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The distorted wave Born series for inelastic scattering can be formulated as arising from the itera-
tion of an integral equation. The small parameter determining the convergence of the series can
then be identified as the spectral radius of the integral kernel. Such a formulation allows a detailed

investigation of what controls the accuracy of the distorted-wave Born approximation. Several im-

portant questions can then be answered, such as the following: what are the relevant dimensionless

parameters, what physics is important, and what is the best distortion potential to use. We consider
these questions in a simple, analytically solvable two-channel model.

I. INTRODUCTION

The distorted-wave Born approximation' (DWBA) is
one of the most commonly used methods in all of reaction
theory. It is highly successful in nuclear, i atomic, i and
chemical physics. Despite this success, there has been lit-
tle analysis of what physics controls the accuracy of the
DWBA. In this paper and in subsequent papers in this
series, we investigate the convergence of the distorted-
wave Born series (DWBS).

This problem is of considerable importance in modern
nuclear reaction theory. In the 1960's, when nuclear phy-
sicists were first beginning to study nuclear reactions to
specific states, the DWBA was an adequate tool. At that
point, it included a substantial phenomenological com-
ponent. Both the potentials and the effective interactions
were considered as "free'" parameters to be fixed by
experiment —ideally through experiments other than the
one being analyzed.

As more reactions are studied, and as the theory of the
optical potential becomes more sophisticated, more com-
plex rationalizations and modifications of the DWBA
have become required. Poorly justified nonlocalities or
multistep processes are invoked to explain away failures
to fit the data. The choice of which of many possible cal-
culations to do almost plays the role of a new phenomeno-
logical free parameter. In order to avoid this undesirable
ambiguity, a theory of corrections must be developed to
accompany the DWBA. We want to do this in a way
which increases our physical understanding of how a pro-
cess is controlled.

We study the D%BA by adopting and extending the
methods %'einberg applied to the undistorted Born series.
These methods rely on the mathematics of functional
analysis and the associated theory of operators. A num-
ber of excellent texts exist describing these methods. 6

Principally, %einberg learned that the convergence of the
Born series is determined by the presence of "quasiparti-
cles," eigenstates of the Lippmann-Schwinger integral
kernel.

An analogous method may be applied to the DWBA by
formulating the approximation as the inhomogeneous
term of an integral equation. The multistep series is the

Neumann series obtained by iterating the equation. For
this paper, we restrict our considerations to inelastic
scattering. This case is simpler than that of rearrange-
ment since there is a unique asymptotic Hamiltonian.
The more interesting case of rearrangement can be han-
dled in a similar way but is more complex. Note that the
oft-cited claim of Greider and Dodd that such a formula-
tion is impossible is not correct. For a discussion of this
point, see Redish or Bencze and Redish.

The basic idea of the method is as follows. Suppose we
have a transition operation, T, which satisfies the integral
equation

T =8+ET .

The matrix elements of the operator 8 represent our first
approximation. Corrections are obtained by iteration.
Assume that K has a complete set of eigenvectors,

~

n ),
with eigenvalues A,„.The iteration yields the expansion

T ~i)=g(1+A,„+A,„+l,„+ ) ~n)(n ~B ~i)

corresponding to a multistep series. The convergence is
determined by the size of the largest eigenvalue. If the
parameter defined by

el= max
/

A,„[
n z&n ~8 ~i&~o

is less than unity, then the multistep series will necessarily
converge. (The convergence of the n sum is guaranteed
by the compactness of the kernel. ) If

~

A,„~is greater
than unity for any n for which (n

~

8
~
i ) is nonzero, then

the series will diverge. ' We refer to q as the convergence
parameter for the multistep series More pr.ecisely, it is
the spectral radius of the kernel of the integral equation.

In this paper we show how to use this convergence pa-
rameter to study the D%'BA and its multistep series. %e
specifically analyze a simple analytically solvable two-
channel model. Although the model is not particularly
realistic, it illustrates clearly how the method is applied.
Some of the results are instructive for guiding the analysis
of more realistic (and more complicated) problems. Use-
ful results have been obtained and have been presented
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previously. ' ' These more realistic problems will be
discussed in detail in later papers in this series.

The paper has the following structure. In Sec. II, we
review Weinberg's quasiparticle method for the Born
series and apply it to the distorted-wave Born series for
potential scattering (a one-channel model). In Sec. III, we
introduce the two-channel separaMe model, solve it, and
apply our analysis to the distorted wave series. Three
natural distortion potentials are considered: the folding
potential, the optical potential, and the minimal potential.
The minimal potential is that distortion potential which
minimizes the convergence parameter. Because of the
simple structure of the model we are able to find the
minimal potential analytically. Our analysis of the results
is given in Sec. IV, and our conclusions in Sec. V.

II. ONP CHANNEL MODEL

In this section we analyze perturbative treatments of a
one-channel separable potential model. This is the sim-
plest possible example. It permits a detailed analysis of
the Born series and the distorted-wave multistep series.

A. The Som series

We begin by discussing the convergence of the Born
series for potential scattering. In a given partial wave the
series diverges if and only if the kernel has an eigenvector
with an eigenvalue of norm greater than mrity. This
divergence may be cured by subtracting out a part of the
full interaction. One technique to do this is the Sc&~idt
method' which Weinberg calls the quasiparticle method.
This involves solving the problem with a multitei~ separ-
able potential —one term for each eigenvector with large
eigenvalue. Corrections for the potential minus the separ-
able terms are calculated perturbatively.

Consider a scattering system which is described by a
Hamiltonian H which can be split up into an unperturbed
part Ho and an interaction V. We assume that Ho has
only continuum eigenstates with energy greater than zero.
It will usually be the kinetic energy operator, —R V2/2m.
The resolvent for the system is G(z)=(z —H) ', while
the free resolvent is Go(z) =(z —Ho) '. The scattering
operator can be obtained from G(z) by the operator rela-
tion

T(z) = V+ VG(z)V,

and satisfies the Lippmann-Schwinger (LS) equation

T(z)=V+VGo(z)T(z) .

(4)

%then matrix elements are taken„ this becomes an integral
equation of the second kind for the function
(q ~

T(z)
~
k). (The vector k and the complex number z

are fixed parameters in this equation. )
If the LS equation is iterated, the Born series is ob-

tained:

T(z) = V+ VGo(z) V+ VGo(z) VGo(z) V+ ' ' ' (6)

This series will converge at an energy E if the eigenvalues
A,;(E) of the kernel operator Go(E +i@)V all lie within the
unit circle. We have added a small positive complex part

to the energy E to guarantee outgoing wave boundary
conditions. The hmit e~O is to be taken at the end of the
calculation. We abbreviate this prescription by writing
E+ for E+ie .(For a more detailed discussion see Ref.
14.)

The physics controlling possible divergences is easily es-
tablished by considering the eigenvalue equations. If
Go(E+ie)V has an eigenvalue A., then there exists an
eigenvector

~ f ) satisfying

G,(E+)V
i f)=Xif) .

Multiplying this by (E —Ho)/)(, yields the differential
form of the eigenvalue equation

(E+—Ho —V/A, )
i f ) =0 .

Since E is fixed and A, to be found, the problem is the fol-
lowing: given a fixed energy E, adjust the strength of the
potential to put a "bound state" at E. This is referred to
as the Sturmian problem. The inverse potential strength,
A,(E), is a function of the energy, E, and is referred to as
the Sturmian eigenualue. The meaning of "bound state"
is determined by the boundary conditions in Eq. (7). If E
is negative, then

~ f ) corresponds to a normalizable state
and behaves like a decaying exponential at infinity. If E
is positive, then

~ f) must contain only outgoing waves.
Whenever the Hamiltonian H =Ho+ V has a bound

state at an energy —e;, then the Sturinian problem has a
solution at that energy with Sturmian eigenvalue unity:

)(,;( —ei)=1 .
As we change the energy continuously from its starting
value, the coupling constant must change continuously in
order to put the bound state at the new energy. The Stur-
mian eigenvalue will move away from one.

Let us now increase E until it becomes positive. A real
potential cannot have pure outgoing wave solutions, so
Ai(E) must move into the complex plane making V/A, ; (E)
complex. In general, each bound state for the two-body
problem (and for the two-body problem in which V is re-
placed by —V) leads to a Sturmian eigenvalue A,&(E)
which follows a trajectory through the complex plane as
the energy E ranges along the real axis.

The qualitative behavior of the trajectory may be un-
derstood on the basis of simple physical arguments and is
sketched in Fig. l. Assume that V is purely attractive.
What potential strength g =1/A, (E) is required for gV to
have a bound state st energy E? If we begin with
E = —Do, it is clear that g must be infinite. As the ener-

gy becomes less negative, a weaker potential is required,
and g moves in along the positive real axis. If there is a
physical bound state of V at an energy —e, g becomes 1

at that energy. For negative energies greater than this, g
decreases further. When the energy becomes positive, the
outgoing wave condition requires that the potential have a
source term, so g acquires a negative imaginary part. As
the energy goes to infinity, the wave function oscillates
more rapidly. Since the functional dependence of the po-
tential stays fixed, the wave function averages the poten-
tial to zero, effectively seeing less of it. As a result, to
maintain a bound state, the potential strength must again
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For this potential, the unique Sturmian eigenvalue can be
calculated by a quadrature. Normalizing the Sturmian
eigenvector by

Re X

(h tf)=i,
Eq. (7) easily yields

(12}

FIG. 1. Trajectory of the Sturmian eigenvalue k(E) in (16)
for the attractive separable potential V=

I
h)A0(h t. The ar-

rows show the direction of the trajectory as E increases and the
value of the energy parameter a appears at several points along
the trajectory. The Born series begins to diverge at the bound
state {small circle) and still diverges until it returns to the unit
circle. [Here, the dimensionless strength is taken to be

Cp ———1.5, but A.{E)scales with Cp. ]

increase. We therefore expect the trajectory to head back
to infinity as the energy goes to + Do. The trajectory of
the Sturmian eigenvalue, A,(e), is obtained by taking the
reciprocal of g. As E runs from negative infinity to posi-
tive infinity, A,(E} starts from 0, runs along the real axis
out past 1 (if the original potential has a bound state), and
then loops into the upper half plane and finally back to-
wards zero.

Different kinds of potentials have different sets of tra-
jectories. For a local potential which is purely attractive
and which supports N bound states, there will be an infin-
ite number of trajectories. This is because such a poten-
tial can be made to support an arbitrarily large number of
bound states if its coupling constant is increased suffi-
ciently. Of these, the N corresponding to the bound states
of the original potential will leave the real axis outside the
unit circle. The others will leave the real axis before A,;
reaches 1. In general, these trajectories will occur entirely
within the unit circle and will therefore not cause the
Born series to diverge at any energy. Each bound state
will cause the Born series to diverge for a range of ener-
gies ranging from 0 to some positive energy E',„„whenits
trajectory reenters the unit circle.

If the potential is local and contains repulsive as well as
attractive parts, there will be negative eigenvalues, corre-
sponding to the bound states of the potential with the sign
reversed. These eigenvalues are extremely important in
cases where the potential has a strong repulsive core, such
as in nuclear or molecular physics. '

The simplest potential we can study is the single term
separable patential, V=

t
h )Ap(h t, where the form fac-

tor (k
t

h ) does not change sign. In this case, there can
only be a single bound state and therefore only a single
Sturmian trajectory. %e consider this example explicitly
to demonstrate contour plots of the convergence parame-
ter in the space of the dimensionless control parameters.

We choose to study the specific case of the S-wave
Yamaguchi potential. ' In momentum space this poten-
tial has the form

(k
t
Vtk)=h(k }Ay(k),

where h (k) is the function

h(k)=(k +P )

X=Ap(h
t
G p(E+ te)

t
h ) . (13)

Cp (2m' R——/R )(ApR) .
(15)

The parameter a is proportional to the ratio of the radius
af the potential to the wavelength of the incident particle.
For a fixed potential its square is proportional to the ener-

gy. From Eq. (14), we can see that the units af Ap are
energy/length. The quantity ApR =Ap/P corresPonds to
the potential strength for a local potential. The parameter
Cp is proportianal to the potential strength divided by the
kinetic energy given by the uncertainty principle when a
particle is confined to a sphere of volume R. For brevity,
we refer to a as the energy parameter and to Cp as the
strength parameter.

In terms of these dimensionless variables, the eigen-
value and the convergence parameter take the simple
forms

A, = Cp/(a+i)

ri=
t

A,
t
=Cp/(1+a ) . (17)

The convergence parameter is contour plotted as a func-
tion af the dimensionless model parameters in Fig. 2. The
divergent region (ri & 1) is shaded. We refer to the line be-
tween the convergent and divergent regions as the catas
trophe boundary. It is determined by the equation g = 1.

Starting with any divergent point, the series can be
made to converge by going to a high enough energy
(larger values of a). In the large a limit, the condition for
convergence becomes

tCpt/a &1

H
t Ap t

R/E & 1 .

These conditions are analogous to those obtained by other
authors' ' for the validity of the Born approximation at
high energy. For local potentials they found the condi-
tions kR »1 and k»V/irtu, where V is the potential

The matrix element may be evaluated by contour integra-
tion in momentum space to yield the explicit form

2m+' ~0
(14)

P(k +iP)i
where we have written the energy as E = (i)lk) /2m.

Since the convergence parameter of the Born series
given by Eq. (3) is itself dimensionless, we must be able to
express it in terms of dimensionless combinations of the
input parameters that control the problem: k, m, Ao, and
the range R =P '. The relevant dimensionless combina-
tions from expression (14) are
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0.2 kate =(—Cp)'/ —1 .

The bound state lies in the k plane at the intersection of
the catastrophe boundary and the positive imaginary k
axis. We see from Eq. (20) that if

~
Cp

~
&1, the circle

will not cross the real axis and the potential will fail to
support a bound state. Both the entire real and the posi-
tive imaginary k axes wi11 lie in the convergent region.
The Born series will therefore converge for all energies.

0
eo

FIG. 2. Contour map of the convergence parameter, q, for
the Born series with the one-channel separable Yamaguchi po-
tential plotted as a function of the control parameters
Cp ——2m' 8'Ap/ii) and a=kR. The divergent region is shaded.

strength and U is the particle's velocity. Together these
yield V/E« l. Note that our condition rl &1 with r)
given by Eq. (17}is potential dependent and sharper than
these high energy conditions. It yields the precise catas-
trophe boundary between the divergent and the conver-
gent regions.

From Fig. 2 we observe that if Cp is small enough, the
Born series will converge for all energies (values of a).
This is a consequence of the relation between the bound
states of a potential and the convergence of the Born
series. The boundary occurs when Cp is sufficiently small
that the potential will fail to support a bound state.

To see this in more detail, let us consider the condition
for the existence of a bound state and the condition for
the convergence of the Born series in the k plane
( k =a/R). The boundary between convergence and
divergence of the Born series is determined by the equa-
tion rl= 1. Setting k =kp+iki, we obtain the equation
for the circle in the k plane shown in Fig. 3. Inside the
shaded region the Born series diverges.

A bound state occurs at an energy —e when A, ( —e)= 1.
Taking s'=ill k s/2m and setting k = ikz in (22), we find

B. The distorted-wave Born series

Ti = Vi+ ~i Gori

T2 ——V2+ V26)T2 .

The wave operators are given by

Qi-' ——1+6p(E+i e)Ti (E+ie}

(22)

(23)

and the resolvent operators are G; =(E H~) ', i=0,1,—2.
We solve for Ti (and Qi) exactly and solve for Tz per-

turbatively. Treating T2 perturbatively in (22) gives the
0%%A

T -=T, +nI "V,nI+'-. (24}

Iterating (22) yields the multistep or distorted-wave Born
series (DWBS)

T =Ti+AI ' (Vi+ V2Gi V2+ )0'i+ (25)

The convergence of this series is governed by the eigen-
values of the operator G i V2.

(26}

The relation of these eigenvalues to those of the undistort-
ed problem is more complex than in the quasigarticle case
because of the presence of Gi. Suppose that A,„(E}are the
Sturmian eigenvalues of the Born series kernel GpV.
Then the eigenvectors and eigenvalues satisfy

(E —Hp —V/I, „)i f„)=0 . (27)

The Sturmian eigenvectors,
~
g„),and eigenvalues, A,„,of

the distorted wave kernel satisfy

One way to cure the divergence of the Born series is the
distorted wave method. This approach divides the poten-
tial into a piece Vi that is easily solvable and a residual
potential Vt ——V —Vi that is treated perturbatively.

Using the two-potential formula, ' ' the full T operator
may be expressed in the form

r =T, +nI-"T,nI+', (21)

where

(E —Hp —Vi —V2/A, „)
~ g„)=0 . (2g)

FIG. 3. The values of complex momentum ko+ik~, for
which the Born series diverges. The potential range is 8 =1/Pp
and the strength is fixed to produce a bound state at the energy
e= —A ks/Zm. The Born series diverges inside the shaded cir-
cle.

The distorted wave case is more complex since the unper-
turbed Hamiltonian h =Ho+ V~ may have bound states.
If it has a bound state at energy E = —e, then the Sturmi-
an eigenvalues of the distorted wave kernel will be singu-
lar there, i.e.,

A( —e)= ao .



808 DANIEL S. MacMILLAN AND ED%'ARD F. REDISH 33

These singular points will turn out to be of considerable
importance in controihng the accuracy of the DWBA.

Let us consider a specific example in order to illustrate
the relation between the Born series trajectories and those
for the DWBS. Suppose we simply split our potential V
into two parts of the same form. (This example is instruc-
tive, if not particularly useful. ) We take

We see that the effect of introducing a distortion (a
nonzero value of w) is to slide the g traje:tory to the left
by —w /(1 —w) and to increase the rate at which the tra-
jectory is traversed. This means that the trajectory wiB in
general leave the divergent circle at a lower energy when
ur is between zero and one. This is illustrated in Fig. 4.

V = Vi+ V2 ——w V+ (1—w) V, (30) III. SEPARABLE MULTICHANNEL MODEL

where w is a constant between 0 and 1. A comparison of
(27) and (28) shows that the DWB and Born eigenvalues
are related by

A(w)=[(1 —w)A, ]/(1 —wA, ) . (31)

Note that we have suppressed the energy dependence and
that A,(w =0)=A. . We observe that even if A~ is very
large, the choice w = —,

' will reduce A,(w) to the neighbor-

hood of unity. Note, however, the possibility that if A, is
on the order of unity, some choice of w may result in A,

being very large. This is not a physical phenomena asso-
ciated with the full problem, but is rather a refiection of
our choice of the unperturbed Hamiltonian.

In order to be specific, we consider V to be the separ-
able Yamaguchi potential considered in Sec. IIA above.
Combining (16) and (31) we find that the eigenvalue of
Gi Vi has the form

A( w) =(1 w)Co—l[(a+i) wCo—] . (32)

g(w) = —w/(1 —w)+(a+i)'/[(1 —w}Co],

g (0)=(a+i )i/Co .
(33)

Note that this eigenvalue diverges at an energy —e when
the distortion potential supports a bound state at that en-

ergy. From Eq. (16), we see that this occurs for a poten-
tial of strength parameter wCo when wCo ——(a+i) .

Here it is easier to analyze the trajectory of the coupling
constant, g =1/A, (w), which is

In this section we discuss a separable multichannel
model for the inelastic scattering of a projectile by a com-
plex target without rearrangement. Our canonical exam-
ple is the scattering of a nucleon by a nucleus when the
nucleus can occupy a (finite) number of possible excited
states. We begin with an N-channel model, but later re-
strict our considerations to two.

When our two-channel model is made specific by the
choice of S-wave Yamaguchi form factors we have a
model which is analytically solvable for both the elastic
and inelastic amplitudes. This has a considerable advan-
tage as it allows us to investigate in detail the important
question: What is the appropriate distortion potential to
use in the calculation of a DWBA'? We investigate three
possible choices of distorting potential. The first is the
folding potential. This is simply the diagonal part of the
Hamiltonian coupling matrix and is an obvious first
choice in this model. The second is the optical potential.
This is the diagonal potential which gives the exact elastic
scattering. Since the model is solvable the optical poten-
tial can be found analytically. This is the potential which
is most frequently assumed to be the correct potential to
use in the DWBA.

Finally, we ask the question: What distortion potential
would yield the most rapid convergence of the DWBS?
We calculate the convergence parameter for the DWBS
with a general distorting potential and then choose the
distortion to minimize g.

A. S-channel model

.- Rek
l

Consider the scattering of an eleinentary projectile (la-
beled 0) from an A-particle bound state (with the particles
labeled 1 through A). The asymptotic Hamiltonian has
the form

Ho ——p /2M+Hg, (34)

FIG. 4. Trajectories of the coupling constant g(m) =1/A(m)
in (33), where A,(m) is the distorted-wave eigenvalue for the one-
channel separable potential with Co ———1.5. Arrows indicate
the direction of the trajectories as energy increases from —00 to
+ Qo and thc value of thc cncrgy paraxDctcr cx is given at scvcxal

points on the trajectories. The distorted wave series begins to
diverge at the bound state energy (small circle) of the full poten-
tial and continues to diverge until it leaves the shaded unit cir-
cle. (The coupling constant with m=o is just the Born coupling
constant. )

where p and M are, respectively, the relative projectile-
target momentum and the system's reduced mass. Hz is
the internal Hamiltonian of the target. Its eigenfunctions
are Pp(gz } with energies equi. The argument g„represents
A —1 internal relative coordinates of the particles 1 to A.

Let the exact scattering wave function of the A + 1 par-
ticle system be

I
p'+'Po) where the labeling indicates that

the boundary conditions have the projectile incident in a
plane wave with momentum p on the target in its ground
state (P=O). This satisfies the Schrodinger equation

(Ho+ V}
I
p'+'4o& =E

I
p'+'0o& (35)

where V is the interaction between the projectile and the
target,
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& r,4 I
p'"4o& = g uII(r)0/4) (38)

The coordinate r is the distance between the projectile and
the c.m. of the target. It is the coordinate conjugate to the
relative momentum, p. Inserting the expression (38) into
the Schrodinger equation, multiplying by PN(gq )', and in-
tegrating over the coordinates of the target yields the cou-
pled channel equations:

(F. —r +(( V'/2M)u, (r)= g 1dr Vr(r r ')rr(r'

where the coupling potentials are given by the folding ma-
trix elements:

V~(r, r'}=(r,P~~ V
~

r', Ps& .

We now choose a specific model. For simplicity of cal-
culation we restrict our potential matrix to be an S-wave
multichannel separable interaction of the form

(V)~——
~
h &(A)~(h ),

where h is a constant matrix. We choose
~

h & to be the
Yamaguchi form (11). The restriction to the S wave
should not be considered to be too unrealistic, as the S
wave usiielly provides the severest test of the D%VBA.

The basic assumption that is supposed to make the
DWBA work is that there are many small inelastic chan-
nels. They contribute coherently to yield a strong effect
on the elastic chaxuiel. We therefore consider a model in
which we neglect the couplings between the inelastic
channels and only permit elastic-inelastic couplings.

This leaves us with a bordered coupling matrix:

Ap

A)

A2

A) A2

Ao 0 0

0 Ao 0

0 0 I ~ ~

A~ ) 0 0 Ap

The eigenvalue equation for the Born kernel Go V is

G,(E+) ~h&A&h )u&=~[u&, (43)

where
~
u & is the vector with components ( r

~ uII &

=uII(r). Upon left multiplication by (h
~

this becomes

g (h
~
Go(E+ —cp)

~
h &A~„=&p, (44}

where we have written cII——&h
~
up&.

To simplify matters further, we make the following as-

and E is the energy

E =@ /2M+Co.

We now expand the exact wave function in terms of the
target eigenstates

sumption. Since we are primarily interested in open-
channel phenomena, we consider the excitation energies to
be much less than the kinetic energy of the projectile. We
therefore set all the excitation energies to be zero. Anoth-
er reason for this simplification is to permit us to investi-
gate the physics of a smail number of control parameters
at a time. Even in our two-channel simplified model we
vri11 have three dimensionless control parameters corre-
sponding to the energy, diagonal coupling strength, and
off-diagonal coupling strength. We will briefly consider
the dependence of the convergence parameter on the exci-
tation energy in Sec. IV.

For this simplified problem the eigenvalues are deter-
mined by the secular equation

det(AI —GpV}=0 .

The N eigenvalues are easily determined to be

A, =Ao(h
~
Go(E)

~
h & E —2 times
' 1/2

= A, + gA'„(h~G,(E)~h&.

(45)

The convergence of the Born series is determined by the
eigenvalue of maximum norm. For the case of the bor-
dered matrix, this is necessarily one of the last two eigen-
values. We therefore obtain the interesting result that for
this example, the convergence of the Born series is con-
trolled in a marmer which is identical to that of a two-
channel model in which the effective coupling between the
elastic and the single inelastic channel is given by the rms
coupling strength

' 1/2

y

(47)

For the DWBS we will only consider distortions which
are diagonal and have the same functional form as V.
The conclusions for the DW case will therefore be analo-
gous. As a result, we restrict our consideration here to the
two-channel problem with coupling matrix

Ap A
A= (48)

The distortion potentials we study have the form

I. 0
Vi ——(h& 0 ~ (h

~
(49}

We could allow a more general distortion potential by
permitting the strengths to differ in the two channels, but
we choose this form in keeping with our approximation
that the excitation energy is zero and with our desire to
handle only a small number of parameters at a time. We
note that this two-channel problem is not equivalent to
the many-channel problem ~e began with, although many
of the features are similar. If we start with many chan-
nels (say P=O, . . . ,N —1) and are interested in the transi-
tlo11 to oIlc partlclllar challIlcl (say p= 1), thc11 c11111111atlIlg
charmels 2, . . . ,N —1 formally will result in complex po-
tentials in the matrix (48). This complicates matters fur-
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ther by introducing additional control parameters. We ig-
nore them for now, but note that absorption to the unob-
served channels is an important part of the physics that
makes the DWBA work in nuclear physics. This is dis-
cussed in Sec. IV.

The choice of a distortion potential Vi leads to the
separation of the full potential strength matrix into two
parts:

L 0
A=A)+A2 ——

Ap —I.
We treat the potential Vi ——

~

h )Ai(h
~

exactly and calcu-
late the effects of Vz ——

~

h )A2(h
~

perturbatively. To
determine the convergence rate of this series we have to
solve the eigenvalue problem:

Gi(E+)V2~ f)=A,
( f) . (51)

Co 2M' AoR ——/fi
C =2M' AR /R

w =L/A .o

(54)

We refer to a as the energy parameter, Co as the diagonal
potential parameter, C as the coupling parameter, and w as
the distortion parameter. In terms of these dimensionless
parameters the eigenvalues become

X+ —[(1—w)Co+ Cl/[(~+ i }'—wCo] .

The convergence parameter is theo

(55)

If we multiply this equation by (h
~

and solve for the ma-
trix elements of Gi via the resolvent equation, we can
easily obtain the eigenvalues

A, + ——[(Ao—L}+A](h
~

Gi(E+)
~

h ), (52)

(h ~G, (E+) ~h)

=(h
/

Go(E+)
/
h)/[1 —L(h

/

Go(E+)
/
h)] .

(53)

We again introduce a convenient set of dimensionless
parameters:

This leaves the potential to be treated perturbatively as
purely off-diagonal:

0 A
A2 —— (58}

utttt(r, r') =5(r r')u—tt(r),

utt(r)= Jdr"uoi(r r")p—tt(r"),

where pgr") is the density of target nucleons at the point
r" when the nucleus is in the state Pti.

This choice corresponds to taking w= l. The resulting
eigenvalues are

+C+-
(a+i) Co—

which yields the convergence parameter

rif=
~

C
~
/[(u —Co —1) +4a ]'~

The convergence parameter is plotted as a function of the
control variables a and Cp io Fig. 5. Since g only de-

pends on the coupling parameter linearly, we have chosen
to do the plot for the value C= —5. Other values can
easily be inferred by scaling. For purposes of comparison,
we show the corresponding plot for the Born series ( w =0)
ln Fig. 6.

The Born result is qualitatively similar to the one-
channel model (Fig. 2), but the presence of the second
channel results in the occurrence of a bound state even

when the diagonal coupling strength, Co, vanishes. This
causes the two divergent regions to overlap. It still has
the characteristic that as the diagonal coupling constant is
increased, the range of divergent energies grows. The

We refer to this choice of V, as the folding potential,
since the diagonal matrix elements of V as obtained by
"folding" the two-body potential over the distribution of
nucleons in the target. Explicitly, if uoi is a local poten-
tial, then the diagonal matrix elements have the local

rm:

rl =max
f

A, + f
. (56)

In the next three subsections we consider the implications
of this formula for three different choices of distortion
potential. 2-

8. Folding potential distortion aO

2)

5i
-20 -15 -IO -5 5 IO l5 200

Co

FIG. 5. Contour map of the convergence parameter, rt [Eq.
(61)], for the DWBS in the two-channel model using the folding
distortion. The divergent region is shaded and C = —5.

In choosing a distortion potential, we want to put as
much of the dynamics as possible into the diagonal opera-
tor V&, since we solve for its effects to all orders In the.
simple two-channel model described above, an obvious
first choice is to take the distortion potential equal to the
diagonal part of the potential, i.e., L =Ao. This gives

Ap 0
A] 0 p e (57)

0
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FIG. 6. Contour map of the convergence parameter, ii~ [Eq.
(62)], for the Born series in the two-channe) model. The diver-

gent region is shaded and C = —5.

FIG. 7. Trajectories of the inverse eigenvalues for the Born
case (8+) and the folding distortion case (I'+ ). Arrows show
the direction of the trajectories as energy increases from —ao to
+ ao and several values of the energy parameter a appear along
trajectories. The Born series and the distorted wave series
diverge when the corresponding trajectories lie inside the unit
circle. (For the cases shown, the dimensionless strengths are
Co ———Sand C= —5. )

Born eigenvalues and the convergence parameter are given
by

Co+C

(a+i)

I Co I+ I
C

I

a+1
The distorted wave result differs qualitatively from this.
Since the diagonal potential appeirs to all orders, increas-
ing its value improves the convergence of the series.

We can understand what governs the character of the
divergent region by considering the analytic structure of
the convergence parameter, ri. As in the one-channel
case, the Sturmian eigenvalues have poles when the dis-
torting potentia1 has a bound state. Here, the distorting
potential is identical to our one-channel separable poten-
tial, so it has a bound state when the A, of Eq. (16}is equal
to 1, i.e., when

a=i [(—Co)'~ —1] . (63)

I
C

I
/a & 1 or

I
A

I
E./E « 1 . (64)

The off-diagonal coupling strength controls the high ener-

gy behavior of the DWBS. Even at low energies, however,
the series may also converge if the diagonal strength is
large enough. For large Co the convergence condition be-

This trajectory is displayed as a dotted line in Fig. 5.
Note that the upper half plane is labeled "a" and the
lower half as "ia." We are displaying the half-planes cor-
responding to a positive and negative (positive and nega-
tive energies} but have chosen to use the "kR" scale rather
than energy scale. Along the dotted line vi is infinite. The
shape and structure of the contours in this figure are con-
trolled by the presence of this singularity. Along the ca-
tastrophe boundary at negative energies one of the eigen-
values equals 1 (the other equal —1) so these are the tra-
jectories of the bound states of the full potential.

At large values of the energy parameter, the conver-
gence condition for the DWBS simplifies to

This condition has the expected behavior at low energy
since the zero energy bound state of the distortion poten-
tial occurs at Co ———1. If one is sufficiently far from this
point,

I
C /Co I

=
I
A /Ao I

becomes the expansion param-
eter for the series. This behavior is unusual' and depends
upon the fact that a separable potential may only have a
single bound state. Although A/Ao is often considered to
be the small parameter that makes the DWBA work, in
more realistic cases' this is not the relevant parameter: i}
always is.

In Fig. 7 we have plotted the trajectories of the inverse
eigenvalues for the Born and folding distortion cases in
the complex plane. For the Born series, the values at
E=O are —1/( Co+ C). For the folding DWBS, they are
+(1+Co)/C. We see that if

I
1+Co

I
& I

C
I

the t«jec-
tories in the inverse eigenvalue plane leave the divergent
circle before the energy reaches zero. As a result the
series will converge For all positive values of E.

C. Optical potential distortion

Although the choice of the folding potential makes the
residual potential Vz purely off-diagonal, it is clear that it
does not include all of the effects that could be included
by a diagonal potential. The 2X2 scattering matrix, Ti,
which is produced by scattering from the folding poten-
tial, is diagonal, but its matrix elements do not agree with
those of the exact scattering matrix, T. So although Vz is
purely off-diagonal, Tz is not.

&e can choose our distortion potential to make T2
purely off-diagonal. To do this, we must find a diagonal
potential whose scattering matrix is equal to the diagonal
part of the exact multichannel scattering matrix. This po-
tential is called the (generalized) optical potential. This
is in fact the distortion potential that is most commonly
used in practice.

The formal expression for the optical potential in terms
of the many-particle operators is given by Feshbach2 as

U=&4ol ~lko&+&Col ~Q(E+ —QrfQ) 'W'Ido&

I
C

I
& I Co+1I . (65) (66)
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where g is the projector on the inelastic channels,

Q =1—~=1—I4'o&&4o I
(67)

The expression (66) may be evaluated explicitly' to give
the strength of the optical potential

&i, ~Go(E-., ) ~h& 0+ p

Re k'

Neglecting the excitation energy of the excited state and
expressing our result in terms of our dimensionless pa-
rameters, we get

to't" =LE,/Ao ——1+(C /Co)/[(a+ i) Co]—. (69)

It is convenient to separate this into real and imaginary
parts:

Re(N~'Co)=co+C (a 1 ——Co)/[(a —1 —Co) +4a ],
(70)

hn(w~'Co) = —2aC /[(a —1 —Co)+4a ] .

The reader may show that the scattering amplitude pro-
duced by this potential yields the exact elastic scattering
amplitude for the two-channel model.

When the distorting potential is taken to be the optical
potential, the distorted wave eigenvalues become

—C'+C [(a+i}'—Co]

[( + ')z C ]z Cz
(71)

(a+ i) =Co+C . (72)

2!

-l5 -IO -5

F&G. g. Contour map of the convergence parameter, vP~' [see
Eq. (71}],for the DWBS in the two-channel model using the
generalized optical potential as the distortion. The divergent re-
gion is shaded and C = —5.

The contour plots of the convergence parameter for this
case are shown in Fig. 8. As before, the structure of the
contour plot is controlled by the presence of bound states
of the distortion potential. For the case of the optical po-
tential, these bound states are exactly the bound states of
the full problem. We might have guessed that doing this
would suffice to remove the divergences arising from the
distortion potentials "wrong" bound states. Unfortunate-
ly, a more careful analysis shows that this is not the case.
The bound states occur when the Born eigenvalues (62)
equal 1, i.e., when

FIG. 9. Trajectories of the inverse eigenvalues of the DWB
kernel in the two-channel model using optical potential distor-
tion. Potential parameters and marked energy points are the
same as in Fig. 7.

Substituting this into (71) we see that if the minus sign is
chosen, A, +~' is finite, but A,

'~' becomes infinite. The re-
verse occurs if (72) is satisfied with the plus sign. We
therefore get two singular trajectories. These are shown
as dotted lines in Fig. 8.

The result is that the convergence of the distorted wave
series is worse when the optical potential is chosen as the
distortion than it is when the folding potential is chosen.
This relation can be further understood by considering the
trajectories of the Sturmian coupling constants. We ob-
serve by a comparison of (60) and (71) that

(ie ') '=(A, ) '+1. (73)

This is illustrated in Fig. 9. Introducing the optical dis-
tortion displaces the folding potential's trajectories to the
right. Although the convergence problems caused by one
of the eigenvalues is eliminated, those caused by the other
is exacerbated. The result is that the width of the diver-
gent region is nearly doubled. For large values of a or of
Co the conditions in (64} and (65) are again obtained, but
larger values of a or Co are needed to achieve them.

D. Minimal distortion potential

We have seen that choosing the diagonal part of V to
be the distortion potential makes Vz purely off-diagonal,
but not Tz. Choosing the distortion to be the optical po-
tential makes Tz purely off-diagonal but expands the
divergent region. What distortion potential should we
choose? The criterion that we really want to satisfy is
that the distortion potential includes "as much of the
dynamics as is possible with a diagonal potential. " This
means that we want our higher-order corrections to be as
small as possible (without requiring that we calculate the
full solution as input).

One possible way to determine the distortion potential
is to choose it to minimize the convergence parameter.
This is the choice that will make the corrections converge
as rapidly as possible within the structure of the DWBS.
We consider q to be a functional of the distortion poten-
tial and find that Vi which solves the variational condi-
tion

(74)
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We refer to this distortion potential as the minimal distor-
tion potential .For the example being considered here, this
means that we want to find the value of w that solves

il '"= min I max[
~

A, +(w} (, [ A, (w) [ ] I . (75)

The solution of this min-max problem for our specific ex-
ample is given in the Appendix. The result is that the op-
timum choice for w (E~O) is given by w '" where

Re(w '"Co)=CO,

Im( w '"Co}=[4a] '([(ai—1 —Co) +4ai —Ci]
(76)

2l

5i-2Q -l5 -lQ -5

FIG. 10. Contour map of the convergence parameter q '",
for the 0%'BS in the two-channel model using the minimal dis-
tortion potential. The divergent region is shaded and C = —5.

—
I [(a —1 —Co) +4a —C~]

+ 16 2( 2I i/2)

For negative energies, w "=1.
We note that the real part of V&

'" is equal to the fold-
ing potential for all energies and that the imaginary part
is negative definite.

The contour map of the convergence parameter in the
minimal case is shown in Fig. 10. For negative energies
the picture is the same as for the folding potential. But
for positive energies we observe that the convergence is
improved compared to the previously considered distor-
tions for all values of a and Co. Indeed, as shown in the
Appendix, the DWBS now converges for all values of C
and Co, and all real positive values of a (positive ener-
gies}. (Note the convergence parameter no longer depends
linearly on C, so the figure must be recalculated for each
value of the coupling. Other values of C produce similar
structures. )

Since the DWBS with folding distortion has a divergent
region at positive energy, and since the minimal distortion
potential has a real part equal to the folding potential, the
improvement must come from the imaginary part. Let us
consider this in more detail.

Let us suppose that the coupling parameter C is small.
From (76) the imaginary part of the optimum distortion
strength has the form

Im(w '"Co)=[4a] '[A —(A +16a C )' ] (77)

where we have defined

A =(a —1 —Co) +4a —C

Approximating the square root in (77) by

(A'+ 16a'C') '"=A (1+Sa'C'/A '),
we obtain

Im(w '"Co)= —2aC /A

(79)

IV. ANALYSIS OF RESULTS

We have considered in detail the convergence parameter
governing the accuracy of the multistep distorted-wave
series in a simple two-channel separable model. This
analysis leads to a number of interesting, if tentative, con-
clusions. The primary results of this study are the follow-
ing:

(1) The DWBS can be generated by the iteration of an
integral equation of the Lippmann-Schwinger —type by
using the operator two-potential formula.

(2) The convergence of the DWBS is governed by the
spectral radius of the kernel of that integral equation. If
the integral equation has been properly formulated (i.e., if
the kernel is compact), this parameter can be identified
with the norm of the kernel's largest eigenvalue.

(3) Dimensionless control parameters can be identified
and the convergence parameter can be mapped as a func-
tion of the control parameters. The structure of this map
gives guidance in the extraction of the physics that con-
trols the accuracy of the DWBA.

(4) A study of the convergence parameter permits, in
principle, a determination of the distortion potential that
optimizes the convergence of the DWBS. In the model
studied, it can be found in practice.

(5) The convergence of the DWBS is governed by the
presence of bound states of the distortion potential.

(6) In the model studied, using the optical potential for
distortions decreases the quality of the DWBA compared
to using the folding potential. The best potential to use
for distortions is approximately the folding potential plus
the imaginary part of the optical potential.

The model used is not particularly realistic. Nonethe-
less, it gives some guidance for further study. In the rest
of this section we consider the implications for physical
problems. %e begin in subsection A by considering the
scales associated with nuclear systems in order to place
our dimensionless parameters in perspective. In subsec-
tion B we consider some of the effects that were omitted
to reduce the number of parameters treated. We analyze
the implications of nonzero target excitation energies and
of including absorption to other channels in the diagonal

= —2aC /[(a —1 —Co) +4a —C ] . (80)

To lowest order in C this expression agrees with the
imaginary part of the optical potential given in (70).

We have therefore shown, that to lowest order in the di-
mensionless coupling parameter, the minimal potential is
equal to the folding potential plus the imaginary part of
the optical potential. It is interesting to note that this
prescription has occasionally been used in realistic calcula-
tions. '
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potential. In subsection C we discuss briefly the other
models that have been analyzed. These models give some
insight into the limitations of the current model.

A. Scales

We are somewhat restricted in our considerations of the
dimensionless parameters for physical systems by the na-
ture of the model. Only a few coupled separable calcula-
tions exist and they are not very realistic. The local
models discussed in Refs. 10 and 12 (and to be described
in future papers) permit more extensive comparisons.
Nonetheless, the exercise will give us some feeling for the
order of magnitude of the relevant dimensionless parame-
ters in nuclear systems.

The model we choose to analyze is from the study of
King and MacKellar. ' In this work the authors test vari-
ous theories of stripping using a three-body model consist-
ing of a neutron (n), a proton (p}, and a two-state core ( C).
The pair interactions are separable and their parameters
can be converted into dimensionless form. The n-p in-
teraction is a one-term Yamaguchi S-wave potential (the
deuteron D state is ignored) with inverse range P=1.02
fm ' and strength adjusted to produce a binding energy
of 2.225 MeV. This is the same form as the one-state
model analyzed in Sec. II. Expressing their parameters in
our normalization yields:

Co(np) = —3.8 .

largest values being on the order of a few MeV. For nu-
clear physics, we therefore expect to find parameter
ranges:

a=-0 to 5,
CO=0 to —50,
C-=0 to —5 .

(84)

8. Extensions of the model

In our analysis of the two-channel model we ignored
the excitation energy of the core's excited state and the ab-
sorption of flux into other states not observed. In this
subsection we briefly discuss the extension of the model to
include these factors. We restrict both discussions to the
case of the folding potential distortion.

Consider the N-channel model with nonzero excitation
energies e~ and the bordered interaction matrix (42}. The
distorted-wave eigenvalue equation for the folding distor-
tion is

(h
I
Gi(E+)

I
h )A1(h

I
u) =A, (h I u), (85)

where now the Green's function becomes the diagonal ma-
trix

(h IGi«+) Ih)p =&h
I
G1« —ep) Ih&&p .

The secular equation

Their nucleon (N)-core interaction has the same form as
our two-state model analyzed in Sec. III. The binding en-

ergy of the nucleon-core ground state is adjusted to be 7.0
MeV and the range parameter is taken as P=Q.848 fm
Their coupling strengths yield the dimensionless parame-
ters:

det( A,I—( G1 )A2) =0

has the roots

X,=+ g A,~&h I
G, (E+)

I
h &A~

P=1
1/2

(87)

(88)Co(NC) = —2.29,

C(NC) = —0.72 .

This is a fairly strong coupling since the ground state
spectroscopic factor with these parameters turns out to be
only 65%.

Our energy parameter a becomes (2m' /R )'~ For.
the case of the n-p interaction this is 0.11E'~ where E is
the energy in the laboratory frame (target particle at rest)
in MeV. Thus for laboratory energies up to about 100
MeV the energy parameter a stays less than 1. At 400
MeV o; is still only 2.

For the case of the nucleon-core interaction the energy
parameter has the value 0.26E'~ . Thus, a becomes of
the order of 1 at 15 MeV, is about 3 when E is 135 MeV,
and is nearly 5 at 350 MeV.

For the local models considered in Ref. 12, the dimen-
sionless strength parameters have the form

Co ——2m VOX /fi (83)

The matrix elements of G1 are given by (53). In addition
to diverging when E equals the binding energy of the dis-
tortion potential [since G1(E) diverges there], the eigen-
values will now also diverge when E e~ is equal to the-
bound state energy of the distortion potential [since
G1(E —ep) diverges there].

In the case of the Born series, we get Go rather than
G&. Since Go(z) has no poles we will not get divergent
eigenvalues, but the convergence of the series will in gen-
eral be worsened because replacing E by E —ep leads to a
lower effective energy.

For the case of our two-channel model, if the excited
state has an excitation energy e, Eq. (88) reduces to

A+ ——+[A (h
I
61(E)

I
h ) (h

I
61(E—e)

I
h ) ]'i . (89)

This leads to the conclusion that for nonzero excitation
energies, the convergence parameter with the folding dis-
tortion becomes

where Vo is the potential depth and E. is the range. For a
nuclear well of depth 40 MeV and a radius of 5 fm, this
parameter has a value of nearly —50. Coupling strengths
are substantially less than the full diagonal potential, the

rl (a, CO, C, e) =[g(a, CO, C)11f(a',CO, C)]' (90)

where a' is the value of a appropriate to the energy E —e.
Thus, in this model, g with a nonzero excitation energy
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is simply the mean proportional between the g's in the
zero-excitation-energy model at the elastic and inelastic
values of the asymptotic momenta. Estimates of this ef-
fect can therefore be read directly off the graphs.

Another important factor is the presence of other chan-
nels than the one observed. If we begin with the N
channel problem and formally eliminate channels 2 to
5 —1, we will obtain a two-channel problem with effec-
tive (complex) potentials. The primary result will be to
introduce an absorptive part into the diagonal potentials.
We can see what effect this has on the eigenvalues by sim-

ply replacing the real diagonal coupling strength Ao by a
complex strength Ao(1+i g) T.he dimensionless constant
Co becomes Co(1+if). Performing this replacement in
the form (60) for the eigenvalues for the DWBS with the
folding distortion, we find:

rl/(g) = t (rlo)'/[ I+s (g())'] I
' ',

s = —/CO(4a —/Co )/
~

C
~

' .

We have written rg for i?/ ((=0), the convergence param-
eter given by Eq. (61). Since in general Co is negative and

g is positive (i.e., /Co is negative corresponding to absorp-
tion of fiux), s is positive and rl/(g) will be smaller than
BIO, resulting in an improved convergence of the DWBS.

C. Other models

Two more realistic models have been considered in con-
junction with this work and some preliminary results have
been presented. ' '2 These will be discussed in detail in
two papers now in preparation. The first considers a
model of Chase, Wilets, and Edmonds. In this model,
the nucleus has a rotational band of states. The projectile
interacts with the nucleus with a local square well poten-
tial and coupling is provided by surface delta interactions.
In the second model, the coupling is instead provided by
square wells. This is similar to the Lane model of (p,n) re-
actions.

Many of the qualitative features of the simple two-
channel separable model also hold for local models. For
example, the convergence parameter is still dominated by
the infinities caused by the presence of bound states of the
distortion potential. The primary difference between the
local and the separable models is that the local potentials
may have many bound states. Instead of finding a single
"divergence mountain" centered on or near Co ——0 (as in
Figs. 5, 8, and 10), we find a series of ridges centered
around those values of Co which produce a zero energy
bound state of the distortion potential. The behavior as a
increases is similar to that of the separable two-channel
case, but there is no simplification as Co becomes large
and negative. As Co grows, the accuracy of the 0%'BA
oscillates. ' ' These models make clear that the use of
C/Co as the "small parameter which makes the 0%HA
work" only is correct for the separable model and that
more complex statements are required for local potentials.

V. CONCLUSIONS

An important failing in the theory of nuclear reactions
is the lack of a clear theory of reaction mechanisms. In
the theory of direct reactions, we may define a reaction
mechanism as the specification of the set of important
channels and arrangements, plus a statement of which
processes can be treated perturbatively and which must be
treated to all orders. Such information must be contained
in the Hamiltonian for the system, since it contains all the
information about the system.

What we have shown here is that the information about
the reaction mechanism can be extracted if the reaction is
described by a set of (compact kernel) integral equations. 26

The information is contained in a relatively simple prop-
erty of the operator kernel: its spectral radius, or the
norm of the largest eigenvalue. In general, it is simpler to
extract the largest eigenvalue of a matrix than to invert
that matrix. Even with our formulation, the matrix must
still be constructed. However, by specifying the parame-
ter that governs the convergence of the series, new ques-
tions can be formulated and attacked in new ways. For
example, we have asked: Vfhat is the distortion potential
that minimizes the size of the convergence parameter?
For the model above we have shown that this question can
be answered analytically and leads to some interesting
(and nonobvious) insights. It is important to consider
whether this approach can be applied to more realistic
formulations of reaction problems. A second important
question is whether the identification of distorted-wave
quasiparticles as the cause of divergence can permit us to
develop an approximate theory for them that would not
require the construction of the full matrix but would let
us extract them directly.

Even if analytic techniques are not easily available for
the extraction of quasiparticles, the technique of forming
contour maps of the convergence parameter could be valu-
able for summarizing numerical experience with a specific
class of model. The convergence parameter could then
simply be read off the map in order to determine whether
one should use a perturbative treatment or a full coupled-
channel calculation.

The above procedure also allows us to treat the DWBA
for inconsistencies. We consider the DWBA to be the
first step of a multistep series. Occasionally it is treated
as a way to parametrize the full transition operator. If the
latter procedure is followed, parameters in the transition
potential must be adjusted until the experimental data is
fit. One must not then calculate further corrections.

These two views are in contradiction and may lead to
inappropriate calculations. Some authors attempt to ad-
just parameters in the DWBA until the data is fit as well
as possible. If the data cannot easily be fj.t then multistep
corrections may be added. If the DWBA is considered as
part of a series to which multistep corrections should be
added, the parameters of the first-order term should not
be adjusted to fit the data. The parameters of the DWBA
(strengths, radii, coupling, etc.) imply the size of higher
order corrections. If the parameters required to fit the in-
elastic data imply important higher order corrections then
the approach is inconsistent.
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It is our view that an approach of the type described
herein should be a part of a complete reaction theory: one
in which the diagonal potentials, coupling strengths, etc.,
are calculated from first principles. The procedure
presented here then allows the control of corrections.

must lie in the intersection of the surfaces
~

A, +
~

. Equat-
ing the norms in (A2), we find that toi "——1 and we are
left with a minimization over tot,

d
dN2

~A, +(1+'tto, )
~

=0.
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This yields the optimum value for to2..

~$8n ( [(~2 1 C )2+4cs2 C2]
4aCp

—[[(a —1 —Cp) +4az —C ]2

+ 16 2Czj 1/2) (A4)

The minimal distortion potential satisfying Eq. (74) can
be found analytically for the two-chatmel model con-
sidered in Sec. III. We determine the value to that
yields the minimum of the convergence parameter g:

(i} '")2=minImax[ ~A, +(to}[,(A, (to) ~2]J . {Al)

For positive energy, the norms squared of the eigenvalues
in (55) are

Co[(1—wi+C/Co) +to2]
~
A+(w) (

2=
s 2, (A2)

(a —1 —tot Co) +(2a —wzCo)

where the energy E is proportional to ct . Except for the
singular point at ((a2 —1)/Cc, 2a/Co), these are continu-
ous functions of to =to&+iw2 that each attain a single
minimum of zero at (1+C/Co, 0).

This is sufficient information to conclude that to "

One can show that at this value of wz

ming
(~Dim)2

N g Co —2'
Since to2 "Co (0 in (A4}, ri

'"
& 1 when ct ~ 0. Therefore

the DWBS converges for all positive energies when we
choose this minimal potential.

At negative energies

{Co —Cow i +C)2+ Cato 2
f

A, +(to) /2=
[(a,+1) —totCo] +Co~wi

where a =iai. As we did for positive energies, we mini-
mize this expression with respect to to& after setting
N~ ——1. However, in this case, we cannot improve upon
the convergence with the folding potential. The minimal
potential at negative energies is the folding potential with
to= l. In the special case that C & [(et~+1) —Cp), the
series diverges with the folding potential. It will diverge
less strongly for nonzero choices but it will not converge.
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