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Induced nuclear fission is described as a transport process of the fission degree of freedom over
the fission barrier. The lifetime of the event is defined in terms of the probability of finding the nu-

clear system in the potential mell corresponding to the ground-state deformation. This definition ap-
pears as a natural generalization to nonstationary transport processes of the usual expression for the
lifetime. Using the conservation law for the current we relate the lifetime to the time-integrated es-

cape rate across the collective potential barrier. %"e envisage a schematic model in which the escape
rate attains a constant value only after a certain transient time ~. In this case we show that the life-

time evaluated at the saddle point of the collective potential is made up of two contributions: one—
I/I f '—identified as the quasistationary transition-state expression of the statistical model and one

proportional to v, hence directly related to the transient behavior of the transport process. As long
as A/I"f"'~&~, fission can weB be described as a quasistationary transport phenomenon. For
A/I f Q(T which occurs for excitation energies of a few hundreds of MeV and small fission bar-

riers, the fission process becomes a transient phenomenon of duration of the order of ~. For a single
collective variable and its canonically conjugate momentum, we study the transient time ~ as a func-
tion of the nuclear friction constant P. Thereby we extend and complete the findings of earlier stud-

ies. For a specific system of mass A =248, we calculate the lifetime at the saddle point of the collec-
tive potential and find results in keeping with our schematic model. We assume further that the col-
lective potential beyond the saddle point can be correctly represented by an inverted parabola and we

obtain an analytical expression for the current evaluated at the scission point. %e find that this
current can be expressed reliably as the current evaluated at the saddle point but delayed by a con-
stant time 7l which we obtain and interpret. Thereby we bring support to the conjectures made in

several studies of fissioning systems within the same framework. As a result we also extend trivially
the schematic model to the escape rate evaluated at the scission point and obtain the lifetime
evaluated at scission as the sum of the lifetime evaluated at the saddle point and of the time delay

T}~

I. INTRODUCTION

Dissipative processes in atomic nuclei have been ob-
served for a long time, primarily in nuclear fission. The
deep inelastic heavy-ion reactions provide a large variety
of nuclear dissipative systems often analyzed within the
framework of transport theories. In such descriptions
dissipation, i.e., the irreversible flow of energy between
various degrees of freedom of the system, is modeled in
terms of a nuclear friction tensor which may be deter-
mined either from microscopic considerations or entirely
phenomenologically. However, in deep inelastic col-
lisions the nuclear matter overlap amounts to 10—20% of
the total volume of the system and the information ob-
tained here from about the nuclear friction tensor con-
cerns only a limited surface region of the nuclei. Yet the
need for understanding the mechanism of nuclear friction
deep in the nuclear interior has grown since the recent
production ' of highly excited composite nuclear systems.
At such high excitation energies the standard statistical
model predicts lifetimes seemingly inconsistent with ob-
servations. However, it is recognized ' that the fission

widths derived in this approach are obtained from phase-
space arguments only with no consideration for the effects
of nuclear friction. Hence the important question arises:
how precisely are the lifetimes at different excitation ener-
gies affected by nuclear friction? To study this problem a
transport description of fission is certainly useful as it in-
cludes dynamical features not contained in the statistical
model.

The domain of applicability of transport theories has
been extensively discussed in the case of deep inelastic
heavy-ion reactions. More recently it was found that
transport theories were also legitimate for describing the
competitive decay of composite nuclear systems. Here we
take for granted the applicability of a transport approach
to the fission process and we want to focus on the general
definition and properties of the lifetime in this frame-
work. In Sec. II we define this lifetime independently of
any specific form of the transport equation and in terms
of the probability of finding the composite system in a
certain initial state. The conservation law for the current
density enables one to relate this lifetime to the escape
rate. We show further how this relation eventually leads
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to the usual expression of the lifetime in terms of the sta-
tistical model decay width. As the probability current
over the fission barrier rises smoothly from zero at time
t =0 to a quasistationary value, the escape rate according-
ly reaches a constant value over a characteristic time, the
transient time r Using a schematic model for the time
dependence of the escape rate, it is shown simply how the
lifetime evaluated at the saddle point of the collective po-
tential depends upon the transient time r and upon the
quasistationary value reached by the escape rate. Thereby
we exhibit clearly the dominant role of transients at high
excitation energies ( & 100 MeV) and accordingly why in
such cases the lifetime of fission is determined by ~. The
precise value of r depends strongly upon the dissipation
tensor' and one may thus expect novel information about
nuclear friction from the studies of lifetimes and competi-
tive decays of systems produced in this domain of excita-
tion energy.

The essential quantity in the present analysis of the life-
time is the time dependent escape rate. In Sec. III we con-
sider first its evaluation at the saddle point of the collec-
tive potential. We use the very same simple one-
dimensional model of an earlier study' which we com-
plete and extend. The novel features concern the deriva-
tion of an approximate analytical expression for the es-
cape rate which takes into account the existing anharmon-
icities of the collective potential as well as the overall un-
derdamped or overdamped motion of the fissioning sys-
tem along the collective coordinate. These analytic ex-
pressions are found to reproduce very reliably the time
dependent escape rates and the transient times r obtained
directly from a numerical salution of the transport equa-
tion. From these expressions we calculate the lifetime Hj
at the saddle point and study the ratio rlvf as a function
of the strength P of the coupling of the collective degrees
of freedom to a heat bath of given temperature. The
schematic model of Sec. II enables one to interpret simply
the variations of this ratio with P.

In Sec. IV we turn to the study of the modifications of
the escape rates and lifetimes in going from the saddle
point to the scission point. We assume that the collective
potential beyond the saddle point can be correctly
modeled as an inverted parabola. %e derive the probabili-
ty of finding the fissioning system at any point beyond the
saddle point in terms of the equivalent probability at the
saddle point. The time-dependent flux at scission is ob-
tained and we show that it can be expressed simply as the
time dependent flux at the saddle point delayed by a con-
stant time which we derive and interpret. Finally the
value of the lifetime evaluated at the scission point is dis-
cussed. For a quasistationary situation of probability flow
across the potential barrier it appears essentially as the
sum of three contributions: one which relates to the decay
width of the statistical model and two directly connected
to the dynamics of the system on its way to the saddle
point and beyond. Finally Sec. V contains the con-
clusions.

We stress that our findings related to the lifetime of the
fission process are generic of transport approaches to this
phenomenon and mostly independent of the simplifica-
tions we have introduced. They serve only to give quanti-

tative estimates of the various contributions to this life-
time within a simple one-dimensional model often used in
the analysis of experimental data.

II. GENERAL DEFINITION OF THE LIFETIME

Transport theories assume the existence of a heat bath
formed by a certain collection of nucroscopic variables
that couple to the collective degrees of freedom of the sys-
tem. In our case the collective variables are the fission
modes. The domain of applicability of a transport
description in terms of time scales and excitation energy
of the fissioning system has been previously discussed. '0
We assume in the present paper that the necessary condi-
tions for the separation between intrinsic and collective
coordinates are met.

We consider the fission variables tX, J, i = 1 n, a—s clas-
sical variables with associated momenta Ip;) and a time
variable t. The time evolution of the decaying composite
system is then described through the propagation in phase
space IX;,p; I of the distribution function P(X;,p;;t)
which describes the probability of finding the system in
the domain of the phase space limited by the hypershells
IXt+~;,p;++;I and IX;,p;J. In the absence of the
coupling to the heat bath the collective variables obey
classical equations af motion and the distribution function
satisfies the Liouville equation. The driving force is relat-
ed to the collective potential which presents a barrier that
the system must overcome to undergo fission.

Let X;, X;, and X,' be, respectively, the pasitions of
the saddle point, of the scission point, and of the
minimum in the potential pocket corresponding to ground
state deformatian.

The probability that the system is to the left of the scis-
sion point is given by

II(X;;t)= f dX~ f dp;P(X;,p;;t) . (2.1)

The value of rf is thus determined by the time evolu-
tion of the probability II(X;;t) defined in Eq. (2.1). Quite
generally and independently of the specific form of the
transport equation obeyed by P(X;,p;;t) the conservation
of probability implies the following continuity equation:

(2.3)

(2.3')

Here J(X;;t} is the current density operator at the scis-
sion point and S is the (n —1}-dimensional hyperplane
through the point X; with a normal vector in the direc-
tion of J. The leakage of probability through the hyper-
plane S is measured by the escape rate Af (t) obtained by

At time t =0 we assume that the composite system is
formed in the potential pocket at X =X and II(X;;t=0}
may be normalized to one.

We now define the lifetime of the system as the time
1 =Tf at which II(X;;t) has been reduced to e ' of its in-
itial value at t =0:

(2.2)
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AJ"(r)= I—I '(X, ;r)dll(X;";r)ICh,

=II '{X;";r)I(X;";r).

(2.4)

(2.4')

dividing the total current I by the probability II(X;;r): g)(tl
(10 sec I

Relating (2.2) and (2.4) the lifetime of the process is such
that

T

y $ $=1. (2.5)

We shall qualify the process as quasistationary if after a
certain time r (the transient time), A~ (t) becomes indepen-
dent of time. In the statistical model one generally con-
siders the extreme case of a transient time which is so
small that the rate Ay(t) is virtuaBy a constant AJ over
the whole time interval (0, tto }and one obtains,

and we express r~ in terms of a decay width I'f as

stat (gsc) —i g~I sc

(2.6)

(2.7)

A&'(r) = r8(~ r)+8(r —r}A~' . — (2.8)

Using (2.5) one finds

ry =(A j")

+ tr. (2.9)

Although oversimplified this schematic model is useful
to show that the transient behavior may completely modi-
fy the usual expression of the lifetime in cases where
r/2&v~ '. In the statistical model' I & increases very rap-
idly with excitation energy. It appears that at excitation
energies above a few hundreds of MeV the quasistationary
value I I loses its usual physical significance ' ' as fis-
sion becomes altogether a transient phenomenon of dura-
tion of the order of v.

According to our definition Eq. (2.1}of the lifetime it is
clear that a transport approach of induced nuclear fission
incorporates transient features not contained in the statist-
ical'"model description. Thus we may expect novel infor-
mation about nuclear friction to emerge from the study of
the nonquasistationary behavior of the competitive decay
of highly excited composite nuclei. Such a possibility has
been recently shown and quantitatively implemented in

Relation (2.2) appears therefore as the natural generaliza-
tion to nonquasistationary processes of the usual defini-
tion of the lifetime. We note that for a quasistationary
process as defined above neither the probability (2.1) nor
the current density J(Xt,'t) are individually time indepen-
dent.

The crucial quantities which govern the time evolution
of the current across the hyperplane S are the excitation
energy of the system, the height of the barrier, and the
dissipation and inertia tensors. I.et us assume that the
conditions in terms of these quantities are such that a
quasistationary regime is established after a finite time r
Schematically the situation may be represented as in Fig.
1. It corresponds to

t(10 se(: )
-21

FIG. 1. Schematic sketch of the time dependence of the es-

cape rate as defined in Eq. (2.4). ~ is the transient time.

the specific case of the decay of the nucleus ' Er formed
in the reaction ' 0+' Nd at an incident energy of 207
MeV.

III. THE LIFETIME EVALUATED AT
THE SADDLE FOINT IN

A ONE-DIMENSIONAL DIFFUSION MODEL

%'e consider the most simple case where the transport
equation obeyed by the distribution function reduces to a
Fokker-Planck equation (FPE) in a single variable X and
its associated momentum p. The strength of the coupling
to the heat bath is thus measured in terms of the ratio p
of the friction coefficient to the inertia along the fission
coordinate. It is measured in units of time and con-
sidered to be a parameter independent of the collective
coordinate. It is probably an oversimplification which has
to be tested in specific cases like in Ref. 11.

The quantitative numerical studies of the time depen-
dence of the escape rate at the saddle point of the collec-
tive potential can be found in Refs. 9, 10, 12, and 13. We
extend here the derivation of the approximate analytical
expressions for A~ (t) presented in Ref. 10. The new
developments concern the effect of the anharmonicities of
the collective potential on the escape rate and the deriva-
tion of a general expression for this rate valid in the re-
gime of overdamping. This regime is characterized by
p»2nii where mi is the frequency of the harmonic oscil-
lator osculating the collective potential at its first
minimum. The overdamped case has been already studied
in Ref. 12 with, however, two important restrictions. On
the one hand the fission potential used did not exactly
correspond to a realistic physical situation and on the oth-
er hand there is no simple way of telling how the results
of a calculation will change with the nuclear temperature
T if the potential is kept fixed. The approximate analytic
expression we derive for the time dependent rate in the
overdamped situation is valid for any potential shape
presenting a saddle point and thereby allows us to com-
plete the investigations of Ref. 12.

A. Classical consideration for
the existence of a quasistationarJJ regime

Even for temperatures of the heat bath which are small
in comparison to the height Ey of the fission barrier the
physical effect of the diffusion process is to lead the com-
posite nucleus to overcome the potential barrier and then
to undergo fission. However, qualitatively we expect the
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time scales for escape over the barrier to be very different
according to whether or not there is classically enough ki-
netic energy Ex in the collective motion along the fission
coordinate to overcome the effect of friction and of the
potential barrier of height Ey.

Let Ei be the energy lost due to the action of the fric-
tion force up to the time to of closest approach to the sad-
dle point. Thus the composite nucleus is classically
trapped in the potential pocket to the left of the barrier if
the following inequality holds:

Ek &Ef+ IEloss I
(3.1)

The distribution function P(X,P;t) is centered around
the mean value X of X and X obeys essentially a classical
equation of motion in the collective potential. If condi-
tion (3.1) is fulfilled we expect that the passage over the
barrier will take place by diffusion only and thereby be
dominantly a quasistationary process. If in relation (3.1)
the converse inequality holds the process of diffusion ac-
celerates an inevitable passage over the barrier and the
transient behavior may now dominate.

Let X be the main fission coordinate in the sense of
Ref. 14. For a simple estimate of relation (3.1) in terms of
the nuclear temperature and reduced dissipation P we may
assume that the initial kinetic energy at time t =0 is given
by T. Thus

dX
dt

1/2
2,T

(3.2)

where )M, is the reduced mass of the composite system. For
later times, the solution of the classical equation of
motion taking into account the presence of the friction
force F= pP(dX—/dt) gives in general, '

1/2
dX 2T Pt/2f (t)— (3.3)

(3.4)

Taking for f(t} the expression valid for underdamped

Here f(t) is oscillatory or not according to whether the
motion in the collective potential is underdamped or over-
damped. The escape over the potential barrier takes place
only if the coordinate X(t) reaches the saddle point. This
point must be reached the latest at the first maximum of
X(t), for if it does not the saddle point will never be
reached again due to the damping of the motion. In the
case of underdamped motion the time to to reach the first
maximum is about —,

' of the pseudoperiod 2nco, ' with
co„=coi—P /4 where cubi is the frequency of the harmonic
oscillator osculating the collective potential at its
minimum. In the converse situation of overdamped
motion it is given by

to-a)', ' tanh '(2a),'/P)

with ~, = —~, . The total energy lost up to time ro reads
2

dx
Ei —pP f d——t

or overdamped motion in the harmonic oscillator of fre-
quency coi we express in both cases the energy lost as

—pto (3.5)Ei, ———T(1—e

The condition (3.1) now reads P & 2' i (underdamping):

T &Ey[1+P~/(2' i )],
P & 2' i (overdamping):

T & E/[1+41 n(P/coi)] .

(3.6)

(3 6')

These qualitative considerations indicate that a quasi-
stationary situation of probability flow may be expected
even for temperatures higher than the height of the bar-
rier. This is due to the presence of the nuclear dissipation
and borne out by the numerical calculations of Sec. III.

For a given fissioning system, E/ itself may decrease'
rapidly with increasing temperature T. The precise
dependence of E/ upon T thus determines the domain in
temperature that leads to a quasistationary diffusion pro-
cess. In the sequel and due to the lack of experimental in-
formation we do not choose any specific model for the
temperature dependence of E~ and restrict our numerical
study to quasistationary situations which, for a given E/,
occur with changing values of T and P compatible with
the condition (3.6} or (3.6'). However, the analytical ex-
pressions we derive below for the escape rate contains Ey
explicitly and are therefore valid for any dependence of
the barrier height upon the temperature. We shall com-
ment on the qualitative changes one may expect in our nu-
merical results when a variation of E~ with temperature is
considered.

B. Approximate analytic expressions
for the time-dependent escape rate

eva1uated at the sadd1e point

Let U(X) be the one-dimensional collective potential
with a minimum at X=Xi and a saddle point at X =Xo
(Xi &Xo). We define (X) by

(X) = J XdX J dpP(X, p;t) . (3.7)

At time t =0, (X) =Xi. If the condition (3.6) or (3.6')
is met, (X) will remain located for later times to the
left of the saddle point although possibly moving towards
the top of the barrier. Hence the escape of probability
over the barrier can only occur through diffusion and a
time-dependent approximate solution of the diffusion
equation may be constructed following a procedure dis-
cussed in Ref. 10. It is modeled after Kramers's deriva-
tion of the stationary decay rate under the same cir-
cumstances. %e show below how to extend the approach
of Ref. 10 to include the effects of the anharmonicities of
the potential as well as those of the overall motion of the
distribution towards the top of the barrier. This particu-
lar motion develops with either increasing temperatures or
shallower potential pockets. It leads to an enhancement
of the escape rate above the final quasistationary value
during an important fraction of the total decay time. The
analytical developments of Ref. 10 did not incorporate
these effects as they assumed (X) to be frozen at its ini-
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tial value Xi. This is a severe limitation which the
present derivation overcomes.

We begin with the same FPE as in Ref. 10. It reads

(saddle point) at X=XO ——0 with U(0)=Ef, e=PT!p.
We distinguish between two liniits, the underdamped and
overdamped cases.

P—(Xp;t)+p P(Xp;t) K—(X) P(X p;t}
at ' * x ' '

ap

=P [pP(x p;t)]+@ P(Xp;t} . (3.8)
Bp

' ' ap'

Here X is the fission variable, p its conjugate momentum
with p =p/p, the velocity, p, the reduced mass;
K(X)=p(dU/dx), where U(X) is the collective potential
with a minimum U(X ~xi }=0 and a local maximum

I

P(Xp;t) =COPO(X p;t)F(X p;t),
and take for Po(X,p; t) an ansatz of the form

(3.9)

The underdamped case

We seek an approximate solution of Eq. (3.8) in the
spirit of Ref. 10 and only emphasize here the point related
to the new developments we introduce. We write the full
solution as

Po(Xp;t}=Coexp— 1 (p —&p)) 2U(X) (p —&p))[dU(X)/dX]
2

'
2 + 2 2 2~ 2

i ~zoz PQ)g 0'g CT&

(3.10)

d&X&

d&p& =—P&p ) —f f K(X)PO{X,p;t}dp dX,
CO CO

d &X')
2&X ) (3.11)

—&Xp &
= &p'& —P&Xp &

Xj XPoXp t p X,

Here trs(t}, oz(t) are time-dependent variances, p(t) a
correlation function, and co+(t) an effective oscillator fre-
quency all determined as explained below. We note that if
the total potential U(X) were the osculating harmonic po-
tential of the first well with co+ ——toi, Po(X,p;t) would
then be the exact solution of Eq. (3.8) with the corre-
sponding variances and correlation functions and thus
F(X,p;t)=1. This observation, supported by numerical
findings, has led the authors of Ref. 10 to retain these
variances, the correlation function, and the oscillator fre-
quency toi in the ansatz (3.10). However, these quantities
may be obtained in a more stringent and realistic way.

The function F(X,p;t) in Eq. (3.9) is determined by in-
serting P(X,p;t) into the FPE (3.8) and assuming that
Po(Xp;t} satisfies this equation. Due to the departure of
U(X) from an harmonic oscillator this requirement can-
not obviously be met in the whole phase space but it re-
quires that the first and second moments of the distribu-
tion Po(X,p;t) satisfy the following set of coupled equa-
tions:

BF 2e= p
Bp 1 —p2

p —&p) P P' BF a'F
0's cox0's o'x Bp Bp

The solution of this equation is constructed by writing F
as a function of the variable g=p —P(t) —a (t)X. This an-
satz is compatible with Eq. {3.12) if a (t) and p(t) fulfill
specific differential equations. The equation satisfied by
the function a (t} has been discussed in Ref. 10 and the
solution obtained therein remains unchanged.

The equation that P(t) inust satisfy reads

we are justified in solving the set of Eq. (3.11) in the
Gaussian approximation with the initial conditions'
&X), 0

——Xi, &p), 0 0, o——z(t =0)=ox, os(t =0)=os,
tox coi, an——d p(t =0)=0. The variances crx(t), tJs(t) and
the correlation function p(t) are then completely deter-
mined. The frequency tox present in the ansatz (3.10) ap-
pears thus as the frequency of the harmonic oscillator
centered at &X) which at time t gives the same variance
trx as the one emerging from the numerical solution of
the set of Eq. (3.11). It is clear now that this procedure
incorporates in the variances all the complex dynamics
that the anharmonicities of the collective potential may
generate.

Inserting the ansatz (3.9) in the FPE Eq. (3.8) and using
the fact that Po(X,p;t) solves this FPE in the Gaussian
approximation we obtain for F(X,p;t} an equation which
is valid around the saddle point Xo ——0 where the locally
osculating harmonic oscillator frequency is coo. It reads

BF aF, BF
at +'ax+" ap

—&p'& = -2P&p'&+2e
dt

—2 f f K(X)pPO(X,p;t)dp dX .
2e 2e&p)

(1—p )os (1—p )os
{3.13)

Here we have denoted the mean value of the quantity z
over the distribution Po(Xp;t) by &z) Since we have as-
sumed that the classical requirements of Eq. (3.6) are met

From the set of Eq. (3.11) it is easy to show that as t~ oo

cd(t) has the asymptotic value e/P=Tlp. Using the
known asymptotic value of a (t) we obtain
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2P&p&,
„p(t~m)=-

(p'/4+ ~0) ' P—l2
(3.14)

If in Eq. (3.11) K {X}derives only from the harmonic os-
cillator osculating the full potential in the first pocket
then (p &, „={p&, c——0. The results and conclusions
of Ref. 10 are retrieved. All the time-dependent coeffi-
cients present in Eq. (3.13) are determined by solving the
set of Eqs. (3.11}.Then Eq. (3.13) can be solved in a stan-

dard way with the initial condition p{t=0)=0. In gen-

eral we find that if the condition (3.6} is fulfilled (p &,

remains small.
The formal analytical solution of Eq. (3.12) permits one

to write the total approximate distribution P(X,p;t}
which is valid up to the saddle point Xo ——0 where it is

t

written as

P (O,p; t) =Co exp (p —(p&)'
2(1 —p )o~p

Ef
{1—p )W~xox2 2 2

C
X

P P[&] g2g/2,de (3.15)

Here Co is a normalization constant and the positive'
quantity C is defined as

C = I(a+p)/e 2/[(—1 p—i)cr~]I . (3.16)

From expression (3.15} the flux and the escape rate at the
saddle point are derived in a straightforward fashion. We
obtain

Af (t)=II '(Xo ——0;t) exp
(p-&p&)'

(1—p )oq
C

2(1—p )o~p C+& C+&

1/2

+ (p &[@(1—pi)oz/2]'r [1+erf(Z)] exp[ Efl[(1 —p)pt0—zox] } . (3.17)

In this relation II(XO ——0;t) is the probability defined in
Eq. {2.1) where we use for P(X,p;t) the approximate dis-
tribution just built up. The error function

Z —.2erf(Z)=(2/~n) I e "du

gime as shown by Kramers.
The observation that in the overdamped situation the

equilibrium in momentum is very rapid is the basic as-
sumption used to derive ' the Smoluchowski equation
from the full FPE (3.8). It reads

has the argument

Z = ICl[2(1 p'}o (C+—e)][ ' ((p &
—P) . (3.18)

Q(X—;t}=P-'
Bt

[E(X)Q(X;t)]

It is important to notice that expression (3.17) is limited
to the underd~mped situation p g 2coi. We next obtain an
expression for the overdamped situation.

In the overdamped situation where p&2ari the FPE
(3.8) implies that the variance cd(t) equilibrates on a time
scale of the order of p ' while crx(t) equilibrates on a
much longer time scale. Thus during the equilibration
process in the moment~ variable the distribution in the
coordinate variable remains unchanged and localized
around its initial mean position at X=XI. This is ex-
pressed in the following ansatz for the full distribution
P(X,p;t) if t &P

P (X,p;t) =CPO(p; t)E (X), (3.19)

where E(X) is the distribution in the X variable at time
t =0. For t & p ' the evolution concerns only the distri-
bution in the X variable. Writing the full solution under
the form (3.9) with the ansatz (3.10) for Po(X,p;t) appears
therefore legitimate only for the time evolution of the un-
derdamped case when both cr~(t) and ox(t) vary on the
same time scales or for the asymptotic quasistationary re-

+ep 2 Q(X;t) .
X

(3.20)

The quantities present in Eq. (3.20} are defined after Eq.
(3.8) and Q(X;t) is obtained from P(X,p;t) by integrating
over all p space. The conditions of validity of Eq. (3.20)
in the context of nuclear fission are discussed in Ref. 12
where it is also shown that the domain of values of the re-
duced friction parameter p covered in using (3.20) joins in
practice the domain covered in using relation (3.17}.

We remark first that if a quasistationary situation is es-
tablished for a particular value of p&2coi, holding the
coBective potential and the temperature fixed, a quasista-
tionary situation is a fortiori established if the motion is
largely overdamped, i.e., P»2coi. This is due to a simple
scaling property —as p is changed —of Eq. (3.20) as dis-
cussed in Ref. 12. For two solutions of Eq. (3.20) associ-
ated with different values po and p of the friction con-
stant, but subject to identical initial conditions (indepen-
dent of p) at time t =0, one has'

~f (t;B}={po/P}~f'{Pt/po,po) . (3.21)

Thus, if after some transient time ~, Ag (ptlpo, 'po)
reaches a constant value, so does Af (t;p) The depen-.
dence of r on p is then known from the study of the rate
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A, at just one value Pp of P, as

r(P) =(P/Pp)~(Pp) . (3.22)

(tip)
b (t) =exp f cop(s)ds

Using the property that we have fixed the saddle point at
Xp ——0 with U(Xp}=Ef,

EC(Xp) =p =0,dU
x=»0

the time dependent rate at this point is obtained from Eq.
(3.20) as

Af (t}=—II '(Xp ——0;t)eP Q(X;t) ~»» p.

(3.23)

To derive an approximate expression for (3.23) we follow
the same approach as before and write the solution
Q(X;t) of Eq. (3.20) under the form

Q(X' t ) =CpQp(X' t )F(X't )

For Qp(X;t) we take the ansatz

(3.24)

Qp(X; t ) =Cp exp[ —U(X) /(pcpxo» )], (3.25)

Af (t) =II '(Xp ——0;t)[b(t)/P](T/2m@)'

&«xp[ —Ef /(p~xox) ]

Here b(t) obeys the differential equation

dt
+(b' —tpp')(b/P) =0,

with

too =tpo[2T/(u~xo'x) —1]

(3.26)

(3.27)

and top the frequency of the inverted harmonic oscillator
osculating the potential at the saddle point. We recall
that the frequency tox is obtained as the frequency of the
harmonic oscillator centered at (X) which gives the same
variance at each time as the one obtained in the numerical
solution of the

equations
for the first and second mo-

ments. Thus pcu~o.~, coo, and b have the asymptotic
(t~ 00 ) values T, cop, and cop, respectively. If we evaluate
the probabihty II(Xp ——0;t~ao) following Kramers, i.e.,
by assuming the mean value (X}to be frozen at its initial
position X=Xi and thereby cox —co, , we find

II(Xp 0,t~ oo )——=(2m TIIJ, )' coi

and Af Eq. (3.26) reduces to Kramers's expression.
To discuss the function b(t) we observe that with the

change of variable b =U ' the solution of Eq. (3.27) is
easily found. It reads

and determine o»(t) and tox through the method of mo-
ments. Qp(X;t) thus solves Eq. (3.20) in the Gaussian ap-
proximation and F(X;t) is found to obey a partial dif-
ferential equation which is solved analytically. This pro-
cedure determines completely the distributions Q(X;t) in
the vicinity of the saddle point and an expression for
Af (t) valid for P&2toi is obtained in a straightforward
fashion. It reads

(i jp) S

C+2 f ds exp 2 f dred(r)0 0

(3.28)

with C an arbitrary constant to obey the initial condition.
Let us consider that ax(t) reaches its asymptotic value
T/(ye») after a time scale given by tp with b =b (tp).
If the total potential were the osculating harmonic oscilla-
tor of the first well with cpx ——tp i we would have
tp ——P/(2aPi). Using Eq. (3.28) we find for t &tp,

b'(t) =b'(t p)tpo'I b'(t p)+ [pro' b—'(tp) ]
Xexp[ 2t—pp(t tp—)/P] I

' . (3.28')

This shows that b (t) reaches its asymptotic value top

after a time scale given by tp+P/(2cop). Hence the im-
portant effect of the function b(t) is to increase the tran-
sient time r needed for the attainment of the quasistation-
ary value of Af (t) with respect to its value 'p obtained
only from the leading exponential present in Eq. (3.26).
Finally it is important to notice that our expression (3.26)
for Af(t) satisfies the scaling property (3.21) since all the
time-dependent quantities present in (3.26) obey differen-
tial equations with the same scaling property of Eq. (3.20).

C. Numerical results

The initial conditions and the numerical procedure used
to solve the FPE (3.8} are described in Ref. 10. We apply
them to study the fission of the nucleus A =248. The col-
lective potential is taken the same as in Ref. 10 (Sec. II 8)
with a barrier height Ef of 4 MeV. We use Eq. (2.4) to
calculate the escape rate Af (t) in units of 10 ' sec ' as a
function of time in units of 10 ' sec. On the left-hand
side of Fig. 2 we display Af for values of P characteristic
of the underdamped case and increasing nuclear tempera-
tures. The right-hand side corresponds to the overdamped
situation. In both cases the dashed horizontal lines show
the prediction of Kramers's formula and the dashed
curves result from the direct numerical calculations. The
dash-dotted curves originate from the approximate ex-
pression (3.17) and (3.26) shown, respectively, on the left-
hand and on the right-hand side of the figure.

We first discuss the underdamped case. For P=0.5
and T= 1 MeV a comparison with Fig. 4 of Ref. 10 shows
that our new expression for Af (t} Eq. (3.17) and the
scheme we have proposed to determine the variances re-
sult in a marked improvement over our earlier treatment.
The time scales for the rise of Af(t) are reproduced with
very good accuracy in all the cases we have studied and
not displayed here. The present derivation is of particular
interest for temperatures T & Ef where according to clas-
sical arguments a quasistationary situation may develop
although with considerable overshooting with respect to
Kramers's rate. A typical example is shown for P=1.5
and T=5 MeV. The analysis of Ref. 10 has shown that
for such a value of P the mobility of the system in the
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FIG. 2. The fission rate A,~(t) (in units of 10 ' sec ') evaluat-
ed at the saddle point. The left-hand side of the figure corre-
sponds to underdamped motion of the collective variable in the
potential pocket. The right-hand side to overdamped motion.
The dashed curves are the results of the numerical calculations
and the dash-dotted curves the results of the analytical approxi-
mations Eqs. (3.17) and (3.26) for the left- and right-hand sides,
respectively. The dashed straight line gives the quasistationary
value of Kramers.
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direction of the fission coordinate attains a maximum and
results in the enhancement of the rate with respect to
Kramers's value. We see that the dynamical treatment of
the mean values in position and momentum and of the
variances takes this mobility into account in a very satis-
factory way. The domain of excitation energy explorable
with expression (3.17) is thus considerably enhanced with
respect to the derivation of Ref. 10 and the upper bound
(3.6) seems a reasonable estimate.

Turning to the overdamped case we recall that the ap-
proximate analytical expression of Ref. 10 for the escape
rate was completely unsatisfactory in this case for reasons
we have analyzed above. Figure 2 shows good overall
agreement between the results of the direct numerical cal-
culations and of relation (3.26) for the escape rate. Al-
though the numerical solution of Eq. (3.20) can be ob-
tained with fast and accurate stan~~f'd methods, the solu-
tion of the first-order differential equations for the mean
values, variance, and b (r) as defined in Eq. (3.27) is very
simple. Our results justify the use of expression (3.26) to
investigate for large viscosity the competitive decay of
composite systems created at high excitation energies.

In this study we keep the barrier height E/ fixed ir-
respective of the nuclear temperature T considered. In a
realistic situation Ef may be a rapidly decreasing func-

tion of T. However, the classical considerations of Sec.
III A indicate that it is only the ratio Ef/T which deter-
mines the existence of the quasistationary regime. Thus
we expect that the patterns of the escape rates shown in
Fig. 2 will stay nearly unchanged with increasing tem-
peratures T' such that the ratios Ef(T')/T' are the same
as those in Fig. 2. As a consequence the onset of the
overshooting of the escape rate over Kramers's quasista-
tionary value may now show up at relatively lower tem-
peratures than those indicated from our model calculation
with a temperature-independent barrier. In any case the
analytic approximate expressions (3.17) and (3.26) can be
used unchanged since the barrier height E/ may assume
any temperature dependence.

Following Ref. 10 we define the transient time r as the
time needed for A/(t) to reach 90go of its final quasista-
tionary value. In our one-dimensional model r is a func-
tion of the reduced dissipation parameter P and of the nu-
clear temperature T. Figure 3 shows the transient time r
in units of 10 z' sec as a function of p in units of 10 '

sec ' for temperatures T =1, 3, and 5 MeV. The dashed
curves are obtained from the direct numerical calculation
of A/(t) Th.e dash-dotted curves result from the calcula-
tion of A/(t) with formula (3.17) up to the value
p=2. 5 X 10'' sec ' for which the results of formula (3.26)
start to join smoothly those of formula (3.17) for all three
temperatures. Despite the restrictive conditions imposed
in the derivations of our approximate analytic expressions
it is plain to see that they cover in a continuous way the
whole domain of P values ranging from P&0.2X102i
sec '. For smaller values of P which are probably unreal-
istic in the nuclear context the fission rate varies linearly
with P and a specific derivation is necessary. Semiquanti-
tative estimates ' of r based on the behavior of the lead-

ing exponential exp( E//prox—ox) lead to

P ~ 2'». ~——P 'ln( 10Ef/T),
(3.29)

P) 2cox: i=, ln(10E//T') .
2'~

A= 248
E)= 4HeV

i 8-&

I
T=1NeV

T= 3Hev---.=—~~:—===.==='='= ) T- 5HeV

3

(3 t i02isec-i )

FIG. 3. The transient time v (in units of 10 ' sec) evaluated
at the saddle point as a function of the reduced dissipation pa-
rameter P (in units of 10 ' sec ') for various nuclear tempera-
tures. The @~~bed curves result from the numerical calculation
of ~f(t) and the dashed dotted curves from formula (3.17) for
P & 2.5X 10 ' sec ' and from formula (3.26) beyond.
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We see therefore that r may be written as

r(P, T,Ef)=a(T,Ef)IP '+P/[2cog(T)]I . (3.30)

Thus the value P =t 2m~ at which ~ attains a minimum
measures the overall effective harmonic osciBator fre-
quency which results from the deviation of the true col-
lective potential from. its harmonic approximation around
the minimum X =X,. This deviation becomes more and
more important with increasing temperature, hence the
dependence of co» upon T. For this value P~ we have
found that the rate )(f(t) overshoots Kramers's quasista-
tionary value for nuclear temperatures of the order 0.5Ef.
Figure 3 also shows that the coefficient a(T,Ef) in Eq.
(3.30) has a temperature dependence which 1eviates
markedly from In(IOE//T}. This feature is well repro-
duced by our approximate analytic expressions since at
T=5 MeV for Pg3. 102' se: ' the dashed and dash-
dotted curves are not distinguishable.

The transient time ~ is a central quantity in the corn-
petitive decay of the compound nucleuss'o since its value
determines the importance of decay channels other than
fission in the early stage of the time evolution. Therefore
multiplicities of particles emitted prior to fission are relat-
ed to transients and provide insight into the role of P.
The specific study of the decay of the compound nucleus
'ssEr is devoted to this aspect and reported elsewhere. "
Here we focus only on the total lifetime evaluated at the
saddle point. In Fig. 4 we show the ratio rlrf as a func-
tion of the reduced dissipation parameter P for the same
three temperatures as before. The lifetime red evaluated
at the saddle point was obtained from relation (2.5). To
discuss the trends shown in Fig. 4 we recall that in the
schematic model of Sec. II, the lifetime evaluated at the
saddle point is the sum of two contributions (t(I/I'/), ~,
and —,

' ~ which both vary with P and T. At T= I MeV for

40-

the nucleus studied the inverse of the quasistationary rate
varies from 21XIO ' sec for p=0.5XIO ' sec ' to
62X 10 ' sec for p=5.0X IO ' sec ' whereas the corre-
sponding values of ~ are 9.2X 10 ' sec and 7.0X 10
sec. Thus in this case the influence of ~ on the total life-
time is very pronounced only for small values of P. At
T=3 MeV the inverse of the quasistationary rate varies
from 15X 10 ' sec for p=0. 5X10 ' sec ' to 40X10
sec for p=5.0X 10 ' sec '. The corresponding values of
~ are 4.5&10 ' sec and 2.2&10 ' sec. Thus in going
from T =I MeV to T=3 MeV the transient time dimin-
ishes faster than the inverse of the quasistationary rates
which explain the trends in Fig. 4. However, at T=5
MeV the inverse of the quasistationary rate is of the order
of 9X10 ' sec over the whole range of p values and
~=2.0X 10 ' sec. The influence of the transient time on
the total lifetime increases again with respect to T=3
MeV. We see therefore that, the trends observed in Fig. 4
are in keeping with the qualitative analysis based on the
schematic model and Fig. 3.

IV. TRANSIENT BEHAVIOR AND
LIFETIME AT THE SCISSION POINT

For the dynamics of the fission process and competition
against particle emission the quantity of interest is the
lifetime at scission. The approximate solutions of the
FPE we have built up are valid only in a restricted range
of X values up to and including the saddle point. To
evaluate physical quantities at the scission point we need
to build up explicitly the solution of the FPE for values of
the collective coordinate bigger than Xo (the position of
the saddle point). In this section we derive first this solu-
tion under the assumption that the collective potential
beyond the saddle point can be correctly modeled by an
inverted harmonic oscillator of frequency coo. We obtain
the flux at the scission point X„in terms of the flux at
the saddle point Xo. We close this study with the analysis
of the lifetime evaluated at the scission point.

30—
~O

20—

10—

= 248
= 4NeV

T= 1NeV

T= 59eV

T= 3MeV

A. Solution of the FPE for X~ 0 and expression for
the current at the scission paint

The potential of the fissioning nucleus tends to zero for
X~0e and we should set P=O beyond the scission point.
However, we use the FPE with a constant value of the nu-
clear friction P and the inverted harmonic oscillator of
frequency coo for all values of X&Xo. Although only
semirealistic, this choice—discussed in Refs. 9, 10 and
17—allows analytic derivations with clear physical inter-
pretations.

We define the Fourier-Laplace transform g(u, v;t) of
P(X,p;t) as

g(u, u;t)=(2m) ' J e '~"dp f e "P(Xp;t)dX .
I

P(]o sBC

FIG. 4. Ratio in I,'%) of the transient time ~ over the total
lifetime r/, evaluated at the saddle point from Eq. Q.S), as a
function of the reduced dissipation parameter P and for various
nuclear temperatures.

(4.1)

Equation (3.8) is transformed to a first-order partial dif-
ferential equation for g(u, U;t } which, under the change of
variables g=iou+ u, g =ibu uwith a—=P/2+co„
b=P/2 —ni„and co, =coo+P /4, takes the symmetric
orm
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here

—g(k ri't) =f(4 ri't)+&0

—Ail g(g, g;t}

+ [e/(4'„')]{g+g }2g(g,g;t); (4.2)

The solution of (4.2) is easily found. ' Transforming back
to the original variables (X,p) we obtain after some calcu-
lations the solution P(X,p;t) valid for X & 0. It reads

P(X,p;t)=Qo(X,p;t)+ f dt' f p'dp'P(O, p', t')

&& G,(Xp;Op', t t—') .

(4.4)

f(g, rt;t) =f[(g+ri)/(2ito„};t]=f(U, t)

=(2m) ' f e t'"p P(O,p;t)dp . (4.3)

8=(2coo+Pb )/(2to, ),
~ =(2to2o+j{la)/(2'. )

and f(g, rt;t) is a source term which originates from the
boundary condition that at X=O the solution is the
known function P(O,p;t). We have

In this equation Go(Xp;X'p';t —t'} is the Gaussian propa-
gator which solves the FPE with X{X)= —tooX in the full
(X,p) space with the initial condition at time t = t',

Go(Xp;X'p', 0}=5(X—X')5(p —p') . (4.5)

The initial conditions in terms of the distribution
P(X,p;t=O) are contained in the term Qo(Xp;t) which
we discuss below. The exact form of Go appears as a
double Gaussian in the variable zi ——p+aX, z2 ——p+bX
with a and b defined after Eq. (4.1),

Go(Xp;X'p';r) =N 'exp . — I

z [(zi z'ie— ') /pro+(z2 —zz ") /pro —2po(zi z ie— ')(z2 —zze ")/(ao5o)]
2(1—po}

(4.6)

Here zi ——p'+aX'„z2——p'+bX', N =2m(1 —po)' ao5o,
and

iTo ——e(1 es') /b-,
5o——e(1 —e z")/a,

p oaA 2e(1 e+——)/13;—

(4.7)

the diffusion constant is e=PTly, . Finally the term
Qo(X,p;t) in Eq. (4 4) originates from the initial distribu-
tion at time t =0 propagated through Go(Xp;X'p';t),

Qo(X,p;t) =J dp' I dX'P(X', p', t=0)Go(Xp;X'p', t) .

(4.8}

For the physical situation of a composite system formed
initially with unit probability in the collective potential
pocket, P(X,p;t=O) is entirely localized in the region
X(Xo——0 and Qo(X,p;t) in Eq. (4.4) does not contribute
to P(X,p;t} for X&0. Henceforth we omit Qo(X,p;t)
and obtain the flux J(X,t ) at any point X beyond the sad-
dle point. It reads

J(X,t)= I dw I pdpP(O, p;t r)go(Xp;r), —(4.9)

with go(Xp;r) given as

go(Xp;r)=(2no») 'i [(X pr)p5~/o»+pu]—

)& exp[ (X pr) /(—2cr»)—] . (4.10)

u =u(r)=(be ' ae ")l(b—a), —
r =r(~)=(e ' e")/(a b) . — — (4.11)

Here o», 5~ are the variances and p the correlation func-
tion appearing in Go written explicitly in the variables
(Xp); u and r are functions of r defined as

$. Analysis of the flux at scission

In Fig. 5 we show the projection of a three-dimensional
plot of the function go(Xp;~) calculated at the scission
point located at X~=7 fm for P=0.5X10~' sec ' and
T= 1 MeV and for P=1.5X 10 ' sec ' and T=5 MeV,
for a frequency too ——1.65)&10 ' sec ' and a range of
values of p {in fm 10 ' sec '} and v (in 10 ' sec}. We
note that go is small for all p g 0 and for each p & 0 it is a
strongly peaked function of r with a maximum around a
value r(X~,p} This is. a characteristic pattern of the
function go(X,p;r) in all physical situations. In Fig. 6 the
continuous curves show the values of r(X,p) found nu-
merically in units of 10 ' sec as a function of p in units
of (fm 10 ' sec '). The dashed curves correspond to the
classical time r,i to reach the scission point X~ starting at
time t =0 from the saddle point with an initial velocity p.
This time r,i is the value of 7 for which the quantity
(X~—pr) cancels in the argument of the exponential in
Eq. (4.10). Obviously r,i tends to infinity if p tends to
zero. However, due to the exponential divergence with ~
of the variance tr»(v ), 5&{r)and of the functions u(r) and
r(r) the maximum value of r(X,p) is actually finite as
we now show.

The divergence with r of the variances and of u(~) and
r(~} has its origin in the term exp( b~) in Eq. (4—.7) as
b=P/2 —co, is negative. This exponential increase is in-
dependent of the value taken by the diffusion coefficient
if ~&&

i
b ' i. The diffusive aspect of the motion be-

comes irrelevant' for such large values of ~ as the driving
force of the potential strongly accelerates the motion. In
this regime the Gaussian propagator Go(X p;Op', r)
reduces to its "scaling limit" expression Go (X~p;Op', r)
obtained in Ref. 19. It reads



K. H. BHAI-z, P. GRANGE, AND B.HILLER 33

T=1 MeV P=0.5 T=l MeV P=0.5

LJ

CD

ci l-
E

g& ~r)
0-

I

0
P (fm/sec )

7=5 MeV P=l.5

T=5 MeV P=1.5

3-
LJ
Ol

I

g 2"

a
E

0-
0 b

P (f m/sec)
10

&) co
(10

g~ ~~)

FIG. 5. The function Z—:go(Xp; t ) defined in Eq. (4.10) for a
frequency coo= 1.65X 10 ' sec ', X=7 fm, T = 1 MeV,
p=0. 5X 10 ' sec ' (upper part) and T=5 MeV, p=1.5X IO '

sec-i (lower part). The nucleus is 2 Cf.

FIG. 6. The value 7(X,p) (continuous curves) where the
function go(Xp;r) defined in Eq. (4.10) is maximum and the
classical traveling time v;] (dashed curves) to reach the scission

point at X=7 fm as a function of the initial velocity p. Times
are in units of 10 "sec and p in units of fm 10" sec '. Other
parameters are the same as in Fig. 5.

Go (X~;Op', ~}=2cor(2rtrt) i ~2&(p+ bX~ )

Xexp[ —2(e0,X~) /g] . (4.12}

~,(X„)= —(2b)-'ln
~
(2,X„)2b/~

~

. (4.14)

For the parameters of Figs. 5 and 6 vs obtain at X =7
fm the values

ri(X~)=2.4X10 ' sec

using p=0.5X102' sec ' and T =1 MeV, and

7.i(X„)=1.95X 10 2i sec

for p=1.5 X 10 ' sec ' an T= 5 MeV, in good agreement

Here rl=( /sb) —ex( p—2b~) and 5(z) is the Dirac delta
function. In this limit the memory of the initial condition
(4.5) has been lost and go(X~';r) reduces to

go (Xe';r)= f pdpGo (X~'Op"~)

= —2oi„bX (2irrl) 'i exp[ —2(oi„X ) /rt] .

(4.13)

This function go has a maximum as a function of g for
i)=(2',X ) which corresponds to the value ~i(X~) of r,

with the numerical findings of Fig. 6.
Due to the characteristic pattern of the function

go(X~;r) shown in Fig. 5 only those values of ~ close to
r(X~;p) and in the interval (0, t) contribute to the integral
over ~ present in Eq. (4.9). Thus for asymptotic (t~ oo )

time and due to the finiteness and independence with
respect to the variable p of the maximum value v &(X«) of
r(X;p) we may write,

lim J(X,t)= lim f pdpP(O, p;t)
t~ ce t~ ce

X f dago(X p;~) . (4.15)

Using the property that Go(Xp;Op', r) satisfies the FPE
with E(X)=—oioX and the initial condition (4.5), the last
integral in Eq. (4.15}is shown to be equal to unity in the
limit taboo. This shows that the asymptotic (t +oo)—
current is conserved and independent of X as implied by
the continuity equation (2.3).

Another important property follows from the finiteness
of ri(X ). I.et us consider the function pP(O,p;r) present
in Eq. (4.9) with P being the distribution obtained in Eq.
(3.15). The maximum of this function in the relevant

p ~ 0 region is located at oz(~) disregarding small correc-
tions due to (p} and the error function present in Eq.
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(3.15). In the interval (O, t} this maximum moves in the
interval [a'&(t =0) O, oz(t)] of maximum extension

[0,(T/p, )'~ ]. For the system 2=248 of reduced mass

p =62 m~ where m~ is the mass of the nucleon and for a
temperature T= 1 MeV, one obtains (T!IJ,)'~ = 1.2
fm sec ' whereas at T= 5 MeV the result is
(T/p)'~ =2.7 fm sec '. As shown in Fig. 6 %{X,p ) is a
slowly decreasing function of p in these domains and
remains close to its value ri(X ) at p =0. Thus only the
region of values of ~ around ri(X„)contributes effectively
to the integral on r in Eq. {4.9). We conclude that for
t &ri(X ) the integral over ~ is expected to be negligible
and ~i(X ) is therefore the time for the onset of the rise
of the flux at the scission point. We surmise that to a
good approximation the current at the scission point is
given bp

0.020-

I

0.015-

0,010—

u 0.005-

0-
i

0

7=1 MeV P=0.5

6

21
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J(X„,t)=e[t=~,(X„)]
X p pP O,p;t —w] X~ . 4.16

Here e(X) is the usual step function 8(X)=1 if X&0,
zero otherwise. This relation expresses the flux at the
scission point as the flux at the saddle point delayed by a
constant time 7.i(X~ ).

The current at the scission point is calculated by nu-

merical integration of the exact and approximate expres-
sions (4.9) and (4.16},respectively. The distribution func-
tion P(O,p;t} is taken from Eq. (3.15) with the variances,
correlation function, and other time-dependent quantities
determined as explained in Sec. III B. The two results are
shown in Fig. 7 as a function of time in units of 10
sec. The continuous and the dashed curves correspond to
the flux in units of 10 ' sec ' evaluated according to Eqs.
(4.9) and (4.16), respectively. The sets of parameters are
p=O. 5 X 10 ' se: ', T= 1 MeV and p= I.SX 10 ' sec
T=5 MeV. The value of the frequency of the inverted
oscillator is F00= l.65 X 10 ' sec ' and the scission point is
placed at X =7 fm. The values of P chosen correspond
to an underdamped situation. As we have conjectured,
the approximate expression (4.16) is in good overall agree-
ment with the flux obtained from Eq. (4.9). We note,
however, that with expression (4.9} the oscillations of the
flux present at the saddle point —and characteristic of the
underdamped motion in the minimum of the collective
potential —are smeared out at scission due to the integra-
tion over v.

In the works of Ref. 11 relation (4.16}was assumed to
hold on the basis of qualitative considerations. It is plain
to see that our numerical findings support this assump-
tion. However, the time delay t used in Ref. 11 is taken,
following Ref. 17, as

f dX f dp Pz, (X,p)

J
(4.17)

= —(2/b )R [( ,pcooX~/T }'~];—
here Ptt„(X,p) and j are, respectively, Kramers's station-
ary distribution and position independent current and

R(z}=f exp(y )dy f exp( —x )dx .

4p 2

C4
cD

0-
0 2 3 4

t {10 sec)
21

FIG. 7. The flux (in units of 10"sec ') calculated at the scis-
sion point X =7 fm as a function of time in units of 10 2' sec.
The continuous curves result from Eq. (4.9) and the dashed
curves fram Eq. (4.16). The nue1ear friction parameter P is in
units of 10 ' sec '. The nucleus has mass A =248 and a fission
barrier height Ef——4 MeV.

+O[e/(4t00X~p)] . (4.19)

Here y=P/(2t00) is the reduced dissipation strength. In
Eq. (4.19) the argument of the logarithm is unity for
y=yo=(3+2+ 3) '~ irrespective of the value of the nu-
clear temperature T and we expect to have t &ri(X„}for
y+&yo. In Fig. 8 we show the ratio t/~i(X„)as a func-
tion of y. The continuous curve is for T= 1 MeV, the
dashed curve for T=3 MeV, and the dash-dotted curve
for T=5 MeV. All curves are obtained for the nucleus
3=248 with p=62mz, X~=7 fm, and coo ——1.6SX10 '

sec . We see that in the domain of values of P investi-

Therefore it is of interest to compare t with the time delay
~i(X~) after which the flux at the scission point starts to
rise. In the leading order in the variable

Z =4It,aioX /T =4cooX 13/e

we have R(Z) =(1/4)ln(Z) where the first neglected term
is of order O(1/Z). Thus

t = —(2b ) 'ln(4c00X p/e) +0[e/(4t00X„p)]
(4.18)

Comparing with the expression (4.14) for Y.i(X~) we find
that

t =ri(X )+(2b)-'»{(I+y')[(I+y')'" —y]/(2y) j
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1.5-:

Eq. (2.5). Withe '=(Af )
' we find

+T~7+Vi(X~) . (4.22)

OC

jm

l~

1.0-.

05-

gated in Ref. 11 which corresponds to y &0.8, t does not
differ from ri(X ) by more than 10% for temperature
considered there and by more than 20% in any case. This
justifies the use of t in Ref. 11 in place of i.i(X~).

We note finally that the distribution function (4.4) and
the properties of the Gaussian propagator Gc(Xp;X'p';i)
are general and valid for any value of the friction parame-
ter. Therefore the expression of the time delay xi(X ) ap-
plies to the overdamped as well as the underdamped situa-
tions.

C. Lifetime at the scission point

The fulfillment of Eq. (4.16) as we have seen permits
one to write the escape rate at the scission point simply in
terms of the escape rate at the saddle point,

Af (t) =8[t=~,(X„)]Af"'[t=~,(X„)]. (4.20)

I.et us consider again the schematic model of Sec. II
which with the use of Eq. (4.20) now takes the form,

0 if t &vi(X„)
(Af /r)[t —7 i(X~)]

f(t)= '.
if r,(X„)&t&r,(X )+~

if t )7i(X„)+~.

(4.21)

The lifetime at the scission point is obtained according to

00
r ~ r ~ ~ ~ f ~

1
I ~ ~ E ~ ~ I ~ t 1

~ s ~ ~ ~ t ~ ~ I
$

r \ ~ ~ t I ~ E

QO 0.5 1.0 1.5 2.0

DISSIPATlON STRENGTH ~

FIG. 8. The ratio of the time t defined in Ref. 17 to the time
delay 7i(X ) Eq. (4.14) as s function of the reduced dissipation
strength y=P/(2roo) with coo=1.65X10 ' sec '. The scission
point is at X =7 fm. Continuous curve T =1 MeV, dashed
curve T=3 MeV, dash-dotted curve T=5 MeV. The nucleus
has a mass A =248 and a fission barrier height Ef——4 MeV.

Thus for a quasistationary situation as descrjbed by Eq.
(4.21) the total lifetime at scission is the sum of three
terms which individually have a clear physical interpreta-
tion. The first contribution relates to the asymptotic time
behavior of the fissioning system, hence its interpretation
as a "decay width" contribution. The second contribution
comes from the transient behavior of the composite nu-
cleus in the collective potential pocket and the last term is
a saddle-to-scission contribution. In practice as shown in
Fig. 2 some departures from our schematic model (4.21)
are expected and a clear-cut separation between the first
two contributions to the total lifetime is not exact. How-
ever, Fig. 7 asserts the occurrence of the saddle-to-scission
contribution as a simple additive term to the lifetime
evaluated at the saddle point. Combining the results of
Figs. 3 and 4 with expression (4.14) for 7i(X„)one readily
obtains the total lifetime rf of the fissioning system of
mass 2 =248 as a function of the nuclear friction param-
eter P for various positions of the scission configuration
X and for the three nuclear temperatures envisaged.
The values of rf are gathered in Table I for three posi-
tions of the scission point at 5, 7, and 10 fm, respectively,
and a range of values of P in units of 10 ' sec '. For
each value of X„the first column corresponds to T =1
MeV and the second to T =3 MeV. For given tempera-
ture T and scission position X„wenote the strong varia-
tions of the lifetime with P. For given P and T the life-
time depends very little on the position of the scission
point due to the logarithmic dependence of ri(X ) on X .
To discuss further the importance of the time ri(X„)in
the determination of the hfetime at the scission point we
envisage a different and equally plausible physical situa-
tion for the nuclear system of reduced mass @=62 mz at
a temperature T =1 MeV. For X y 0 the potential bamer
is now modeled by an inverted parabola of much smaller
curvature, e.g., mo ——0.5 X 10 ' sec '. Using Kramers's ex-
pression for the momentum distribution at the saddle
point the mean quasistationary velocity at this point is

(p) = —b[2T/(n(M)]'i2(2toc)

It takes the values (p)o ——0.5 fmsec ' for P=O and

(p)tt ——0.31 fmsec ' for P=0.5)&10 ' sec '. With a
scission point located at X~=3.6 fm the classical travel-
ing times up to X are t,i(P=O)=4X10 2' sec,

TABLE I. The lifetime (in units of 10 ' sec) of the system of mass A =248 evaluated at various po-
sitions of the scission point X and for a series of values of the friction parameter P. For each value of
X the first column corresponds to T= 1 MeV and the second to T=3 MeV.

(10 ' sec ')
X„=10fm

+f +f

0.5
1.0
1.5
2.0
3.0
5.0

24.4
27.7
32.0
37.8
45.0
67.0

20.0
20.8
22.8
26.1

30.2
44.2

24.6
28.0
32.3
38.1

45.4
67.7

20.2
21.1

23.1

26.4
30.6
44.8

24.9
28.3
32.6
38.5
45.9
68.4

20.5
21.4
23.4
26.8
31.1
45.5
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r,i(p=0.5)=8.3X10 ' sec, and td(p=0. 7)=11X10
sec. For P=0.5X10 ' sec ' the mean time delay is
7=3.5X10 2' sec and ri(X )=3.1X10 2' sec. We see
therefore that there exist cases in terms of P and T for
which 7i(X ) & r,i. This may appear plausible since
7i(X ) is only the time for the onset of the rise of the flux
at X . Thus through considerations based only on classi-
cal traveling time one may overestimate the lifetime
evaluated at the scission point.

Irrespective of the value coo of the curvature of the in-
verted parabola the transient time from Fig. 3 is
~=9)&10 2' sec for T =1 MeV and P around 0.5&(10 '

sec '. In this case the transient behavior of the system on
its way to the saddle point is most effective in modifying
the usual expression of the lifetime in terms of a decay
width. The situation changes somewhat for P around
1.5&(10 ' sec since, for the range of temperatures en-

visaged, the values of 7 and 7i(X~) are now comparable
and thus equally important in modifying the usual expres-
sion of the lifetime.

V. SUMMARY AND CONCLUSIONS

Nuclear fission is viewed as a transport process over a
potential barrier. In this context we define the lifetime of
the decaying system independently of the specific form of
the transport equation obeyed by the distribution function
for the collective variables. We show that if the transport
process is stationary from the outset then the lifetime of
the system is given in terms of a decay width. Hence our
definition appears as a natural generalization to nonsta-
tionary processes of the usual expression of the lifetime.
Using the conservation law for the current we relate this
lifetime to the time integrated escape rate at the saddle
point and at the scission point of the collective potential.
A schematic model of this time-dependent escape rate
permits one to exhibit in a clear way the respective contri-
butions of the quasistationary rate A'/I'f ' and of the tran-
sient behavior of the system to its lifetime. This transient
behavior is characterized ' by a transient time r after
which a quasistationary probability flow across the barrier
is established. As long as A/I f '»r, fission can be well
described as a quasistationary phenomenon. For
A'/I f '«r, which occurs for excitation energies of a few
hundreds of MeV and a small fission barrier, the fission
process becomes a transient phenomenon of duration of
the order of r.

Since the key ingredient to determine the lifetime of the
system is the time-dependent escape rate over the barrier,
we study this quantity both at the saddle point and at the
scission point of a one-dimensional collective potential.
We use the same diffusion model as in an earlier study'
which we develop and complete. The developments con-
cern the determination of the time-dependent rate at the
saddle point which incorporates in a reahstic and yet easi-
ly calculable manner the anharmonicities of the collective
potential and the effects of the overall motion of the sys-
tem along the main collective coordinate. In the case of
large nuclear friction P, i.e., the ratio of the dissipation
strength over the reduced mass of the system, we obtain a

new approximate analytic expression for the time-
dependent escape rate. This expression reproduces very
closely the results of a direct numerical calculation and
obeys the important scaling properties discussed in Ref.
12. With these new expressions we find that the whole
domain of P values ranging from P&0.2X10 ' sec ' is
covered in a continuous way for temperatures compatible
with the existence of a quasistationary regime. From sim-
ple classical considerations these temperatures are bound-
ed through relations which involve the height Ef of the
barrier and the value of the nuclear friction P. We per-
form a direct numerical integration of the Fokker-Planck
diffusion equation and thereby verify the existence of a
quasistationary regime of probability flow across the bar-
rier for temperatures T &Ef as indicated by these
inequahties. For such temperatures the mobility of the
system towards the top of the barrier is an important
feature of the dynamics. The quasistationary regime is fi-
nally established when the distribution settles around a
position in between the bottom of the first well and the
saddle point and the quasistationary rate obtained here
differs from Kramers's usual expression. Without solving
the full Fokker-Planck equation our method takes into ac-
count all the complex dynamics of the problem. Thus we
can deal with situations where important overshooting
with respect to Kramers's rate occurs. This aspect and
the failure to cover the overdamped case had put limita-
tions to the practical use of the approximate analytical
rates derived in Ref. 10. It is now possible to investigate
simply the fissioning system in the whole range of P
values and within a large domain of nuclear temperatures.

We study first the lifetime evaluated at the saddle
point. For T &Ef we find that the influence of the tran-
sient time v on the lifetime is significant only for values of
P characteristic of the underdamped case. For T & Ef the
influence of ~ becomes more important with increasing
temperature over the whole range of P values. For the
system of mass A =248 with a barrier height E/ 4MeV——
the transient time contribution to the total lifetime
evaluated at the saddle point increases from 10% to 40%
at T 1 MeV, from 5% to 30% at T=3 MeV, and from
10% to 20% at T= 5 MeV with decreasing values of P in
the range 0.2 & P & 5.0 in units of 10~' sec.

We complete this study by evaluating the lifetime of the
system at the scission point. Modeling the potential
beyond the saddle point by an inverted harmonic oscilla-
tor of frequency coo we obtain the time-dependent distri-
bution for the collective variables valid beyond the saddle
point in terms of the known time-dependent solution at
the saddle point. We derive the flux at the scission point
and show that it can be expressed reliably in terms of the
flux at the saddle point delayed by a constant time
~i(X ). This result justifies the conjectures of Refs.
9—11. The schematic model for the time-dependent rate
evaluated at the saddle point is trivially extended at the
scission point. We obtain the lifetime at scission as a sum
of three contributions which individually have a clear
physical interpretation. The first two contributions relate
to the lifetime at the saddle point and the last one is the
time for the onset of the rise of the flux at the scission
point.
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In heavy-ion-induced reactions, the angular momentuin
is large and reduces the fission barrier with respect to
neutron-induced fission. The nuclear temperatures may
also reach a few MeV. In such cases statistical model es-
timates of the lifetimes are usually inconsistent with phys-
ical observations. Our analysis and the results of Refs. 9,
10, and 12 indicate that the main contributions to the to-
tal lifetime are the transient time ~ and the time delay
~i(X„)for the onset of the rise of the flux at the scission
point. This suggests that systematic studies of the life-
time of such systems may provide useful information on v

and r i(X ) and thereby on nuclear friction.
In this study of induced fission we retain a simple one-

dimensional diffusion model often used in analyzing ex-
perimental results. Some of the simplifications we intro-
duce such as the temperature independence of P and of
the fission barrier, may be improved without modification
of our analytical derivations. The most important restric-
tion concerns our limitation to a single collective variable
and its conjugate momentum. Several such variables can
be identified and have in fact been used in the realistic

treatment of the fission process. However, to our
knowledge only the case of a quasistationary diffusion for
n degrees of freedom has been solved analytically. If
possible, a generalization of our time-dependent treatment
to many degrees of freedom would prove very useful.
Nevertheless our conclusions concerning the various con-
tributions to the total lifetime are generic of transport ap-
proaches and independent of the number of degrees of
freedom considered. It is only the relative interplay of
these contributions which may be affected by the dimen-
sionality of the collective system.
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