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A closed form version of the two-component exciton model is derived. Discussions of corrections
for the Pauli exclusion principle, of the expected behavior of the residual two-body matrix elements,
and of the relative merits of different types of reaction calculations within the exciton model are
presented. Calculations verify the validity of the equal a priori probabilities assumption underlying
exciton model calculations and demonstrate that the one- and two-component models produce very
similar results when similar assumptions are made about the relative probabilities of exciting proton

and neutron degrees of freedom.

I. INTRODUCTION

In the first formulation of the Griffin or exciton model
for preequilibrium nuclear reactions,' all particle and hole
degrees of freedom were grouped together as excitons and
treated as indistinguishable from one another. Fairly ear-
ly on, particle degrees of freedom were distinguished from
their hole c:ounterparts.2 Yet the obvious, natural, and
straightforward extension of distinguishing between pro-
ton and neutron particle degrees of freedom and between
proton and neutron hole degrees of freedom has only re-
cently been carried out.>*

The reason for this ten year delay is twofold. The first
reason is the extra computational effort required, while
the second relates to need. In describing the preequilibri-
um phase of a nuclear reaction in either the exciton or
particle-hole formalism, there is a unique hierarchy of
states through which the system passes. Letting »n denote
the total number of excitons composed of p particle and A
hole degrees of freedom so that n =p +h, this hierarchy
may be denoted in two equivalent forms:

n0—>n0+2——>n0+4—»n0+6 ey,
Posho—po+L,ho+1—po+2,ho+2—po+3,ho+3 - -

Each stage has one more particle-hole pair (or two more
excitons) than the preceding stage. Describing the equili-
bration process is then, in some sense, a one-dimensional
problem. When proton and neutron degrees of freedom
are distinguished from one another, each class of states in
the above hierarchy is divided into & =p — A4, subclasses
(where A, is the mass number of the projectile) character-
ized by different divisions of the degrees of freedom into
protons and neutrons. The problem is now two dimen-
sional and the effort required to do a calculation is signifi-
cantly increased. The difference in the two formalisms is
shown schematically in Fig. 1.

The increased effort alone would not, however, have
been able to stop the early implementation of the two-
component exciton model had the need been pressing.
The extension is too straightforward. What happened was
that for early studies of preequilibrium reactions designed
to investigate some of the fundamental aspects of the
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field, it was adequate to introduce proton-neutron dis-
tinguishability in an approximate way where it is most
important, namely in the particle emission rates. Only
now, as confidence in the model has grown, as better ways
are being sought to include pairing and shell effects, and
as the need for better proton-neutron yield ratios has
grown has there been sufficient motivation to go over to
the two-component exciton model.

While many of the equations relevant to the two-
component exciton model have been quoted in the litera-
ture,’~7 only two papers>* describing calculations with
the model have appeared. In the first,> Gupta approxi-
mated the two-component master equation solution with a
closed form expression and made comparisons with the
corresponding one-component formula. Unfortunately he
made the serious error® of identifying the time integrated
occupation probability for a given configuration with the
lifetime of that configuration. In fact, the occupation
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FIG. 1. Schematic diagrams of proton induced reactions in
both the one- and two-component exciton models. In the one-
component model, the different classes of states are designated
by p,h whereas in the two-component model the labels are p,,
hg, Dy, and h,. The arrows show the allowed residual two-body
interactions.
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probabilities are also weighted by the fraction of the total
strength passing through the configurations of interest.
Other shortcomings of this work are the neglect of the
Pauli exclusion principle and of the energy and exciton
number dependence of the mean square matrix element
for the residual two-body interactions.

Dobes and Bétak* have remedied all three of these diffi-
culties and have used an approximate solution to the time
integrated master equations. They also use different resi-
dual two-body matrix elements for proton-proton,
neutron-neutron, and proton-neutron interactions. Final-
ly, they compare their results with data and with their
own one-component results for a few sample reactions.

The present work is similar to that of Dobe$ and Bétak*
but differs in several important regards. First, an alter-
nate set of transition rates for the residual two-body in-
teractions is derived and is shown to be consistent with
the full particle-hole state density in the limit of an equili-
brated system. Second, a closed form approximation to
the two-component exciton model is presented along with
a discussion of the advantages and disadvantages of this
approach relative to using the time-integrated master
equations as in Ref. 4. The residual two-body matrix ele-
ments and, in particular, their relationship to free
nucleon-nucleon scattering cross sections and to full two-
body matrix elements in nuclear structure calculations are
discussed in some detail. The assumption of equal mean
square matrix elements for the residual proton-neutron,
neutron-neutron, and proton-proton interactions is pro-
visionally implemented.

The results of reaction calculations are presented and
compared with the results of the corresponding one-
component model. Results from the present work are also
used to investigate the validity of the assumption that at
each stage in a reaction all states of a given exciton num-
ber are equally likely to be populated. This assumption
underlies the one-component model. Its analog for the
various subclasses of states is inherent in the two-
component model.

Finally, one of the main purposes for developing the
present two-component version of the exciton model was
to be able to study corrections to preequilibrium reaction
calculations due to pairing and shell structure effects.
Since these effects for a given exciton number will obvi-
ously depend on the way in which the excitons are divided
into proton and neutron degrees of freedom, they cannot
be adequately treated in a one-component model. A dis-
cussion of various approaches to preequilibrium pairing
corrections® as well as other factors influencing the rela-
tive yields of protons and neutrons for nonclosed shell
systems will be presented in paper II in this series along
with comparisons with data. Paper III is planned to con-
tain a study of preequilibrium shell corrections in the con-
text of the shell-shifted equispacing model (S2-ESM).?

II. STATE DENSITIES AND TRANSITION RATES

In the exciton or Griffin model of nuclear reactions
there are basically three types of quantities which are
needed in either the master equations or their closed form
counterparts. These are (i) the density of states for the

system with a fixed combination of excitons and at a
given excitation energy, (ii) the rates for the residual in-
teractions which carry the system from one class of states
to another (the arrows in Fig. 1), and (iii) the rates for
emitting various types and energies of particles from a
given class of states.

A. Two component particle-hole state densities

The state density for a nucleus at excitation energy E
containing p =p,+p, particle degrees of freedom and
h =h_+h, hole degrees of freedom was given by Willi-
ams° to be

n_n
gﬂ"gvv[E —4 (thfnpwhv)]n_l
ol M (n — 1)

a)(p,,,h,,.,p,,,hv,E)———

(1
with
2 2
P1r+hn'+p1r_3h1r
A b ) V’hV =
(pashaspyshy) a2,
+ . (2)
4gy

Here the subscripts 7 and v refer to protons and neutrons,
respectively; g is the density of single particle states and is
evaluated separately for the two components;
n,=py,+h, n,=p,+h,, and n=p+h=n,.+n,.
These are the formulae employed by Dobe$ and Bétak.*
There are, however, two fundamental difficulties with Eq.
(2), which contains the effects of the Pauli exclusion prin-
ciple. Neither makes a large difference in reaction calcu-
lations, but it is worth correcting them at this stage since
in the presence of shell corrections the value of this func-
tion (and thus the impact of the errors) can become much
larger.

The first difficulty is that Eq. (2) is not symmetric in
particles and holes. This results from the fact that Willi-
ams places the Fermi level at the last occupied single par-
ticle state in the ground state of the nucleus rather than
halfway between it and the first vacant single particle
state. Fortunately, Eq. (2) can be rewritten in terms of the
Pauli energy, the minimum energy required for a given
configuration by the exclusion principle. This gives® I

A (pmhﬂ’pwhv)ZE(P,;Lli(anhv)+Ei";)uli(pwhv)
py+thatn. pi+hi+n,
4g . 4g, '

(3)

Thus all of the particle-hole asymmetry is in the Pauli en-
ergy which is easily reevaluated.

The second difficulty™' can likewise be corrected by
reevaluating the Pauli energy. It is the neglect in Eq. (2)
of the presence of passive particles and/or holes. The
Pauli energy is determined by the total numbers of parti-
cles and holes; both those that are degrees of freedom and
those which are passive or adjacent to the Fermi level.

When both of these difficulties are corrected, the Pauli
energies in Eq. (3) become’
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(4)
(5)

and similarly for EY); These results agree with
Williams’s original formula in the limit p,=h, and
p,=h,. Their relative accuracies can be tested in a few
numerical examples for cases where p,+h,. For simpli-
city, the results for only one active component are con-
sidered. These may be obtained, for instance, by taking
P =Ppn h=h,, and p,=h,=0. The results of Eq. (1) us-
ing both Eq. (2) (Williams’s formula) and Egs. (3)—(5) are
compared in Table I with the numbers of states obtained
by direct counting. Here unusually low values of g.E
have been chosen so that differences in the correction
function A4 (pg,h,,p,,h,) would have a larger effect on
the calculated state densities. Clearly the problems in
Williams’s formula become more significant at larger
values of p-h and for low excitation energies or high exci-
ton numbers. The same is true of the results of Egs.
(3)—(5), but the errors are very much smaller. Equation
(1) was derived in the limit of an infinite set of single par-
ticle states and is adequate so long as the excitation energy
does not exceed the depth V of the potential well. For
higher excitation energies it must be corrected by sub-
tracting those configurations which have one or more
holes below the bottom of the well. Thus one gets

E(P’;Lh(pmhw)=p3rm /gﬂ ’

Pwm =maximum(p,,h,) ,

w(p'mhﬂ’PwhwE)

n n
_ 848y [E—A(prhqepy,h, )"

PR p thNn — 1) f(h),
©)
Lyl Bz | g
fh=2 (=W ||=—F | SE-iVh].
i=0

(7

Here the function f(h) is the same as that used in the
one-component model'! except that the well depth is al-
lowed to vary with 4 to take into account that states pop-
ulated in the first few interactions might be limited to the
surface region of the nucleus and thus have a lower effec-

C. KALBACH 33

tive well depth. In practice this correction is only applied
for states with 4 <2. The quantity ©(E) is the Heaviside
function which is zero for a negative argument and unity
for a positive one.

B. Transition rates and residual two-body matrix elements

The residual two-body interactions in the exciton model
are the following: Ap =Ah =+1 or the creation of a
particle-hole pair; Ap =Ah = —1 or the destruction of a
particle-hole pair; and Ap =Ah=0 which involves the ex-
change of energy between degrees of freedom. In the
two-component exciton model, the transition rates which
need to be considered are A,, and A,_ for the creation
and destruction of proton particle-hole pairs; A, and A, _
for neutron pairs; and A, and A, for the conversion of a
proton pair into a neutron pair and vice versa. Each of
these can be written in terms of a corresponding transition
state density using time dependent perturbation theory so
that, for example,

2
A’1r+(P1rvh1r’Pwhv)= —ﬁlr‘Mzwﬂ+(thmpwhwE) , (8)

where M? is some appropriate effective residual mean
square matrix element for the interaction. If, as assumed
by Dobes and Bétak,* M? is different for interactions be-
tween different kinds of nucleons so that
M2 M2, M2, then Eq. (8) becomes

Aet(Dashapyhy)= %T‘[Mfmww+(thmehwE)

+M3rvwwr+(p1nh1npv’hwE)]

&)

with the first term corresponding to excitation of a proton
particle-hole pair by a proton degree of freedom (either a
particle or a hole) and the second to excitation by a neu-
tron degree of freedom.

The question of whether M? should be assumed to have
a constant average value, as assumed by Gupta,3 or to
have different values for p-p, n-n, and p-n interactions is a
complex one and is discussed further in Sec. III of this pa-

TABLE 1. Calculated and exact numbers of states.®

(1/84)0(pgyhy,0,0,E)°

n Parhs g.E Exact Williams® This work?
2 1,1 21 21 21 21
2,0 21 9 10 9
3 2,1 13 30 36 30
2,1 17 56 64 56
2,1 21 90 100 90
4 2,2 21 330 333 333
3,1 21 102 176 103
5 3,2 21 249 406 257

“*Calculated numbers have been rounded to the nearest integer.

Given by Eq. (1).
°A(pg,h4,0,0) from Eq. (2).
94 (py,hy,0,0) from Egs. (3)—(5).
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per. Results for different M2, MZ, and M 2 are
presented here and are easily converted to the results for a
single M2,

The method used here to derive the transition state den-
sities is basically that used in Ref. 12 where bound and
unbound states were distinguished from one another. The
average final state densities in this work are each found
from a one-dimensional integral and are solved analytical-
ly whereas Dobes and Bétak* use a multidimensional in-
tegral which was treated with the Cauchy residue
theorem. They derive the pair annihilation rates and A,
and then use the steady state equilibrium condition to ob-
tain the results for pair creation and A,,. Unfortunately,

J

it is the pair creation rates which are most important in
preequilibrium calculations, while in Ref. 4 these are ob-
tained only indirectly, and the Pauli-corrected results are
never quoted. Here all of the needed transition state den-
sities are derived directly and with the Pauli corrections.
The steady state equilibrium criterion can then be used as
an internal consistency check. The derivations are done in
the limit of an infinitely deep well, and finite well depth
corrections are applied to the answers in an approximate
way.

For the case of a proton particle-hole pair being excited
by a neutron degree of freedom, the transition state densi-
ty is given by

2 ©'(0,0,1,0,e)0(py4sh 4,p,— 1,0, E —e)

L
wv1r+(p1r7hmpv’hv’E) = le

@(prhpspyshy E)

w'(1,1,1,0,e)de

fh ©'(0,0,0,1,e)0(p A mspyshty—1,E —e)

®'(1,1,0,1,e)de . (10)

Ly (P rshgsPyshy, E)

The first term represents excitation by a neutron particle
degree of freedom, the second by a neutron hole degree of
freedom. In each term the degrees of freedom are divided
into those which are involved in the transition and those
which are spectators. The ratio in each integral represents
the fraction of the initial states which have the active de-
gree of freedom with energy e. The additional factor is
the state density for the active degrees of freedom in the
final state. The primes in the state densities for the active
parts of the system indicate that the Pauli correction
function 4 is to be evaluated bearing in mind that there
are other degrees of freedom in the system and that the

|

[

exclusion principle operates simultaneously on all of
them. Likewise, the limits of integration reflect the re-
quirements of the exclusion principle. Thus, for instance,
the maximum energy of the exciting particle is not L, =E
but rather

L2=E—A(thmpv‘“1»hv)
and the minimum energy is not L;=0 but
L1=A(p1r+l’h1r+1’pv’hv)—"4(pmhmpv—lyhv) .

Evaluating the integral gives the result

nvgvgfr [E —A (p1r+ 19h1r+ I’Pv’hv)]n-H

’h B whvyE =
wwr+(P1r mP ) n(n+1)

[E —4 (thmpwhv)]n -1

(11)

The same method is then applied to excitation of a proton pair by a proton degree of freedom. The two answers are then
combined and the finite well depth correction function for the final states is applied to give

2 n+1
2 8 [E’_A(pfr+1yh11+lrpv’h)]
Aot (ParhmspPyhy) =" M2 +2n,g M2 )f(h+1). 12
fr+(p 1Tp ) h zn(n+1) [E_A(pﬂ,hﬂ’pv,hv)]n_l (n‘n'gﬂ mr+ n gv ﬂv)f( + ) ( )
In a similar way, the other transition rates are given by
h
A,_(p,,h,,pv,hv)=3§p"2 T [(np—2)g. M2 +2n,g M2 1f(h—1), (13)
n—1
27 . .2 ) 2 E —B(prhgpyshy)
A Jhppyhy)=—Mp,—— h
»PrhmPy,hy) 7 M, 8yf (h) E—A(p, hopoh)
X{Z[E _B(thmpwhv)]"’n |A(pfnhmpwhv)"‘A(pﬂ"1’h1r_lypv+1’hv+1)| } ’ (14)
where

B(p b 5P yohy) =maximum(A4 (p ., h 4py,hy ), Alpr—1Lh,—1,p,+1,h,+1)] . (15)
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There are analogous expressions for A, , A,_, and A,, in
which the roles of protons and neutrons are interchanged.

Equations (12)—(14) and their analogs agree with the
results of Bétak et al.® and of Dobes and Bétak* when the
Pauli corrections are ignored, but they differ from those
of the latter reference in the way that the effects of the
Pauli principle are included. It should also be noted that
in Ref. 6 it was assumed that g,=g,. Neither of these
references use finite well depth corrections. The correc-
tions used here on the transition rates are admittedly
somewhat ad hoc, but they are the ones proposed in Ref.
11 and shown there to agree with the more complicated

J

w(thmpwhv))"1r+(pmhw:pv’hv)=w(p1r+lrhfr+ lipv,hv))‘ﬂ—(Pﬂ+1’h1r+1’pv1hv) ’
O(PrshesPyh Ay (Prshgsp b)) =0(p b gpy+ LA+ DA, _(prhpy+ 1, +1),
a’(pmhmpv’hv)kﬂv(pmhmpwhv)zw([’ﬂ_ lrhﬂ'— l’pv+ I!hv"" 1 )A'wr(p‘rr— 11h1r_ lypv+ l’hv+ 1.

All three of these conditions can be shown to be exactly
satisfied by state densities from Egs. (3)—(7) and transi-
tion rates given by Egs. (12)—(15).

It should be pointed out that this consistency is a neces-
sary but not a sufficient condition for the accuracy of the
transition rates based on the accuracy of the total state
densities. In particular the present results cannot be exact
because the pair annihilation rates contain no corrections
for the effects of the exclusion principle. In this respect
the results of Ref. 4 have a slight advantage over the
present transition rates.

(25, +1)

exact results to within 5% for excitation energies below 2
V.

C. Consistency of transition rates and state densities

At statistical equilibrium all states of the system should
be equally likely to be populated so that the probability of
finding the nucleus in any one of its states specified by
Pws has Py, and h, should be proportional to the density
of such states. An important check for consistency be-
tween the state densities and the transition rates is that the
transitions not disturb the equilibrium; that forward and
backward transitions occur with equal rates. The three
consistency conditions in the exciton model are

(16a)
(16b)
(16¢)

[

D. Particle emission rates

Particle emission rates in the two-component exciton
model are, like those in the one-component model, derived
from microscopic reversibility. The result has exactly the
same form except that there is now one emission rate for
each proton-neutron configuration at a given exciton
number and there are no longer any factors of the type!'>
Qs (p) to approximate the effects of proton-neutron dis-
tinguishability.

The two-component emission rate for protons of energy
€ from a specific group of configurations is

o(p—1hp,h,,E—B,—€)

Wapmshmpyhy,€)= —Tr_z—ﬁ.s—_#”ea"( €)

w(pmhmpv’hwE)

17

with an analogous expression for neutron emission. In general, for a particle of type b with proton number Z, and neu-

tron number N, the emission rate becomes
(2sp+1)

&(pr—2Zp,hg,py—Npy,h,,E —B,—€)

Wb(thmehwf) = -Fﬁ‘:;_.ubeab(f)

where s, B, and o,(€) are the spin, binding energy in
the composite system, and inverse reaction cross section,
respectively, for the emitted particle. Equation (18) is the
result also given by Gupta,® and Eq. (17) agrees with the
result of Dobe$ and Bétak* for nucleon emission.

III. RESIDUAL TWO-BODY MATRIX ELEMENTS

As was mentioned in the previous section, Gupta® as-
sumes a constant residual two-body matrix element while
Dobes and Bétak* have used different matrix elements de-
pending on the nature of the interacting particles. In ad-
dition to relatively small differences which disappear in
the N =Z limit, their value of M2, is nearly three times
their values of MZ, or M2, The reason for this factor is
that the free nucleon-nucleon scattering cross section is
about a factor of 3 larger between unlike nucleons than
between like ones. On the other hand, it does not follow

a’(thmehwE)

) (18)

—

automatically that this factor should apply inside a nu-
cleus, and in particular there is no a priori reason why it
should apply to residual interactions inside the nucleus.
These questions are considered below.

A. Full two-body interactions in nuclei

With regard to full two-body interactions in real nuclei,
the nuclear matter calculations of Kikuchi and Kawai,'*
which include the effects of the Pauli exclusion principle,
indicate that the difference in the free scattering cross sec-
tions should appear also in the cross sections for scatter-
ing inside the nucleus.

A more detailed look in which angular momentum and
isospin coupling restrictions are considered can be ob-
tained by examining the centroid shifts of particle-
particle, particle-hole, and hole-hole multiplets of states
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outside of a closed shell configuration. These multiplets
result from the coupling of two particles with single parti-
cle angular momenta j;, and j,. Because the terminology
used by spectroscopists in discussing the multiplets has
led to some confusion as to their nature, it is worth exam-
ining them in some detail.

As explained in Refs. 15 and 16 the centroid shift is the
average energy of the multiplet relative to the energy it
would have in the absence of any interaction between the
two particles. For example, the nucleus 2!°Bi has one pro-
ton and one neutron outside of a closed 2®Pb core. From
the energies of the single proton states in 2®Bi and of the
single neutron states in 2°Pb, it is possible to calculate the
unperturbed energy of the configurations in 2!°Bi having a
proton in the j; single particle state and a neutron in the
Jj2 single particle state. This is the energy in the absence
of any two-body interaction between the proton and neu-
tron. But the interaction between the two particles exists
and furthermore depends on the relative orientations of
their angular momentum vectors so that the states with
different spin J are no longer degenerate in energy and, in
general, the average energy for the resulting multiplet of
states is shifted from its unperturbed value.!” This shift
represents an estimate of the matrix elements for the full
interaction between the two particles averaged over all
possible orientations of their angular momentum vectors.

The confusion has arisen because this interaction is
sometimes termed ‘“residual” by nuclear spectroscopists.
It is, however, residual only in the sense that it represents
a small part of the total Hamiltonian of the system. The
presence of the core generates the zero-body part while the
interactions of individual valence particles with the core
give the one-body part. The full interaction between the
two valence particles gives the two-body part of the Ham-
iltonian. This division of the Hamiltonian is possible in
shell model calculations because a relatively inert core of
nucleons exists and the active particles can be identified.
In statistical model calculations, on the other hand, such a
division is not possible. Any of the particles may be ac-
tive.

The usual approach in the exciton model is to leave the
Hamiltonian suitably undefined and to assume that the
main part of the two-body interaction between all
A (A —1)/2 pairs of nucleons (where A is the mass num-
ber of the system) has gone into the potential well in
which the assumed set of single particle states exists. The
resulting configurations with varying numbers of particle
and hole degrees of freedom are not true eigenstates of the
system, and transitions between configurations are caused
by residual parts of the two-body interactions. Thus it is
not clear that one should ever expect the average effective
residual matrix element used in exciton model calculations
to be the same as that extracted from multiplet centroid
analyses (as Dobe§ and Bétak* imply that one should) even
if all of the important parameters were included in the
statistical bookkeeping. Nor should their systematics
necessarily be the same. The systematics of the residual
matrix elements will depend on which parts of the full in-
teraction are producing them.

Another way to look at things is to realize that the en-
ergy levels used in the multiplet centroid analysis are re-

lated to the diagonal matrix elements and the eigenvalues
of the system, while the residual matrix elements occur-
ring in exciton model transition rates are more like off-
diagonal matrix elements. If the particle-hole states were
really eigenstates of the system, then these matrix ele-
ments would be zero and there would be no transitions.

In spite of these differences and because so many people
start with free nucleon-nucleon interactions for preequili-
brium calculations, it may still be instructive to look at es-
timates of the full two-body interaction in nuclei.

To apply the results of multiplet centroid analysis to
the problem of the relative matrix elements for proton-
proton and proton-neutron interactions, it is necessary to
take the isospin of the multiplets into consideration. Here
the treatment used by Schiffer and True'” in looking at a
large body of data is most useful. To simplify matters,
only data for multiplets for nonidentical orbits will be
considered. In general it is assumed that (neglecting the
Coulomb force) the same basic interaction is applicable
for proton-proton, neutron-neutron, and proton-neutron
interactions. The difference is that proton-neutron multi-
plets have mixed isospin (the T of the pair is O or 1) while
multiplets involving like particles have only T=1 so that
only the T=1 component of the interaction is operative.
Schiffer and True'” actually use this fact to separate the
T=0and T=1 components of the two-body interaction.

The data from their paper for all p-n multiplets and for
nonidentical orbit T=1 (n-n or p-p) multiplets have been
analyzed to extract centroid shifts. These have been sup-
plemented in Fig. 2 by centroid shifts (or average two-
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FIG. 2. Full two-body matrix elements derived by multipole
centroid analysis of multiplets of states. The symbols indicate
whether the matrix element is for like or unlike nucleons. The
curve shows the effective residual rms matrix elements pro-
visionally adopted in this work.
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body matrix elements) for p-n multiplets from Refs. 15
and 18. Indeed, while there is significant scatter, the ma-
trix elements for the like particle, T=1 case, shown as
open squares, tend to fall well below the values for the
corresponding p-n multiplets. The factors range from 2.7
to 7.6 corresponding to factors of 7.3 to 58 in M2, much
larger than the factors found in the free nucleon-nucleon
scattering cross sections.

This may, however, be somewhat misleading since the
T=0 matrix elements for individual spin members of a
given multiplet always have the same sign while the T=1
matrix elements will typically have both signs and will
largely cancel out in computing the centroid shift. Using
the absolute value of the matrix elements for the individu-
al J to compute the average for the T=1 multiplets yields
M values that are factors of 1.5 to 2.4 below the values
for the p-n multiplets corresponding to factors of 2.25 to
5.8 in M2, much closer to the factor of 3 seen in the free
nucleon-nucleon scattering cross section.

Thus there seems to be some evidence that the full
two-body matrix elements for interactions inside the nu-
cleus should be smaller between like nucleons (two pro-
tons or two neutrons) than between a proton and a neu-
tron, but exactly how much smaller is hard to estimate. A
factor of 3 is probably not a bad estimate.

B. Residual two-body interactions in nuclei

What about the case of the residual two-body interac-
tions used in the exciton model? For formation and an-
nihilation of a particle-hole pair, distinguishability alone
reduces the interaction rate between like particles by a fac-
tor of about 2, quite apart from any difference in the resi-
dual matrix element. The main question with regard to
M? is to what extent the parts of the full two-body in-
teraction which are isospin dependent have been included
in the potential well which generates the single particle
states. This question cannot be answered a priori.

It is possible that some guidance can be obtained from
the imaginary part of the optical potential, which deter-
mines the damping width of the initial p,h =1,0 (or target
plus projectile) configuration. On the other hand, these
widths include the creation of both neutron and proton
particle-hole pairs and thus the effects of both n-p and
p-p (or n-n) interactions. This fact combined with a fair
amount of diversity in the form of the imaginary optical
potential makes the use of this potential for unraveling in-
formation on the relative matrix elements for residual in-
teractions among different kinds of nucleons somewhat
difficult.

In view of this uncertainty it seems reasonable to as-
sume, at least initially, that all of the mean squared ma-
trix elements are equal for the purposes of model calcula-
tions. In the analysis of data, the possibility that M2,
may be larger than the other two should be kept in mind
and the factor of 3 introduced if and only if it is required
by a wide variety of data. This question will be dealt with,
in the second paper in this series.

C. Numerical value of M?

Assuming, as mentioned above, that
M*=M2 =M% =M?,, (19)

it is still necessary to assign a numerical value to the mean
square residual matrix element.

The functional dependence of M? used here is a simpli-
fied reparametrization of the results of Ref. 19 and has
the form

M*n,E)=K A 3(e +20.9 MeV)~3, (20)
where
e=E/n Qn

is the average excitation energy per degree of freedom.
The functional form used in Ref. 19 was slightly different
in each of four domains of the variable e. Converting to
the present form requires that the normalization constant
K from that work be multiplied by 3% 10* to get K.
Equation (20) then agrees with the earlier results to within
7% for 1 MeV <e <32 MeV and can probably be better
extrapolated to higher e values. (The results of Ref. 19
would very likely require a fifth domain of e to be de-
fined.) For the e values important in the early stages of
most preequilibrium reactions (5—30 MeV) the agreement
is no worse than 4%.

In the one-component exciton model a value of K=135
MeV? was used. However, ®n4 +o,, in the present two-
component model is roughly + of w, in the one-
component model if M2, =M?2,. This suggests that to re-
tain the same normalization of the interaction rates rela-
tive to the particle emission rates (and thus retain the
same intensity for the calculated preequilibrium emission
spectra), K should be multiplied by 5 and take on the
value K=360 MeV>. In the simplified reparametrization
of M? used here corresponds to

K,=1.08X10° MeV> . (22)

This is adopted as a provisional value only, because the
division of strength between the proton and neutron emis-
sion channels in the present work is different from that in
the one-component model used to set the value of K. Pos-
sible adjustments to K, based on comparisons with data
will be discussed in paper II. The matrix elements of Eqs.
(20)—(22) for E/n=1.5 MeV are also shown in Fig. 2.

IV. REACTION CALCULATIONS

The primary quantity calculated in the exciton model is
the angle integrated energy spectrum of particles emitted
from the initial composite nucleus. The question of angu-
lar distributions (or double differential cross sections) is
discussed in Sec. V, and extensions to multiple particle
emission have been made even in the two-component
model,* but this paper focuses on the energy spectrum for
the first emitted particle. The preequilibrium component
to this spectrum for a particle of type b is given by
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dGb(é')

de =0a(€a)2zspre(thmpwhv)

pre P Py

XWb(thmehwf) s (23)

where o, is the cross section for forming the composite
nucleus when a particle of type a is incident at energy ¢,.
The quantity Sy is the time-integrated strength passing
through the specified set of configurations during the
preequilibrium phase of the reaction. The equilibrium
component can then be evaluated using the traditional
compound nucleus model or from the equilibrium occupa-
tion probabilities in the exciton model. Alternatively, if S

|

dP(p4shpspy,hy,t)
dt

is evaluated over the entire course of the reaction (i.e., for
both the preequilibrium and equilibrium phases) the result
is S, and an equation analogous to Eq. (23) gives the to-
tal reaction cross section.

There are three basic ways in which S has been evaluat-
ed in the one-component exciton model. Their advantages
and disadvantages, especially with regard to the two-
component model, are discussed below.

A. Numerical solutions to the master equations

The master or flow equations describing the equilibra-
tion of the composite nucleus are a straightforward exten-
sion of their one-component counterparts. They are’

=P(pa+Lhs+1,pnh Ay _(prt+Lh+1,ph )+ P(prhpp,+ LA, +1L,OA, _(pphgp,+1,h,+1)
+Ppr—VLh—1L,p,,h Ay (pr—Lh,—1,p,h )+ P(prhpp,— LA, — LA, (prhmpy,—1,h,—1)
+P(p+Lh,+1,p,—Lh,—1,0A (pr+1,h,+1,p,—1,h,—1)

+P(p,—1,h,

where 7 is the lifetime of the specified class of states for
all six types of residual interaction plus particle emission.
The occupation probabilities P give the probability of
finding the system in the specified configuration at time .

Once the master equations have been solved numerical-
ly starting from some specified set of initial conditions
and continuing to time #., at which equilibrium can be
said to have been reached, S, is evaluated as

t
SerePmshap b )= [ Ppphapyhy,ndt . (25)

One advantage of numerical integration of the master
equations is that the time evolution of the system can be
studied. This is primarily useful for pedagogical studies
but is not an advantage in routine calculations for com-
parisons with data or for practical applications of the
model. The main advantage in these cases is that all of
the residual interactions have been fully taken into ac-
count.

The principal disadvantage is the computational time
required. For the simple one-component model where
each equation is coupled to only two others and the total
number of equations is of the order p,.,=(2gE)'/? the
problem is quite tractable and has been frequently used
beginning in 1971.2 Indeed, in this case much of the com-
putation time is used in calculating the two-body transi-
tion rates and particle emission rates. The method has,
however, not been applied in the two-component model
where there are of order p2,,/2=gE equations each cou-
pled to six others. Because of this increased complexity,
the numerical solution of the master equations is not used
in this work either.

- l’pv+19hv+ lyt)kvrr(p17° l’hw—lrpv+ l’hv+ l)_P(pmhmpv:hV)t)/T(th1rrpv’hv) ’ (24)

B. Solutions of the time-integrated master equations

Since the quantities of interest for practical reaction
calculations are not the occupation probabilities them-
selves but rather their time integral, a number of ap-
proaches in the one-component model involve solving the
time integrated master equations directly. Both exact?*?!
and approximate?? solutions have been given in the litera-
ture. The latter approach is the one carried over by Dobes
and Bétak* into the two-component model.

The advantage to these methods as opposed to the nu-
merical integration of the original master equations is that
they are computationally somewhat faster, for which one
pays the price of not following the time evolution of the
system. Of course, as with the numerical solution, all of
the transition types are considered exactly (at least for the
exact solutions).

The feature of this approach that has been proposed as
an advantage over the closed form results discussed below
is that the preequilibrium and equilibrium parts of the re-
action are treated together and the time integral is typical-
ly taken from zero (the time the projectile strikes the tar-
get) to infinity. (In the numerical integration discussed
above, the equilibrium component may be taken either
from the equilibrium limit of the exciton model or from
evaporation models.) Pedagogically it is an advantage to
consider all the phases of the reaction with a single for-
malism. But greater consistency in the calculations does
not necessarily mean better physics. There are features
and approximations in the exciton model which make it
less suitable in the equilibrium limit than the more con-
ventional Weisskopf-Ewing evaporation model.

One of the most important of these relates to the state
densities used to calculate particle emission rates. For the
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exciton model emission rates to be consistent with the eva-
poration model in the equilibrium limit, the particle-hole
state densities summed over all accessible configurations
should equal (or at least be proportional to) the corre-
sponding total state densities.> As has been pointed out,'’
one of the difficulties is that in the exciton model it is as-
sumed that particle and hole degrees of freedom are al-
ways created in pairs so that the quantity p-h is a con-
stant of the nucleus considered. (In the two-component
model p,-h, and p,-h, are both constant.) In reality,
however, passive particles and holes can be either created
or destroyed in the two-body interactions so that p-h is
not a constant of the system. For example, in a pair an-
nihilation interaction a particle degree of freedom may
“annihilate” a passive hole, giving up its energy to anoth-
er degree of freedom so that p is decreased by one unit in
the interaction but 4 is not. Thus in the equilibrium limit
all states of the composite nucleus should be populated,
regardless of their value of p-h.

For the case where p =h there is no problem. The state
density w(p,h =p,E) contains all states at excitation ener-
gy E which have p particle-hole pairs regardless of how
many of the particles and holes are degrees of freedom
and how many are passive. Thus the sum of w(p,h =p,E)
over p includes all states of the system and, as Williams
demonstrated,’ is, to a good approximation, consistent
with the usual one-Fermi-gas state density frequently used
in evaporation calculations. Thus

2(7’gE /6)'/?]
(p,h =p,E) ~ 22l
%wp P.E) (48)'’E

(26)

On the other hand, when p=h, the near equivalence of
Eq. (26) disappears because not all of the particle-hole
states have been counted. Consider the case where p > h.
The quantity w(p,h,E) now includes only those states at
excitation energy E and with p particle-hole pairs which
have at least p-h passive holes. Thus in general it is and
should be true that

exp[2(7gE /6)'/?]

(48)!2E @n

p

The size of this effect is illustrated for an extreme case
in Table II. The summed state densities for both the (in-
correct) Williams expression for the Pauli correction func-

tion and the particle-hole symmetric expression are given.

These corrections are the one-component analogs of Egs.
(2) and (3)—(5), respectively.
These results imply that if the state densities in the ex-

citon model always had p =h then the equilibrium emis-
sion rates would be roughly consistent with what is used
in the evaporation model. But this condition is not ful-
filled. In general, the composite nucleus starts out with p
greater than A by the number of nucleons in the projectile
so that p =h + A, where A, is the mass number of the
projectile. In the residual nuclei typically p =h + A4, — 4,
where A4, is the mass number of the emitted particle.
Thus in the early stages of a reaction, the composite nu-
cleus and the residual nuclei will generally have different
p-h values and residual nuclei populated by nucleon emis-
sion will have a different value than those populated by
complex particle emission. Because it is assumed in the
exciton model that p-h is constant with time, the relative
equilibrium emission rates for different mass particles in
the exciton model are not consistent with those from the
Weisskopf-Ewing evaporation model.!* (Considering
cluster emission for complex particles in the exciton
model so that only one degree of freedom is lost during
emission does not solve the problem because the “single
particle” state density used for the emitted particle must
now be that for the cluster states, thus introducing a dif-
ferent inconsistency with the evaporation model.)

The difficulty is that the assumption of a constant p-h
is probably a reasonable one in the early stages of the
equilibration process, but as more interactions occur, the
probability that passive particles or holes can become de-
grees of freedom or that newly created particles and holes
may be passive increases. Until and unless this sort of ef-
fect is taken into account in the exciton model, it seems
preferable to restrict that model to the preequilibrium
phase of the reaction and to use a compound nucleus
model to treat the equilibrium phase. For this reason it
was decided not to pursue the approach of the time in-
tegrated master equations in the two-component exciton
model. Efforts are currently underway,?* however, to uni-
fy the preequilibrium and equilibrium models.

It should be pointed out that there has also been pro-
posed?*?5 a related matrix method for solving the master
equations themselves. This method relies? on the specific
tridiagonal nature of the matrix relating the set of time
derivatives of the occupation probabilities to the occupa-
tion probabilities themselves. It, in principle, can yield
occupation probabilities at any arbitrary time following
the onset of the reaction process but in practice has gen-
erally been used to get the time integrated spectra for the
entire reaction including the equilibrium phase. It is more
awkward to use if only the preequilibrium component is
to be obtained because the time at which equilibrium can

TABLE II. Comparison of summed particle-hole state densities with total state densities for gE=20.

S o(p,h,E)/g
p

Williams Kalbach
|p—h| p>h p<h o(E)/g?
0 671 671 671 692
1 529 674 311
2 327 539 116

exp[2(72gE /6)*]

a(E)=
w(E) (48)'7%gE
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be said to have been achieved must be defined. Further its
application in the two-component model is hindered by
the increased dimensionality of the problem.

C. Closed form reaction equations

The third and original' method for reaction calcula-
tions is what is known as the closed form method. It is
used exclusively for the preequilibrium part of the reac-
tion and utilizes the fact that in the early stages (where
most of the preequilibrium emission occurs) pair creation
rates are much larger than pair annihilation rates. It is
less precise than using the master equations, but the level
of approximation is consistent with other approximations
in the model (e.g., using an equispacing model or neglect-
ing angular momentum) and the calculations are quite
simple.

In the one-component exciton model, it is assumed that
the strength of the reaction passes through a single hierar-
chy of states (as shown in Fig. 1) in the “never come
back” approximation in which pair annihilation interac-
tions are ignored. In this case Sp.(p,h) can be approxi-
mated by the average lifetime r(p,h) of the configuration
with an extra factor to reduce the strength according to
the amount which has already been lost to particle emis-
sion from simpler states. Either the full lifetime (consid-
ering pair creation, pair annihilation, and particle emis-
sion) or a partial lifetime which neglects pair annihilation
can be used.

In the present two-component model, exciton scattering
interactions must be considered. The reaction is then en-
visioned to occur as a series of pair creation interactions

J

with the possibility of converting proton particle-hole
pairs to neutron pairs or vice versa after each pair
creation. Pair annihilation is neglected.

A quantity similar to the occupation probabilities is de-
fined. It is denoted P,(p,p,) and represents the strength
populating the specified set of states by pair creation
from states with p —1 particle degrees of freedom. To
simplify the notation, configurations are here denoted by
the quantities p and p,. The total strength which passes
through these configurations is greater than P, however,
because the same states can also be populated by exchange
interactions. The total strength passing through a given
set of configurations is thus denoted by P,(p,p,)-

The reaction is assumed to start with the population of
states containing Z, protons, N, neutrons, and one more
particle-hole pair (either a proton or a neutron pair). Here
Z, and N, are the proton and neutron numbers of the
projectile. The relative probabilities of exciting a proton
or a neutron pair in the initial target-projectile interaction
are determined by the pair creation rates for the target
plus projectile configuration. Thus the initial strengths
are assumed to be

Pi(A,+1,Z,)
Ay4(Z4,0,N,,0,E)
=7 , (28a)
v+(Za »O,NayO’E)+}‘1r+(Za ’OyNa»OvE)
P(A,+1,Z,+1)=1—P(4,+1,Z,) . (28b)

In the case where any arbitrary number of exchange in-
teractions can occur before the strength leaves the states
with p = A4, + 1, the total strength passing through the in-
itial configurations is

0

PZ(Aa+1’Za)=[P1(Aa+1»Za)+P1(Aa+1)Za+I)FW(Aa+1’Za+1)] 2 [Fw(Aa+ I’Za)rﬂv(Aa+1rZa+1)]i ’ (29)

where the terms proportional to P;(A4,+1,Z,) have an
even number of exchange interactions and those propor-
tional to P(A4,+1,Z,+1) have an odd number. There is
an analogous expression for P,(4,+1,Z,+1). The
quantities ", and T, are branching ratios for exchange
interactions. These and the corresponding quantities for
pair creation are defined as

TP r) =M D,p )T p,ps) (30a)
Lol PP ) = P,P )T DD ) (30b)
Ly (ospa)=Ay 1 (D,p2)T(PPA) (30c)
Loar(pps)=Ar i (p:p )7 (PP ) (30d)
(PPa)= Ay (PsPr) + Ay (PsP )+ Aa(DsP )

+ Anppa)+ Eb‘,  Woppmede e

For the simple states which are populated early in the
reaction and from which most of the preequilibrium parti-
cle emission occurs, the branching ratios for the exchange
interactions are fairly small, and it is sufficient to retain

i=0

|

only the leading i=0 term in the sum of Eq. (29). This
approximation says that there will be no more than one
exchange interaction before particle emission or pair
creation occurs. Thus strength that arrives at states with
a specified p,p, through pair creation can undergo ex-
change, pair creation, or particle emission and is charac-
terized by the branching ratios and lifetime given by Eqgs.
(30) and (31). On the other hand, strength arriving by ex-
change from states specified by p,p,—1 or p,p,+1 only
has the choice between pair creation and particle emission
in this approximation. The appropriate lifetime to use for
this strength is

T(ppy)= [yv+(p,pﬂ)+n+(p,pﬁ>
-1

+ Zf Wy (p,pr €)de (32)
b

and the branching ratios are defined analogously to Eq.
(30) but with 7' replacing 7. In order to simplify later
equations it is useful to define

Lp,ps)=7(p,p)/mp,ps) . (33)

In the one-exchange approximation with the initial con-
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ditions of Eq. (28), Eq. (29) becomes approximated as
Py(A,+1,Z,)=P(A,+1,Z,)+P (A, +1,Z,+1)
XA, +1,Z,+1)L(4,+1,Z,) ,
(34)

where the factor L, which is greater than unity, helps to
correct for the effects of multiple exchange processes. In
general the strength passing through states specified by
Dspy is

Py(p,pr)=P1(p,ps)
+ [Pl(p:prr_ 1 )FW(P’pﬂ_ 1 )
+P(ppr+ DIl lp:p+DIL (p,p,)  (35)

and the strength arriving at states specified by p +1,p, by
pair creation is

PI(P + l’Pﬂ)=P2(P)p1r"1)r1r+(p)p1r‘"'l)
+P2(prprr)rv+(p’p1r) . (36)

Finally, the time integrated strengths for Eq. (23) are
given by

Spre(p’pﬂ)=P2(p’pﬂ)T(p’p1r) . (37

The equilibrium component needed to supplement Eq.
(23) is given by the evaporation model expression

doy(e) (€g) Wyle) (38)
—_— =0g4 a!’ << T .,
de |q "3 [ Wylelde
b
(2sp+1) (E —By —é€)
Wb(E)z——ﬂ;ﬁ—:‘#beab(e)w_—a—)(—_EbT_ﬁ_ . (39)

In Eq. (38) the quantity o, .4 is that part of the initial re-
action cross section which did not involve preequilibrium
emission of nucleons or alpha particles. The state densi-
ties in Eq. (39) can be evaluated either for a single Fermi
gas, as in the right-hand side of Eq. (26), for consistency
with calculations in the one-component exciton model, or,
more appropriately, they can be evaluated using the corre-
sponding two-Fermi-gas expression

exp[2(aE)'"?]
2= 12g /AR S74

w(E )=1 (40)
where the level

density parameter is
a =g, +g,)/6.

given by

V. NUMERICAL RESULTS

A. Model code and input

The formalism outlined in the previous three sections
has been coded into the computer program PRECO-E with
the provisional assumptions that the matrix elements for
proton-proton, proton-neutron, and neutron-neutron in-
teractions are equal and have a normalization constant
given by Eq. (22). Particle numbers up to the most prob-
able equilibrium value p (or up to 20 if p exceeds 20) are
considered in the calculations. Additionally, the sum over

p in Eq. (23) is terminated if the total strength passing
through states with a given number of particle degrees of
freedom falls below 0.001. For each value of p, all possi-
ble values of p, from Z, to p —N, are considered. The
one-Fermi-gas state density given on the right-hand side
of Egs. (26) and (27) is temporarily used in calculating the
equilibrium components in order to facilitate comparison
with the one-component exciton model. Emission of
more than one particle is not considered in this code.

The program PRECO-E also includes two important
features of PRECO-D (Ref. 26) (the corresponding one-
component exciton model code). One is the calculation of
angular distributions using the Kalbach and Mann sys-
tematics?”!? but with the multistep direct (MSD) cross
section here approximated by the preequilibrium cross
section. The second is the calculation of direct reaction
components such as stripping, pickup, and knockout for
reactions involving complex particles. Provisions in this
code for making pairing and shell corrections will be dis-
cussed in papers II and III in this series.

For the purposes of the present work, only (N,N) reac-
tions are considered, but alpha particle emission is au-
tomatically calculated in the program along with neutron
and proton emission since these are usually the dominant
exit channels of a reaction.

Binding energies for the calculations have been taken
from Ref. 28. The neutron and proton reaction cross sec-
tions used were those of Mani et al.?’ while the alpha par-
ticle reaction cross sections were those of Huizenga and
Igo.® These are the choices used in correpsponding one-
component exciton model calculations. The question of
an optimal choice of optical model reaction cross sections
is discussed in paper II in this series. An option in the
code allows the reaction and inverse cross sections to be
either read in as input or generated internally using the
approximation of Chatterjee et al.>! and Murthy et al.*
This approximation is good to about 5% except in the re-
gion of the Coulomb barrier for charged particles or
below 3 MeV for neutrons. Since the agreement between
the approximation and the exact optical model calcula-
tions for a given optical potential is very much better than
the agreement between reaction cross sections obtained
with different optical potentials, the approximation has
been used in the calculations presented here. The single
particle state densities have been assumed to be
g,=2/(13 MeV) and g,=N/(13 MeV) corresponding to
g =A/(13 MeV) in the one-component calculations. A
potential well depth of V' (h)=38 MeV is assumed for
states with one- or two-hole degrees of freedom. For
more complex states no finite well depth correction is
made.

B. State densities and transition rates

The particle-hole state densities given by Egs. (3)—(7)
are shown in Fig. 3 for the composite nucleus formed by
29 MeV protons incident on **Fe. Here the excitation en-
ergy of the composite nucleus is E=33.5 MeV. The value
of p, for a given number p of particle degrees of freedom
increases steadily with increasing p and remains close to
p/2. Further, the summed state density increases most
rapidly with p for small numbers of degrees of freedom
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FIG. 3. Particle-hole state densities in the two-component ex-
citon model for a sample system. The solid lines connect values
of w(p,p,,E) for a given value of p. The results for p =p=7
are shown with a heavier line. The dotted line shows
2,," o(p,p., E) as a function of p.

and levels out for higher p, as is expected. In this calcula-
tion, P has a value of 7 and the value of

o(p,E)= 3 o(p,p,,E)
Py
decreases for p> 7.
The transition rates for the same system are shown in
Fig. 4. It is seen that for a fixed number of degrees of

TRANSITION

i ; )
N

FIG. 4. Transition rates for the residual two-body interac-
tions in a simple system. The curves connect rates for initial
states having the same value of p. Pair creation rates for p=1
and scattering rates for p=2 are shown as points.

freedom, the rate of creating a proton particle-hole pair or
of converting a neutron pair to a proton pair is greatest
for the smallest values of p, and decreases steadily as p,
increases. The opposite is true for the rates for creating a
neutron pair or for transforming a proton pair into a neu-
tron pair. The net effect, then, is for the strength of the
reaction to tend to go into the classes of states which have
the highest state densities, i.e., those which have p, ~p,,.

As is expected from the one-component exciton model,
the average rate for pair creation for states with a given
number of degrees of freedom (averaged over all proton-
neutron configurations) decreases as p or n=p +h in-
creases. The exchange rates A,, and A, are smaller than
the corresponding pair creation rates for the states with
low values of p which are populated early in the reaction
but become comparable to the pair creation rates for
p ~pP. Once again the effect is to push the system towards
those classes of states with the highest state densities and
therefore the greatest probability of being populated at
equilibrium.

C. Test of the equal a priori probabilities assumption

In deriving particle emission rates in the one-
component exciton model, it is assumed that all states
with the same numbers of particle and hole degrees of
freedom are equally likely to be populated at any stage of
the reaction. This was verified in a very limited way>* for
the division between closed and open configurations. The
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FIG. 5. Test of the equal probabilities assumption in a sam-
ple system. The dotted curves are shown only for p=2. The
solid curves are the results from PRECO-E while the dashed
curves are what the results should be if the assumption were ex-
act.
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two-component model provides the ability to check the as-
sumption in more detail by investigating the distribution
of strength among different proton-neutron configura-
tions having the same number of particle and hole degrees
of freedom.

Figure 5 shows the values of P(p,p,) for the same re-
action system used earlier in this section (**Fe +p at
E=33.5 MeV). These are compared with the correspond-
ing state densities @(p,p,,E) which have been normalized
at each value of p to produce the same sum over p, as
P(p,p,). It can be seen that the agreement is excellent,
particularly near the peaks of the distributions, although
at higher p values the P, distribution tends to be sys-
tematically slightly broader than the w distribution.

For p=2, the dotted line shows the P, distribution
which would result from assuming that M2,=3M2_
=3M2, This is roughly the assumption made by Dobes
and Bétak* and is clearly in disagreement with the equal a
priori probabilities assumption as applied to all states of a
given p (as is done in the one-component exciton model).
This does not necessarily mean that an enhanced rate for
proton-neutron interactions as compared to the rates for
interactions between like nucleons is wrong, but the incon-
sistency of such an enhancement with the equal probabili-
ties assumption used in deriving emission rates must be
kept in mind.

D. Reaction strengths and
the importance of An=0 transitions

The increasing importance of the An=0 transition as p
increases has already been noted. Here the size of their ef-
fect on the time integrated strength S is examined.

For each p in the sample system being studied, Table
III compares the sums over p, of P(p,p,) and P,(p,p,).
The difference between them is the amount of strength
which has undergone an exchange interaction at that
value of p. These quantities are very similar for low
values of p indicating that the exchange interactions are
relatively unimportant and that the assumption of at most
one exchange at each p value is probably a very good one.
On the other hand, as p approaches p=7, the presence of
the exchange interactions in the one-exchange approxima-
tion doubles, on the average, the amount of strength pass-
ing through a given configuration. The one-exchange ap-
proximation is thus no longer very good. This situation is
mitigated both by the use of the longer lifetimes 7’ to treat
strength for which no further exchange interactions are

TABLE III. Reaction strengths as a function of the number
of particle degrees of freedom.

p > Pip,pa) S Py(p,p,) Ratio
Py Py
2 1.00 1.02 1.02
3 0.66 0.71 1.08
4 0.54 0.63 1.17
5 0.47 0.63 1.34
6 0.43 0.70 1.63
7 0.40 0.86 2.17

allowed in states with a given number of degrees of free-
dom and also by the fact that most of the preequilibrium
particle emission occurs from the very simple states where
the approximation is good. Thus the particle emission
spectra which are calculated are probably fairly accurate.

The decrease in the sum over P,(p,p,) with increasing
p seen in Table III is due to the loss of strength into parti-
cle emission channels.

E. Particle spectra in
the one- and two-component exciton models

Figure 6 shows a comparison of preequilibrium com-
ponents calculated with the present two-component exci-
ton model and with the one-component model formalism
of Refs. 12 and 33. Both the multistep direct and the full
preequilibrium components are given for the one-
component case. As was observed by Dobes and Bétak,*
the main differences are in the relative intensities of the
proton and neutron components. Here the shift occurs
primarily in the exchange channel, while the inelastic
spectra are virtually unchanged. (This could be altered by
shifting the normalization of M?2.)

While Fig. 6 gives a fair comparison of preequilibrium
spectral shapes, it is misleading about spectral intensities
because the one- and two-component models used in the
calculations contain different assumptions about the rela-
tive probabilities of exciting proton and neutron degrees
of freedom in the reaction. This has been a point of some
uncertainty in the exciton model.

In the one-component exciton model the basic particle
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FIG. 6. Comparison of preequilibrium energy spectra in the
one- and two-component exciton models. The solid curves are
from the present two-component model while the dashed curves
correspond to the one-component model where proton and neu-
tron particle-hole pairs are assumed to be excited in proportion
to the Z and N of the target [assumption (i) in the text]. The
lower dashed curve for neutron emission shows the multistep
direct part of the preequilibrium component.
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emission rates are derived using the equal probabilities as-
sumption. One of three assumptions is then made in or-
der to modify the emission rates for proton-neutron dis-
tinguishability:

(i) The original assumption was that proton and neu-
tron degrees of freedom are excited in proportion to the Z
and N of the target.>*!* This is the approach used in the
code PRECO-D to generate Fig. 6. It has the difficulty that
it is inconsistent with the equal probabilities assumption
used in deriving the basic emission rates.

(ii) A second method which is consistent with the
derivation of the basic emission rates is to assume that all
proton-neutron conﬁguratxons are populated in proportion
to their states densities.*®

(iii) The third method®®*” has been principally used in
the hybrid and geometry dependent hybrid models but is
applicable in the exciton model as well. In it an incident
nucleon is assumed to excite protons and neutrons in the
initial target-projectile interaction in proportion to the
corresponding free nucleon-nucleon scattering cross sec-
tions. In later pair creation interactions, protons and neu-
trons are considered to be excited with equal probabilities.
Like (i), this assumption is inconsistent with the deriva-
tion of the basic emission rates.

Of these three methods, the first gives the highest relative
yield in the inelastic channel while the third gives the
lowest.

In the two-component exciton model the question of ex-
citing proton versus neutron degrees of freedom is han-
dled more directly. In each case there is a proportionality
to the density of accessible final states and the appropriate
matrix element normalization constant K. Assumptions
(i)—(iii) above then correspond to different values

Ry=K /K=K, /K,,

Assumption (i) would mean in the two-component model
that

Kwgy /K@ =N/Z=1.

Since the ratio of the transition state densities is roughly
2, the ratio of the K’s is roughly %, which is also the
value of R,,. Assumption (ii) above corresponds to
Ry, =1, as assumed by Gupta® and as provisionally adopt-
ed here. Assumption (iii) seems to imply that

KW(I)W+/KWCI)”+E3

or Ry =+ whereas the assumption in Ref. 4, also based
on free nucleon-nucleon scattering cross sections, is that
RME3.

To best compare the effects of going from a one-
component to a two-component exciton model, the as-
sumption relating to proton-neutron distinguishability
should be as similar as possible. Thus the fairly new op-
tion in PRECO-D of using the assumptions of Gadioli
et al.® from (ii) above was employed. The results of
these calculations and calculations done with the present
two-component code PRECO-E are shown in Fig. 7. In
each case the results from the one- and two-component
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FIG. 7. Comparison of preequilibrium energy spectra in the
one- and two-component exciton models. The solid curves are
from the present two-component model while the dashed curves
come from the one-component model modified to have proton
and neutron particle-hole pairs excited in proportion to the state
densities of the classes of states populated in the interactions
[assumption (ii) in the text].

calculations agree extremely well. There is a tendency for
the two-component model to give about 10% more cross
section in the inelastic channel than the one-component
model with similar assumptions. This difference disap-
pears for excitation energies above about 40 MeV. A
similar result can be seen from Ref. 4 where assumption
(i) in the one-component model and Ry, =1/2 in the two-
component model yielded nearly identical spectra.

Thus the one- and two-component exciton models yield
essentially the same results if the same basic assumptions
about the relative probabilities of exciting proton and neu-
tron degrees of freedom are made. On the other hand,
changing the assumptions within either model can have a
significant effect on the relative yields. For the one-
component model this is illustrated by comparing the re-
sults in Figs. 6 and 7 while for the two-component model
it can be seen in the results of Ref. 4 where R, is varied.
This illustrates the need to find, in the two-component ex-
citon model, the correct choice for the residual two-body
matrix elements. This task is considered further in paper
IL

F. Angular distributions in
the one- and two-component models

Since the same formalism is used to describe the angu-
lar distributions in the one- and two-component versions
of the computer code PRECO, the only differences in the
shapes of the angular distributions calculated in the two
programs is due to the fact that in the two-component
model the multistep direct (MSD) cross section is approxi-
mated by the full preequilibrium cross section.

In the Kalbach and Mann systematics®’ the MSD com-
ponent of the cross section has a forward peaked angular
distribution while the multistep compound (MSC) com-
ponent is assumed to have an angular distribution which
is symmetric about 90° in the center of mass. The pre-
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FIG. 8. Comparison of angular distributions in the one- and
two-component exciton models. The solid and dashed curves
have the same significance as in Fig. 7. The numbers next to
each curve are the channel energy for the particle emission, the
percent of the cross section which comes from preequilibrium
emission, and the percent which is MSD. These curves include
both preequilibrium and evaporation components, but multiple
particle emission is not considered.

equilibrium component to an energy spectrum consists
mainly of the MSD cross section but, particularly at lower
emission energies, contains some MSC cross sections as
well. Thus it should be expected that the angular distribu-
tions calculated in the two-component exciton model
described here should be slightly more forward peaked
than those from the one-component model, where MSD
components are directly calculated.

Figure 8 shows some comparisons of one- and two-
component model angular distributions for emission ener-
gies at which the percent preequilibrium emission is
higher than the percent multistep direct. The differences
are noticeable but not large in the context of the approxi-
mate nature of the systematics and the typical uncertain-
ties present in the available data. At higher emission en-
ergies where the cross section is pure MSD, the differ-
ences, of course, disappear.

V1. SUMMARY AND CONCLUSIONS

A closed form version of the two-component exciton
model has been developed here. The state densities used
employ a more accurate Pauli correction than that used in
earlier work, and the transition rates are shown to be con-
sistent with a steady state equilibrium condition. A
remaining difficulty is that the pair annihilation rates
contain no corrections for the exclusion principle. A dis-
cussion of the effective residual two-body matrix elements
in the context of full two-body matrix elements found in
nuclei near closed shells is presented in an effort to under-
stand the relative strengths for interactions between like
and unlike nucleons. The assumption provisionally adopt-
ed is that the same residual M? should be used for
proton-proton, proton-neutron, and neutron-neutron in-
teractions.

A comparison has been made of the various methods
which were developed in the one-component exciton
model to describe the reaction process itself and to calcu-
late the energy spectra of the emitted particles. Argu-
ments for using the closed form approach in the two-
component model have been presented, and the appropri-
ate reaction equations are derived assuming that at most
one An=0 transition will occur at each value of p in the
course of the reaction.

Calculations with the two-component exciton model
code PRECO-E demonstrate the following conclusions:

(1) The equal probabilities assumption used in deriving
the one-component model emission rates is verified to a
remarkable degree when M? is taken to be independent of
the isospins of the interacting nucleons.

(2) Excellent agreement with the one-component exci-
ton model results is obtained when similar assumptions
are made about the relative probabilities of exciting pro-
ton and neutron particle-hole pairs. (Having different as-
sumptions causes the predicted proton-neutron yield ratios
to differ while the preequilibrium spectra are still relative-
ly similar in shape.)

(3) The assumption of at most one exchange or An=0
interaction at each p value is a good one for the simple
states from which most of the preequilibrium emission
occurs. It becomes increasingly worse as p approaches p,
but this should have only a small effect on the calculated
energy spectra.

(4) Because the MSD cross section is approximated by
the preequilibrium cross section for a given reaction, the
angular distributions in the two-component exciton model
are generally slightly more forward peaked than those
given in the one-component model where the MSD contri-
bution is calculated directly. The differences are, howev-
er, not large and disappear at high emission energies
where the cross section is pure MSD.

The two-component exciton model thus confirms much
of the work with the earlier one-component model, and
for simple calculations presents no significant advantage
over the latter. It does, however, open new avenues for
studying preequilibrium pairing and shell structure effects
which should depend not only on the number of degrees
of freedom present but on the specific proton-neutron
configuration. New possibilities for studying the long
standing questions of proton-neutron yield ratios are also
made available. These are the subjects of the remaining
papers in this series.
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