of
course, a factor of g is associated with each vertex.

(d} For every intermediate state, i.e., a set of lines be-
tween any two adjacent vertices, include a denominator

It is important to note that xoi ls a Loreiltz scalar aild
that the three-dimensional dot product

xi yi=(A*x)(A, y) —x y

is also. If we choose A, =Q/IV where

(31)

(32)

5(A, q)5i(q) =54(q) (33)

For the field theory we are considering the S matrix for
a transition a~p can be written

Sp 5p (—2—n) i5—(Qp Q~)Qp—Tp (34)

Here Q and Qp are the total initial and final four-
momenta, respectively. According to (33) the four-
dimensional 5 function can also be written as

5~(Qp —Qo) =5(A. Qp —A, Q )5s(Qtu, —Q~) . (35)

The quantity Qp, is a product of external factors —one
for each particle in the initial and final states. The factor
for a f-field Particle is (2n ) '/2(2' } '~z, while for a P-
field particle it is (2n) /(A@I, ) '/. These factors
arise because the states a and p are defined with a conven-
tional noncovariant norm, e.g., (p'

~ p) =5 (p' —p). The
matrix element Tp is a Lorentz-invariant function af the
incoming and outgoing moments.

The results of the covariant perturbation theory ob-
tained from (20), (15), and (22) can be summarized in a set
of graphical rules for constructing Tp .

the three vectors xi are the same as the so-called "special
vectors" introduced some time ago by Aaron, Amado, and
Y 13,14

It is important to note that it follows from (28) and
(30a} that

(AQ, .+ie A—Q„,.} (38)

where Q„ is the total four-momentum of the intermediate
state.

(e} Integrate the product of these factors over all inter-
nal three mom-enta, and sum the result over all diagrams
ta abtain Tp

These rules are exactly the same as those for time-
ordered perturbation theory except for the replacement of
a three-momentum conserving 5 function by 5i and the
use of the invariant denominator (38) instead of an energy
denominator. In a A, frame the rules for the covariant
theory give exactly the same results as the time-ordered
theory. As pointed out above, individual diagrams arising
from (20) are covariant, however the result does depend
on A, . In arder to get a result independent of A, it is necei-
sary to sum the n! ordered diagrams corresponding to a
Feynman diagram.

In order to illustrate the graphical rules and to demon-
strate their simplicity as compared to the earlier formula-
tion7 based an (1},we shall consider the scattering of two

f particles, i.e., the particles created by the b s. The ini-
tial and final states are given by

~
a) =b (p))b (pi)

~
0),

(39)

I P& =b'{pi}b'{p2)10&
We begin by considering the diagram in Fig. 1. The verti-
cal line here and in subsequent diagrams indicates the in-
termediate states that must be taken into account. Ac-
cording to the rules, Fig. 1 gives the result

d'k {2~)'4{Pz+k-P»
(2n) 2cok A, Q+ie A(p, +—k,+. p )i3 ~ s

(a) Draw all possible ordered diagrams for the transi-
tion a~p. That is, draw each nth order Feynman dia-
gram n. times, ordering the n vertices in every possib1e
way in a sequence running from right to left, with lines
for the particles in the initial state a and the final state p
entering on the right and leaving on the left, respectively.
Label each line with an on-moss-she/1 momentuTn P
(p =m or p =@~).

(b) For every internal line include a factor

(2m ) (2Es ) ', (f particle)

or

Q =P I +P z =P i +Pi .

yk

(41)

(2%) (2@ok) (P particle) . FIG. l. Exchanged partic1e with one ordering.



33

2
@{1)

2A, .k[A. Q+ie A, .—(pi+k+pi }j
(42)

The invariance of the result is obvious. In order to do the
integral we use the fact that the volume element d k/2cok
is an invariant and carry out the integration in a A. frame
with the help of (28}. We get

lated to p' and p, respectively, by (30b} with
A, =(QO/W, Q/8'). It is important to note that (46) con-
tains only three-vector dot products in the A, frame [recall
(25)] which according to (31) are invariants, thus the po-
tential given by (46} is a Lorentz scalar.

It is not difficult to show that if we sum the four dia-
grams given in Fig. 3 with I,=Q/W we obtain the expres-
sion

4=Pu, —Pzx =Pii pii, ~ (43) 1 d g V(q p Q) (47)
(2~}3

' ' 2' 2Eq (W+ie 2E—
q )

where we have used (30a) and the fact that the particles
are on the mass shell. The second expression for ki fol-
lows from the conservation of three-momentum in the A,

frame [see (35)]. Using the same analysis we find that
Fig. 2 leads to the expression

gy(2)
I

2A, k[A, Q+ie —A, (pi+k+pi)]

This immediately suggests that an approximate integral
equation for P-f scattering is given by

T(p', p;Q) = &(p', p;Q)+
(2n )

T(q p'Q)

where ki is again given by (43). It should be noted that
(42) and (44) depend only on ki. With the help of (31),
(41), and (43), we find that

where

(48)

2
y(1) + y(2) g

(P i —Pi ) —P +lE
(45)

(49a)

which is independent of A, . It is important to appreciate
that it is necessary to assume (41) in order to obtain this
result, i.e., summing the various time-ordered diagrams
corresponding to a Feynman diagram gives an expression
independent of A, only for a physical process.

We now consider the sum of (42} and (44) when we
choose A, =Q/8' with W given by (32). The A, frame is
now a c.m. frame so that the total three-momentum in the
A, frame is zero, i.e., A,i =pi ——0. If we use (30a) and the
fact that the particles are on the mass shell (e.g.,
A, k =koi =cok„), we find that Figs. 1 and 2 combine to

give

l=p', p, or q. (49b}

The solution of (48) gives the ladder approximation for
g-g scattering.

It is important to appreciate the fact that (48) is expli-
citly covariant, in fact, it involves only invariants. The
quantity d q/2E~ is an invariant volume element, and all
of the other energies that appear [see (46) and (25)] con-
tain only invariants of the form (31). If so desired, the
three-vector dot products in the A, frame that arise in (48)
can be expressed in terms of the momenta of any frame by

with

&(p', p;Q) = (46a)
aik ( W +ie E, —r0~ —E)—

p~

@=pi—Pi, ~ (46b) I

P2 Pp

where p' and p are either p~ and p~ or p2 and p2. %e
have not used conservation of energy in the c.m. frame as
this would simply lead us back to (45). Equation (46)
gives an approximate quasipotential for f-g scattering.
The three-momenta pi and pi that appear in (46} are re-

Pp Pp

Pq Pp

P,

Pp Pq

FI(G. 2. Exchanged particle with other ordering. FIG. 3. Some two-particle exchange diagrams.
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using (49). The explicit covariance of (48) is a general
feature of integral equations obtained by summing series
of diagrams in the CTOPT developed here.

IV. DISCUSSION

It is not anticipated that the graphica1 rules presented
here will replace the use of Feynman diagrams in pertur-
bation theory calculations, however for developing in-

tegral equations for few-particle systems CTOPT does
have some advantages. In particular, for the two-body
problem it leads directly to three-dimensional equations.
It is not necessary to start with a four-dimensional equa-
tion and then reduce it to three dimensions, as is com-
monly done. 's ' Also, since there is a one-to-one
correspondence between internal lines and intermediate
states in the diagrams developed here, integral equations
obtained by summing a series of such diagrams can be
characterized precisely in terms of the intermediate states
allowed. In a sense, the formalism developed here makes
it possible to apply the Tamm-Dancoff method in a co-
variant way.

It is interesting to note that the technique used by
Bhalerao and Gurvitz' to reduce the two-body Bethe-
Salpeter equation to three-dimensional form leads back

to the diagrams of TOPT. They have developed a method
for summing these diagrams which leads to practical
three-dimensional integral equations, however their equa-
tions are not expiicitly covariant. By redoing their
analysis with the approach developed here, explicit covari-
ance can be restored.

Recently, the author' has carried out an analysis of a
sr-N-5 field theory with static fermions using projection
operator techniques. Exact two-particle and three-particle
equations for sr N-scattering have been derived. If the
one-fermion irreducible part of the three-body interaction
that appears is neglected a closed set of coupled nonlinear
integral equations for all of the quantities of interest is ob-
tained. These results are very encouraging, however the
assumption of static fermions brings their general validity
into question. By combining the formalism developed
here with the projection operator techniques of Ref. 18, it
should be possible to derive two-particle and three-particle
equations for the tr Nsy-stem starting from a covariant
field theory. Hopefully the results obtained in the static
limit will continue to have some validity when recoil is
taken into account.

I would like to thank Edward Cox and William Mara
for several enlightening discussions.
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