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A pion optical potential is constructed which incorporates the 5 dynamics found to be important
in 6-hole analyses of pion scattering from light nuclei. These dynamics include 5 propagation,
binding and Pauli blocking„and a 5 spreading potential. %e employ a local density approximation
for the medium-modified 6 propagator, resulting in a computationally flexible tool for the analysis
of pion-nucleus data. %e reproduce the b-hole results for m-' 0 scattering satisfactorily. Elastic
m-- Pb scattering is described very well with the same strongly damping spreading potential found
for light nuclei. The pion wave functions in the medium are substantially modified by the 5 dynam-
ics.

I. INTRODUCTION

Pion-nucleus interactions have been studied intensively
over the last decade in the energy regime corresponding to
5 excitation. A prime motivation for these studies has
been the attempt to learn about b, dynamics in the nuclear
medium. A series of quantitative theoretical studies'
c«uried out within the 5-hole formulation of pion-nucleus
scattering has had considerable success in reproducing
and correlating data for s and p-she-ll nuclei with a rather
compact mean field characterization of the 5-nucleus in-
teraction. Strong dn~ping of b, motion in nuclei is indi-
cated. Although no satisfactory microscopic theory ex-
ists, the origin of this damping clearly lies in the annihila-
tion process5 b,N~NN, which is a basic reaction for
understanding the role of subnucleonic degrees of freedom
in the strong interaction. The b,-hole studies pointed out
clearly that careful treatment of the rather uninteresting
dynamics associated with resonance propagation, nuclear
binding, and Pauli blocking is essential for extracting in-
formation on the 5-nucleus interaction. Unfortunately,
microscopic treatment of these effects is computationally
nontrivial so that, on one hand, standard optical potential
treatments ' (based upon the static approximation) do not
adequately incorporate this physics while, on the other
hand, the 5-hole calculations (which have incorporated it}
have been restricted to light nuclei. The goal of the work
presented here is construction of a pion optical potential
which builds in b dynamics while still being computation-
ally flexible. Our approach is based upon local density
approximation to the 6 propagator, with the important
medium corrections guided by the available 5-hole results.
%'ith this optical potential, we study the 6-nucleus in-
teraction in elastic m- Pb scattering. The result is a
reinforcement of the mean field characterization devel-
oped in the analyses of light systems.

Nuclear structure studies have provided another impor-
tant motivation for the study of intermediate energy

pion-nucleus scattering, particularly through exploitation
of the isospin structure of the 6-dominated srN ampli-
tude. For example, comparisons of sr+ and m scattering
have been employed to study neutron distributions in elas-
tic scattering and isospin mixing of particle-hole states in
inelastic scattering. The static optical potentials alluded
to above generally are used in the analyses, but it is
known that the 5-nucleus dynamics are important for
quantitative analysis. ' Consequently, we feel that the
optical potential described below, by incorporating the b,
dynamics in a manner which allows simple use and effi-
cient computation, can be a valuable tool for the analysis
of pion-nucleus data.

In Sec. II, we review the b-hole formalism briefly and
present our construction of the optical potential. The 6
kinetic energy, binding, and Pauli blocking effects men-
tioned earlier are included as modifications of the 5 prop-
agator in the nucleus. These effects are part of the first
order optical potential (i.e., occur at the one-hole level),
but are generally ignored or reduced to a simple parameter

chancre
in standard static treatments. The b;hole calcula-

tions dictate a more refined treatment. We follow the
b,-hole approach and incorporate higher order effects
through a 5 spreading potential which damps 5 propaga-
tion in the medium. Clearly, this approach is most ap-
propriate for isolating the physics of 6-nucleus interac-
tions. Further, we note that this approach leads to a
phenomenology very different from that enfored through
phenomenological parametrization of a second-order pion
optical potential. This is seen easily with a schematic rep-
resentation of the optical potential. The first order optical
potential has the structure

y(1) (l}E Ett+iI /2 '—
where the Breit-VA'gner denominator characterizes the 5
and p is the nuclear density. VA'th a 6 damping width
proportional to the density, the optical potential becomes
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As can be seen from Eq. (2a), the additional b damping in
the medium decreases pion optical absorption at reso-
nance, while standard parametrizations

V—Vi 1)+ V(2) (3)

would lead to increased absorption (unless Iin V' ' has the
"wrong" sign). The basic problem with Eq. (3) lies in the
failure to incorporate the shadowing of the annihilation
process on the in-medium elastic nN amplitude. This ef-
fect is explicit in Eq. (2b). The importance of this effect
will be seen in a substantially enhanced pion density in the
nucleus at resonance energy upon inclusion of the b-
nucleus dynamics. Since we envision applications to
heavy nuclei, the isospin dependence of the spreading po-
tential found to be important for quasielastic reactions" is
included.

Section III contains our calculated results and compar-
isons with data. We first present a fairly detailed compar-
ison with m+-' 0 elastic data and with the 6-hole results.
The latter comparison is particularly important in that the
b-hole calculations provide a standard against which our
local density approximation can be tested. We stress that
the local density approximation is applied to the b, propa-
gator, which is short-ranged because of the b ~nN decay
process. The comparisons are satisfactory and we proceed
to a comparison with m-+- OsPb elastic data. The spread-
ing potential extracted from analyses of p-shell nuclei
leads to acceptable comparisons with the data. We then
discuss the properties of the pion scattering wave func-
tion, which is a central input to calculations of inelastic
processes. We present one application, namely, a calcula-
tion of coherent n photoproduction, demonstrating the
importance of a dynamical treatment of the production
operator in a distorted wave calculation. A few conclud-
ing remarks are offered in Sec. IV.

The structure of the 6-hole model' for pion elastic
scattering can be given in the projection operator formal-
ism. I'0 projects onto the elastic channel, while P&
denotes the space of pion-plus-one-particle-hole states.
The 5-hole configurations are in the D space, and are as-
sumed to act as doorways from the elastic channel into all
more complicated configurations (the nonresonant mN in-
teractions will be discussed later). The Q space is the
remainder, consisting of pion-plus-multi-particle-hole
states and of annihilation channels, which contain neither
a pion nor a b, . The coupled-channel Lippmann-
Schwinger (LS) equations then yield the simple form for
the elastic transition matrix

VD~, G~—,~i,a VngGg —Vgo)
' (5)

Gp (E+ H——I,p )—
Gp, (E+ Hp——

,p,
—Vp, g—Gg Vgp )

Gg='E' —Hgg —Vgg)
'

Hp p
——T +HqSM

Hg ——Mg+ Tg+ Vg+H~SM

P, D —VP, D+ VP, QGQ VQD

(6a)

(6b)

(6c)

(7a)

(7b)

The term with Vp D in Eq. (5) builds up the free 6 self-

energy except for the Pauli-blocked states. The term with
VDp is the pion elastic rescattering term and VQD desig-

nates the more complicated coupling to multi-particle-
hole states. The binding potential Vz is taken to be the
same as that for nucleons. The term with Vi D is com-

1

bined with Ha to make explicit the free resonant propaga-
tor, the Pauh self-energy, and part of the Q-space cou-
pling,

PoPo VPoD GEE VDPo '

where Vp D is the nN-b, transition operator and GaI,0
designates the medium-modified b,-hole propagator,

G~ =( E Ha V—DP, G—p, V~, D

II. CONSTRUCTION OF THE PION OPTICAL
POTENTIAL

A. The h, -hole model

The dominance of intermediate energy pion-nucleon
scattering by 6 excitation leads naturally to a description
of pion-nucleus scattering which focuses upon b, propaga-
tion in the medium. The picture is that the incoming pion
(or photon) excites a b-hole configuration and that the fi-
nal states in elastic or inelastic scattering are reached from
such configurations. The intermediate b,-hole propagator
contains the physics. The focus on the b, rather than the
pion, degree of freedom not only provides a convenient
framework for isolating the b-nucleus interaction effects
but also for implementing the "first order" dynamics dis-
cussed in the Introduction.

0E—H~ —VDp Gp Vp D =E—H~ —VDp Gp Vp D —&Q
1 1 1 1 1

=E Ha [Xf„,(E —Ha )— —

+Xpauli] Xg

=D(E Ha ) —Xp,~;—Xg—

where

D (E)=E Ma Xf,~(E)=E—Eg (E)+—i——. I (E)
2

is the inverse of the free-space dressed 6 propagator in the
b, rest frame. The terms with Vng and Xg are then com-
bined into a phenomenological spreading potential X,p so
that the 6-hole propagator is finally written as



976 8. KARAOGI. U AND E. J. MONIZ 33

Gai, (E)=[D (E H—a ) —8'(E)—Xp,g;(E)

—&,p,(E)]

W(E)=VDp Gp Vp p .

~
Do(k) & =N~ Vn~, ~

k;0 &,

& Do(k}
~
Do(k) &

—= 1 .
(13)

Calculations proceed by taking the partial wave decompo-
sition of the doorway states and evaluating the matrix ele-

ments in Eq. (12) within a shell model (SM) basis. All of
the terms in Eq. (11) except for X,z, are evaluated micro-
scopically. As discussed below, the shape of the spreading
potential is fixed and the strength parameters determined

I

The elastic pion amplitude is then given as an expectation
value in 5-hole doorway states,

& k', 0
i Tp p (E) i k;0&

&Do«')
I G~(E) I

Do(k) & (12)

by the data. The binding and propagation effects con-
tained in H~ show a strong L dependence, in contrast to
the assumption made in static approximations. The Pauli
term substantially reduces the h~mN decay width in the
medium. The elastic rescattering term 8' is very large,
because of the strong optical absorption of pions. This
term wi11 not be present in the optical potential; instead,
this physics is built in by iteration of V,z, in the pion-
nucleus elastic channel Lippmann-Schwinger equation.
Finally, the spreading potential is found to damp the 6
strongly in studies of light nuclei. ' We shall extend the
analysis to heavy nuclei in the next section.

B. The optical poteatial

We now develop a momentum space optical potential
based on the isobar dynamics. Its formal expression is
similar to that for the T-matrix Eqs. (11)—(13},with the
rescattering term 8' deleted. In order to include the im-
portant Coulomb interaction, diagonal terms are added on
various subspaces. The optical potential has the form

«k' k) =Us+ &k'o
I ~~,D[D(E —Ha) —&pa~i —&sir(E)] 'VD~,

1

k'o&

The background potential Ua includes both nonresonant
pion-nucleon interactions and the pion Coulomb interac-
tion. The first order static treatment of the nonresonant
terms is taken directly from the optical potential piete.
We also include a phenomenological local S-wave poten-
tial

Ug(r) =&o[p(r)/p(0) ]' . (15)

A repulsive potential of this form, the origin of which is
not understood, has been found to be important for
scattering below 100 MeV. In comparing with data, we
have taken Bo 12 MeV. ——The 5 Hamiltonian includes a
Coulomb term in addition to the binding potential, the

I

latter taken to have a depth of 55 MeV (any error here
will show up as a modification of the phenomenological
central spreading potential).

Equation (14) presents a calculational problem as com-
plex as that offered by the full b,-hole calculations. Rath-
er than attempting to diagonalize Gas, we calculate with
a 5 propagator in the local density approximation. As
stated earlier, this approximation will be tested in '60 and
should be at least as good for heavy nuclei where the
propagation distance of a free 5 ( & 1 fm) is small com-
pared to nuclear density variation parameters. %ith this
approximation and using the eigenstates of a shell-model
Hamiltonian for nucleons, we have

Ua(k', k)=&k', A,;0 i Up, p, i
k, A,;0&

= g Jf, , g (Np) I (X')K'S+T"+&X-'~G,(p+k, p+k;E}~X-'&
(2n ) (2n )'

(occ)

h(E )K.ST QN(p),

where k and k designate the initial and final pion momenta in the pion-nucleus c.m. system, K and K are the relative
n Nmomenta, -and A, is the pion charge index. The n.N~E transition operator VDz has the form

0

VDp —— h(E )K.ST
MN

with the coupling constant G and a vertex function of the form

h(E )=[1+(K/a) ]

S and T are the spin and isospin transition operators to the isobar state. The coupling constant and the cutoff parame-
ter a were fixed by a fit to the experimental n N(3,3) phase shifts over the intermediate energy range. The values used in
this work are G =421 and a=294 MeV/c (see Ref. 14 for details of the procedure). The dL-hole propagator is
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Ga(P', P;E)=(2w) 5 (P' —P) ID[E H—a(p)] —Xp g;(E p) —X, ,(Ep)] (19)

where p is the local nuclear matter density. As in the 5-hole calculations, the resonance denominator is linearized in Ha,

D ( E H—a )=&(E) y—(E)Ha,
BD(E)

BE

Ha —— + Va(p)+ Va(p}+eJ,(p+k)' C

(20)

(21)

(22)

where el is the hole energy. The relative momenta K and K' are approximated in the vertex functions only as

K =(Mk a)k p—)/(M+a)k )

=Mk/(M +cok ),
with cok ——[m ~+k ]'~ . Writing the nucleon wave functions as

OJ(P)=AJ(P)l 2~J&12'&

we obtain for a closed-shell nucleus

(23)

(24)

iX~(p)
~

r-r'
~

Ua(k', k)=C(k, k') g (1+ANN) g J drdr'pJ'(r')e (r)elk'I (25)

where rN —+ —,
'

( ———,
'

) for protons (neutrons) and
'2

C(k, k')= —— K K'h(K )h(K' ), (26)
N

with a complex wave number for the isobar

2M'
Ka(p) = E E,+i ——Xp,~—(E,p) —X,p,(E,p)

y E

iX~ (
r-r') sX'~

] r—r'[
e =e 1+i (F eJ)

~

r——r'
~

Eg
(31)

g PJ(r')PJ(r) = ,
'
p(r, r')— (32)

This approximation is found to be very accurate
throughout the resonance region. We can now perform
the summation over nucleon states. We have two kinds of
terms

~[eJ+V.(p)+ V:(p}] (27)
and

The optical potential has all the density dependent terms
confined to the isobar propagator. Considering that the
isobar propagates from r to r', the local density approxi-
mation is most naturally introduced by writing

g eJpJ'(r')pJ (r) = ,' [H (r)+H(r'—)]p—(r,r'),
J

where H (r) is the single-particle Hamiltonian

(33)

r+r'
P=P (28)

H(r)= — V, + VN(r) (34)

The density dependence of the various medium correc-
tions will be discussed later.

Were it not for the dependence of Ka on the hole ener-

gy, the summation in Eq. (25) could be performed to give
the nuclear density matrix. However, the propagator is
cut off rapidly in

~
r—r'

~

so that the variation in hole en-
ergies around a mean can be approximated. Consequent-
ly, we linearize about the weighted average of occupied
energy levels,

p(r, r') =p(Z)j,(kF(Z}s),

with

(35)

2R=r+r', s=r —r',
(36)

and p(r, r') is the single-particle density matrix. It has a
convenient local density approximation'

OCC

Ka ——[Ka+2M'(e ej )]'~2=Kg+ (e—e.),—
Eg

(29)

(30)

kp(R)= p(R) .
2

The form given by Eq. (35) is known to be good for medi-
um and heavy nuclei and for S & 1 fm. It is in the same
spirit as the approximations we have made so far.

After a last partial wave reduction, we write the final
result as
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Us, (k', k;E)= —(2n ) 2to» g VL (k', k;E)Yt'st{k') Ytst(k),
IM

iX&(R)s

Vt (k', k;E)=C(k', k) g (1+A~N) f dR R' f ds s' iMgs
1+ — [e+HN(R s)] pN(R)J'i(kF(R)s)

Ks(R)

(38)

+1
X p pI'I p jo qZ jo Ps, (39)

Mg
C(k', k)= —— i KK'h(K )it(K' ),

9 y(E)tok MN

P = —,
'

I
k+k' I, q =

I
k —k' I, p =k k ', (40b)

HN(R, S)= — Vs — Un+ V[(R + —,S )'i ] .
2MN SMN

7l'+- ' 0—LDA in 0
~ cL h o I e

(o)

X
~ 20-

~ 15
N

)0-

In writing HN(R, s), an approximation has been made to
the potential which is exact for an oscillator and very ac-
curate for a Woods-Saxon shape. Equations (38)—(41) are
the main results to be used in numerical calculations. For
N+Z nuclei, both Ks(R) and kF(R) in Eq. (39) depend
upon the nucleon label N=p, n in a manner defined below.

We employ the piprr code to solve the momentum-space
Schrodinger equation. We now discuss the form of the 5
self-energy corrections to be used in Eq. (27).

Puttli block-ing effect

There is a substantial reduction of the free b, width in
nuclei, as the intermediate decay will be partly blocked by
the nucleons in occupied states. The microscopic calcula-
tion of this effect in a finite nucleus is rather complicated.
Instead, we use a nuclear matter calculation' which is
fairly simple and suitable for use in a local density ap-
proximation to the b, propagator.

With a 6 free-space self-energy given by

,MN l dq q'h'(q')
0 E (p17) K —q + le]

(42)

K = [(E—MN) —m ],MN 2 2

25—

0e 20-
X

(b)
LDA in Pb

t62 MeY

the Pauli correction is determined by restricting the in-
tegral to intermediate nucleon states above the Fermi lev-
el. Following Ref. 14, the result for a spin-saturated nu-
cleus is

aMN
Xp ~ (E)= —G [28(kF p) Wo(kF p0—)—

4m E

+ WO{kF+p
I
kF p I

)

Wi(kF+P I kF —P I
)]—

W„{B,A)= f dqq z z
lt(q)

E —q +ig
p'+q' kF'—

2Pq
(43)

&0

FIG. 1. Imaginary part of the Pauli self-energy using a local
density foI ky. (a) ' 0 at 114, 163, and 240 Me+. The circles
represent 6-h values of Ref. 1 for 163 MeV plotted at r =I./k.
(b) 208Pb at 162 MeV for 5++ and 5

where P is the 5 momentum. Analytic expressions for
the W„are given in Ref. 14. The imaginary part of Xp ~&

is shown in Fig. 1{a)for ' 0 using a local density approxi-
mation for kF. The free half-width is reduced by typical-
ly 30% in the nuclear interior. The real part of Xp,~;
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shifts the resonance energy upward by several MeV. For
comparison with the b-hole results, we show the partial
wave doorway state expectation values for the Pauli-
blocking term obtained in the 6-hole model, ' with the r
dependence obtained by the crude association kr -I.. The
local density approximation is clearly quite reasonable for
the peripheral and semiperipheral partial waves; the I. =0
partial wave in ' 0 has substantially more blocking than
is given by the local density expression.

For application to heavy nuclei, where N+Z, we define
separate neutron and proton Fermi momenta according to
the local density. The local density approximation to the
Pauli reduction of b, ++ and 5 widths in 2osPb is shown
in Fig. 1(b). The 5++ has a width —10 MeV greater in
the center of the nucleus.

2. Delta spreading interaction

In the isobar-hole language, the spreading interaction
arises from coupling to multi-particle-hole states and, in
particular, to states reached by pion absorption via the
mechanism mNN~b, N-+NN. The very large pion ab-
sorption cross sections observed in the resonance region
indicate the importance of this additional damping mech-
anism. The microscopic calculation of such Q-space cou-
plings being too complicated, one uses a phenomenologi-
cal spreading potential which is local and dependent on
nuclear density,

Xspp( E r ) Yc (44)
p0

Through a fit to total and total elastic cross sections, b, -h
calculations of n-' 0 scattering give

Yc ——(20 —42i) MeV . (45)

For applications to E&Z nuclei, a model for the iso-
spin dependence of the spreading potential is required. A
simple model can be formulated by assuming the domi-
nance of pion annihilation as the leading Q-space process.
As the annihilation takes place preferentially on isoscalar
n-p pairs, a reasonable isospin dependence is given by

2p,„(r)
(Xp, ), =Yc (46)

where rN is the isospin index for the nucleon struck by the
pion and p(0) is the matter density. This simple model
gains support from the cross section ratios for inclusive
pion scattering from the isotopic pair of ' ' 0 nuclei. "
This isospin dependence of the spreading potential rein-
forces the tendency of the Pauli effect in broadening the
b, ++ more than in b, in heavy nuclei.

A b, spin-orbit potential of the form

C IS
~spr =~spr+ ~spr ~

(47)

X, ,(r) = Yis 2Lz'Xs
1 dp
r dr

was found to be necessary2 in order to have a smooth en-

ergy dependence of X,p,. We include this term in our op-
tical potential as an L-dependent shift of the resonance
denominator given by the doorway state expectation value

Xi~s=~Do(k)
~ Xspr ~Do(k)} ~ (48)

where
~
Do (k) ) is the partial wave projection of Eq. (13).

Specifically, we use the static-vertex form given in Ref. 3,

«. ~pY.',k -«Y., ) +, «Y., ) ~4. &
, d L(L+1)

I. r 2TXls= -5 (49)

20

15-
7T — 0
)63 MeY

20

)62 Me V

(b)

A

Xh

0
CL

~ fh

5
I

V

~ 0—10

)0

O

cL o
~ 40

I

V
5 P

a I i I i I i I ) l s I i I

2 4 6 8 lO t2 14 16

FIG. 2. The doorway expectation value of the negative of the 6 spin-orbit potential. (a) ' 0 calculation at 163 MeV. (b) Pb at
162 MeV.
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The resulting I. dependence is shown in Fig. 2. The spin-
orbit term is repulsive for the central partial waves and at-
tractive for the peripheral ones. Although it is not large
in magnitude, the spin-orbit potential has an appreciable
effect on the shapes of minima in the differential cross
section.

III. APPLICATIONS

A. Pion-nucleus elastic scattering

400- ~ ~ ''h
~ ~ t ~

~ 0 ~ g ' 'CL ~ ~ ~ elastic

/
2oo — T

,I/0
o Ioo

l

$50
l

200
T (MeV)

I

250

FIG. 3. ~+-' 0 total and total elastic cross sections. Our
wark is shown by the dashed hne and the PIPIT result by the
dotted line. The data are fram Refs. 16 and 17.

The optical potential developed in the preceding section
has been used to calculate pion elastic scattering from the
closed shell nuclei ' 0 and Ospb at pion energies ranging
from 50 to 240 MeV, thus covering the energy region cen-
tered around the resonance. The results are compared
both to 5-hole calculations for ' 0 and to a standard
first-order optical potential calculation, namely PIPIT.
PIPIT is a momentum-space first-order optical potential
code that uses a nonlocal, separable n N t matrix extended
off-shell via the solution of the inverse scattering problem.
The nuclear single particle densities and energies were sys-
tematically taken from the density-dependent Hartree-
Fock results of Ref. 15.

Vz,z ——( —10—4i) MeV fm (50)

where p is the nuclear density and Pz (r)=jz (kr) is the
free pion wave function with angular momentum L. The
fit to the n—+-'sO elastic scattering angular distribution
gave

1. m. +-~~0 scattering

The study of n-' 0 is particularly important since it al-
lows us to establish contact with the available b, -h calcu-
lations. The total and total elastic cross sections are
shown in Fig. 3. The spreading potential reduces the

10

~+ 110

50 MeV

10' .

~+ &eO

79 MeV

F
10

b

~ ~ ~ ~
~ I

L

10
E

100

10

10
40 60 80 100

8 (deg)

'~

l I I I t I I l

30 50 70 90 110
8 tdeg)

150

FIG. 4. m+-' 0 elastic differential cross sections at (a) SO, (b) 79, (c) 114„(d) 163, and (e) 240 MeV. Key: this work, solid line;
PIPIT, dashed line; this work without an S-wave repulsive potential, dotted line. The data are from Ref. 17.
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FIG. 4. (Continued).

cross section substantially from that predicted by the
first-order optical potential ptpIT, in agreement with the
data. ' We stress that the strength of the central spread-
ing potential, (20—42 i) MeV, is taken to be the same as
that deduced in the 6-hole calculations. The spreading
potential reduces the resonant cross section by decreasing
the optical potential strength [see Eq. (2)].

The elastic differential cross sections are shown in Fig.

4 for pion kinetic energies from 50 to 240 MeV. The data
are from Ref. 17. The predictions are considerably better
than are those of pIpIT. The forward cross sections are
reproduced quite well and the location of diffraction
structure is generally accurate. The phenomenological S-
wa~e repulsion, Eq. (15) with 80 ——12 MeV, plays an im-
portant role at the lower energies. The large angle cross
sections are not reproduced well. This is also a systematic
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FIG. 5. Argand diagrams for m+-' 0 scattering at (a) 79, (b) 114, (c} 163, and (d) 240 MeV. Key: this work, solid line; b-h calcu-
lation of Ref. 1, dashed line; experimental At of Ref. 1, dot-dashed line; PIPIT, dotted line; this work without S-wave potential, double
dot-dashed line.

shortcoming of the 6-hole calculations.
Although the comparison vnth data is satisfactory,

comparison with the 6-hole results' is important for es-
tablishing the validity of our approximations. We com-
pare the partial wave amplitudes in the Argand plots of
Fig. 5. The real and imaginary parts of the partial wave
amplitudes

2/51
pie —1

are shown as trajectories in I.. %e also show the partial
wave amplitudes for pIPIT and for a phase shift fit to the
data. ' Clearly, our optical potential results are much
closer to the 8-hole and experimental results than to the
Ptprr results. This is particularly true for the semiperi-
pheral and peripheral partial waves, which are especially
important for determining the cross section and are influ-
enced primarily by the binding and propagation effects.
The shortcomings of our approach appear in the central
partial waves (e.g., recall the discussion of Pauli blocking).
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Nevertheless, the results are clearly sufficiently encourag-
ing to warrant further investigation.

Elastic n—+- Pb results are presented in Fig. 6 for two
energies. The arameters used are identical to those em-

ployed in the ' 0 calculations. The resonance calculations
(including accurate wave functions) required about eight
minutes and forty minutes of VAX 11/782 CPU time for
the ' 0 and Pb cases, respectively. The data are from
Ref. 18. Most of the observations made for the ' 0 nu-
cleus can be repeated here. The angular structure of the
cross sections up to the second minimum and the forward
elastic peak are well reproduced. It has not been neces-
sary to adjust the c.m. collision energy or the nuclear den-
sity parameters unrealistically as has been done in applica-
tions of pter in the literature. The same parameters of
the isobar dynamics were used in m scattering and the

agreement is as good as in the m. + case, indicating the va-

lidity of the isospin dependence chosen for the medium
corrections. The delta spin-orbit potential was found to
have some effect at large angles.

The Argand plots for Pb at resonance, Fig. 7, display
a comparison between U~ and PIPIT results. The peri-
pheral partial waves disagree substantially in the two cal-
culations, indicating the failure of the static approxima-
tion. In the central partial waves, the complexity of the
dynamics involved is indicated, but the dominance of
strong absorption provides comparatively little leverage
on the angular distributions. Nevertheless we can con-
clude that the optical potential based on b, dynamics and
using the same spreading potential as determined for '60
provides a good description of scattering on 20sPb.
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8. Pion wave functions

In view of the applications to various pion-nucleus in-
elastic reactions, it is instructive to look at the pion wave
functions as distorted by the optical potential. A con-
venient quantity to look at is the pion density at fixed im-
pact parameter,

p(+)(b z)
~

y(+)(b ~)
~

2

0.50
+
Q.

0.20

~+ 104Pb
b=5fm

\

I a

0
z (fm)

=
~
g(2L+1)Ur(kor)PL(cos8)

~
(52)

The incident probability density is normalized to unity
and b is the impact parameter. Figure 8 displays p'+' for

FIG. 9. m+ density in Pb nucleus at 162 MeV. Impact pa-
rameter b=2 fm (a) and b =6 fm (b). Key: this work, solid
Hne; PIPIT, dashed Hne; o Pb density profile, dotted line.
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N 0.60—

0.20—

FIG. 10. Comparison of m+ (solid line) and m (dashed line)

densities in ~Pb at 162 MeV and for b =6 fm. Dotted line:
Pb density profile.

an impact parameter b =1 fm at T =114 and 163 MeV
in comparison with the PIPIT results. There is a sizable
difference in the damping caused by the two optical po-
tentials. Due to the combined effect of the spreading po-
tential and the isobar propagation, the nuclear medium is
less absorptive than the static theories predict. We also
observe an interference effect on the back side of the nu-
cleus (i.e., z ~0}, indicating that the eikonal approxima-
tion is not adequate. The optical potential is attractive
below resonance and provides some focusing of the pions
on the back side. For reference, the matter density of the
target nucleus is also plotted at the appropriate impact pa-
rameter, where the matter density is normahzed to unity
at the origin r =(z,b) =0 (note that the ' 0 density is sub-
stantially larger than the central value at b =1 fm}. Even
near resonance, the pion wave function is found to
penetrate rather deeply into the nucleus, particularly with
the inclusion of b, dynamics.

The mr+ densities near resonance are shown in Fig. 9 for
20spb for a central and for a peripheral impact parameter.
The results are qualitatively similar to those seen in Fig.
8(b). The comparison of n densitie—s, shown in Fig. 10,
has the expected behavior. The m density is enhanced
relative to the m+ well out in the surface region because of
the Coulomb attraction. Inside the nucleus, the n densi-
ty is more strongly damped because of the strong n

neutron interaction.

T / ——Vp D[D(E Ha) —W —X—pa/; —X,p, ] 'Vj)r, (53)
0

where the yN-5 vertex in the b, rest frame is given by

VDr gr——E(k, A)kX, ST

k is the photon momentum and e designates the photon
polarization vector. The coupling constant g„ is chosen
to fit the experimental Mi+( —', ) multipole at resonance
and has a value 0.165 fm. The other quantities were de-
fined in Sec. II.

This expression is first written in a more conventional
form, making the distortion operator explicit. By ex-
panding the denominator in terms of W and regrouping,
we have

X [D(E—Ha ) —Xp,~—X,i,] (55)

Tp p =Vp n[D(E —Ha) W —X,p —X—p ~;] VDp

(56)

The first bracket in Eq. (55) generates the pion distorted
waves. The remaining part is the production operator.
Using the asymptotic plane waves for pion and photon,
one writes

C. Coherent m photoproduction

The distorted pion wave functions are central in-
gredients in distorted wave calculations of inelastic pro-
cesses. %e present one simple application here, namely,
coherent m photoproduction through the 6 doorway. As
has been discussed in considerable detail within the 6-hole
approach, this reaction is a good one for demonstrating
the importance of including b, dynamics consistently in
the transition operator as well as in the pion wave func-
tion.

We first give a brief derivation of the n 0

photoproduction cross section as used in this work. The
coherent photoproduction amplitude in the isobar-hole
picture is defined as

dk'
&q;0IT„~1k~'0&'=J,&qlfl' "Ik'&&k', ofVp, o[D« Ha) Xpuli —X.„]—'VD, lk~;0& (57)

The differential cross section is obtained by averaging
over the photon polarization directions

l &q0l T ~ fkA0& fi. (58)
A. =+1

One of the main ingredients of this calculation, namely
the pion distorted wave, was examined in the last section.
Here, we stress that, as seen from Eq. (55), the same medi-
um corrections that were used in the distortion operator
are also present in the production operator. A consistent
treatment of both is important. This point is illustrated in

Fig. 11, ~here the coherent ~ photoproduction cross sec-
tions are calculated at various levels of approximation.
The curve labeled IA (impulse approximation) has only
plane waves and no medium corrections to the production
operator. That labeled D%'o is the standard D%IA result
in which the pion wave function is distorted by an optical
potential in which no medium corrections were included
and the production operator remains unchanged. The
curve labeled DWi includes the pion wave function dis-
torted by the full optical potential with b, dynamics but
with the production operator still unchanged. Finally, the
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with pion kinetic energy 190 MeV. Labeling: impu1se approxi-
mation (IA), distortion by a first-order optical potential (DWO),
distortion by the full optical potential (DW~), and full distortion
with medium corrections to the production operator (DWf ).

full calculation with both the distorted wave and the pro-
duction operator including medium corrections is denoted
DWf. Naturally, the impulse approximation result (IA) is
much larger than the others since the pion wave function
is undamped. Near the resonance (190 MeV), the full op-
tical potential leads to less attenuation of the pion wave
function than does the first order static potential, and
thus the DWi cross section is larger than the DWc one.
However, this increase is compensated by the damping of
the production operator near resonance due to medium
corrections. Such effects have been discussed in the con-
text of 5-hole calculations and found to be important in

reproducing the available data on light nuclei. '

IV. CONCLUDING REMARKS

We constructed a pion optical potential which incorpo-
rates 5 dynamics. Our approach is basically that of the
5-hole formalism as developed and applied in Refs. 1—4.
That is, the "first order" effect of b, propagation, binding,
and Pauli blocking, all of which were found to be impor-
tant in the 4-hole studies, are incorporated "microscopi-
cally, " while the "higher order" effect of pion annihila-
tion is represented through a 6 spreading interaction.
This phenomenology provides a rather different frame-
work from that given by standard second order parame-
trizations. This is very evident from the enhanced pion
density in the nucleus at resonance resulting from the in-
clusion of h, dynamics.

We greatly simplified the problem by treating b, propa-
gation, Pauli blocking, and the nuclear density matrix in
local density approximation. All of these approximations
depend on the fact that the 5 propagates only a short dis-
tance before decay. We tested our model against the full
b-hole calculations for ir-' 0 scattering and found good
agramunt, except in the most central partial waves. The
application to ir+-- Pb elastic scattering revealed good
agreement with the data with the same mean field charac-
terization of 5-nucleus interactions as that extracted from
the analyses of elastic scattering on light nuclei.

Freedman et al. also constructed an optical potential
based upon the earlier 5-hole work. However, in the ab-
sence of a local density approximation for b, propagation
and for the nuclear density matrix, calculations with their
optical potential retain much of the computational com-
plexity involved in the full b-hole calculations. We have
aimed explicitly at providing a fiexible tool for applica-
tion to a variety of reactions. Operationally, the code is a
modified version of PIPIT,s with the resonant piece sub-

stantially changed and with an S-wave background poten-
tial added. The inputs for a calculation are just the pro-
ton and neutron distributions and the b,-nucleus interac-
tion parameters. Thus, in addition to providing a vehicle
for studying the role of 5 dynamics, the optical potential
developed here may be of broad use in the analysis of
pron-nucleus dsta.
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