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The Alt, Grassberger, and Sandhas four-body theory has been used to calculate the differential
cross sections for the kinematically complete breakup reaction *He(p,pd)'H at various proton ener-
gies and angles. The two-body input consists of Yamaguchi potentials without Coulomb corrections
and the (3 + 1) and (2 + 2) amplitudes were expanded using the generalized unitary pole expansion.
The resulting effective two-body equations have been solved in the first-order K-matrix approxima-
tion. Reasonable agreement with experiment was obtained.

I. INTRODUCTION

Practical integral equations were formulated by
Grassberger and Sandhas' (GS) for four-body scattering
and breakup. In this formalism the original operator
equations are reduced to effective two-body equations in
two steps by employing separable expansions for the two-
and three-body subamplitudes. After partial wave decom-
position, the GS equations become manageable one-
variable integral equations.

The first calculations based on this method were per-
formed by Alt, Grassberger, and Sandhas (AGS),> for
d 4+ d—p +t (n + *He) rearrangement collisions and for
elastic p + He scattering. In first-order K-matrix ap-
proximation, at energies both below and above the break-
up threshold. Similar results have been obtained by Beck-
er’ after replacing the Yamaguchi potentials used in Ref.
2 by separable interactions with Gaussian form factors.
These results were encouraging but failed to reproduce the
second maximum in the differential cross section of the
2+2—3+1 rearrangement processes and were quite un-
able to reproduce the data in the forward direction for
3+1—3+1 elastic scattering. Recently Sofianos et al.*
employed improved expansion methods, the energy-
dependent pole expansion (EDPE),’ and the generalized
unitary pole expansion (GUPE)® for the (3 + 1) and
(2 + 2) subamplitudes, and used local and separable two-
body forces (with and without a tensor component). In all
these calculations it was found that the agreement with
the data improved with increasing energy. Going beyond
the first-order K-matrix approximation, Sofianos et al.*
included the principal value part of the (2 + 2) propaga-
tors essentially exactly by means of a converged
EDPE/GUPE expansion. This improved the agreement
with experiment also at lower energies in the
d + d—n+>He reaction considerably and led in the case
of p+3He elastic scattering even to a spectacular im-
provement in the forward direction. However, the lack of
structure in the differential cross section (the absence of a
second maximum in the d + d—n + 3He section) persist-
ed. Solutions of the four-body integral equations below

33

the breakup threshold by Tjon’ and Kroger and Sandhas®
indicate that this is probably mainly due to the omission
of the p-wave contributions to the three-body subampli-
tudes.

In what follows we study the four-body breakup reac-
tion 3He(p,pd)'H within the framework of this formal-
ism. In this case, as an intermediate step, the rearrange-
ment amplitudes enter again. However, being half off the
energy shell, a much larger number than in Ref. 4 is now
needed. Apart from many spin-isospin combinations, up
to eight GUPE terms had to be included to reach conver-
gence. This extreme complexity forced us to confine our-
selves, in contrast to Ref. 4, to the first-order K-matrix
approximation.

An earlier attempt to calculate rearrangement processes
in second order, and breakup reactions in first-order K-
matrix approximation, has been made by Sawicki and
Namyslowski’ and by Sawicki,'® respectively, who em-
ployed a two-term Bateman expansion. This approach,
however, not only failed to reproduce the correct triton
and “He binding energies for the Yamaguchi potential
used, but their first-order rearrangement results complete-
ly disagreed with experiment and with the corresponding
results of Refs. 2—4, inexplicably tending to get worse
with increasing energy. Moreover, also their second-order
results are in disagreement with those of Ref. 4. In our
present investigation no agreement could be found with
the breakup calculations of Sawicki'? either.

An older purely phenomenological approach to breakup
reactions describes them in terms of quasi-two-body pro-
cesses, such as quasi-free scattering (QFS) and final state
interactions (FSI). The plane-wave impulse approxima-
tion (PWIA) (Ref. 11) was widely used for QFS processes,
while the Watson-Migdal (WM) theory!? has been em-
ployed for the latter. These approximations owe their
popularity to their numerical simplicity and their roots in
our physical intuition. In addition, most of the structure
of the four-nucleon breakup scattering data occurs in the
regions where quasi-two-body processes are important.
Their disadvantages originate from the absence of a
theoretical justification based on a rigorous theory. This
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led to serious shortcomings, e.g., where several quasi-
two-body processes compete. Even in those regions where
these theories are expected to be valid, they only yield the
approximate shapes of the cross sections which have to be
renormalized to the experimental data. However, they
still may serve to interpret certain dominant structures
found in our more detailed approach in terms of simple
physical mechanisms.

In Sec. II we outline the GS formalism and express the
breakup amplitudes in terms of the rearrangement ampli-
tudes and the (3 + 1) and (2 + 2) propagators. The sim-
plification which results from resorting to the first-order
K-matrix approximation and our use of a converged ex-
pansion of the (3 + 1) and (2 + 2) subamplitudes is also
discussed. Although the singularities that are involved in
the evaluation of the propagators have to be treated quite
carefully, they only involve integrals that already occur in
the exact solution of the three-body problem.!* The nu-
merical results and their analysis are presented in Sec. III.

II. THEORY

The AGS transition operators Ug, for a four-body sys-
tem are given by the integral equation:'*

UB=80,88G5 't 'Go ' + 3 8. TpaGoty GoUe , (1)
TYY
where ¢, are the two-body amplitudes, Tg, the (3 + 1) or

(2 4 2) subsystem amplitudes, and G, is the two-body free
resolvent and §,,=(1-6,,). All the subsystem operators

are embedded in four-body space. By inserting the ansatz;
tY = 2 l Yn )EO;ny,ny<'yn l (2)
n=¢,d

in Eq. (1), we obtain effective three-body equations which
can be expressed in matrix notation as follows:

UP=0,80 '+ }_‘a,,T GU™. 3)

The reaction we wish to describe involves two cluster and
three clusters in the entrance and exit channels, respec-
tively. Hence we must reduce the entrance channel in Eq.
(3) to an effective two-body form. We, moreover, wish to
approximate the intermediate states by a finite number of
quasiparticles for computational reasons. To this end we
J

Bx2 %q)195p)= 3, {SAy,rF:.V( 1929 6. E— 343
v

if ¢ is a state corresponding to a (3 + 1) partition, and

Xy 195P) =3 (A, + A y,>21‘5.7,.(qu)9om[

if it corresponds to a (2 + 2) channel.

Our convention is that when a pole exists in a subsys-
tem amplitude it is contained in the first term of its ex-
pansion.

The physical difference between the first and second
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) BTh5(q,,p) + 2 A, THQ) T4, wlE

785

insert a separable expansion for the effective three-body
operators:

Tr_:E | ﬂv)ggl,‘;‘

wut

(7™, 4)

where t represents the spin-isospin state of the subsystem
under the partition 7=(i,jkl) or (ij,kl). We then obtain

U%g|#)= 3 | ™ )G
tvu'

X(™ | &U™Pg | P#), ()
where we have omitted a term on the right-hand side
which vanishes on shell due to energy conservation. In a
more concise notation we have

Xi= 3 |3 90Tl 6)
tvu'

where T is the four-body effective two-body rearrange-
ment amplitude and B identifies the pair that is bound in
the final state, its quantum numbers being collectively
denoted by n. The operator breakup amplitudes can be
shown to be given by,

Xg =g | X 3™ (7
where | g ) is the spin-isospin factor in |g,") such that,
& )=ITa") &) (8)

and | T") is the form factor of our separable expansion of
the (2 4+ 2) and (3 4+ 1) subamplitudes with o=(i,},kl),

B=(kl). The equation for the breakup amplitude can

therefore be written as follows:

ISXE:""' ﬂg IS<HV Iﬁn >Isl Fﬂt’)(go " IST;t ﬁx , )
'

where “5(@, | 3, )’ is the spin-isospin recoupling coeffi-
cient for total S and isospin I.

After symmetrization the breakup amplitude (9) takes
the form

Bx*aqi,19p)= 3 *X2"*(q;,192p) (10)
t

where the terms on the right-hand side are given by

—3 Q1 >I&rﬁ:‘l(Q]:p) ’

(11a)

2
q02)

2 5157 (q12p)

(11b)

T
term in (11a) is that the free nucleons in the final state are

interchanged.
The right-hand sides of both Egs. (11) are essentially

determined by the symmetrized rearrangement amplitudes
IST‘.I
B 1



786 T. E. MDLALOSE, H. FIEDELDEY, AND W. SANDHAS 33

The Jacobi momentum variables g, and g, are chosen
as in Ref. 2. In addition we use the notation

Q=19,— 34,

1Q=71%+54:
(12)

2
qu2=—192— 341 »

q;= —%1‘124‘ %‘h ’

The half on-shell rearrangment amplitudes in Eq. (11)
satisfy the integral equation

SISy Syg ST, (13)

which is extremely difficult to solve exactly at energies
above the breakup threshold, because of its complex cut
structure. Consequently, we employ as in Refs. 2—4 the
K-matrix approach, confining ourselves to its first-order
approximation, for reasons already pointed out in the In-
troduction. In essence, this involves the replacement of
the effective free Green’s function by its delta function
part which reduces Eq. (13) to

IST(2) ="V (2) + BV (2) 9 Y(2,2%)5T(2) , (14)
where
Gz,2%)=[Go(2)— G o(z*)] . (15)

It is evident that in those spin-isospin channels, where no
bound states exist, the corresponding contribution is just
the Born approximation. Furthermore, unlike the rear-
rangement scattering calculations, where only the pole
terms are required in the expansion of the (3 + 1) and
(2 + 2) subsystem amplitudes, we have to make the full
expansion since the rearrangement amplitudes are re-
quired half on shell.

After eliminating the delta function integration in Eq.
(14), we have

ISRy =1V, + 3 5veia, STy, (16)
where '
A, =(—37q.R)i, for the triton pole

=(—4m7qg4R 44)i, for the deuteron-pole
=0, otherwise

and ¢,,R, are the corresponding on-shell momenta and
residues, respectively.

The allowed spin-isospin channels for the reaction
3He(p,pd)'H, contributing as intermediate states in the
summation (10), are given in Table I, where the spin-
isospin state of an n-body subsystem is denoted by
(Sp,1,).

The spin-isospin recoupling coefficients are given in
Table II.

Finally, we obtain the differential cross section for a
complete experiment from the relation:

310
d’o 49
dQ4dQ+dE,

d 30,11
dQdOdE, |’

_do 1
d0d0.dE, 16

(17)

TABLE 1. Allowed spin-isospin channels.

(IS) Intermediate states Final states

(1,00 (I3,8;) = (5,3)—(tr) (I3,S3) = (3,3)—(tr)

(1L,)  (I3,8;) = (5,5)—(tr) (I3,8;) = (3,7)
= (4,3)—(qu) = (3,7)
(I,8,) = (LO)—¢
where
do’S  (2m)2ksk, | Sy, |2
dQdQdE;  ppy 3—2ky(pras—ks) 7k, ’

(18)

k;, i=3,4,5 are the laboratory momenta of the three clus-
ters in the final state and py,, is the initial laboratory
momentum. The breakup amplitudes are given by

| IOXﬁ l2= I lOXtr,tr,tr l 2 ,

| IIXﬁ i2= i 2 llXtr,y,tr|2
y=tr,qu,pd,dp
+ | 2 lquu,y,tr l 2 , (19)
y=tr,qu,pd

the abbreviations tr, qu, ¢ and d for the channel indices
being listed in Table I (compare also Ref. 2).

III. RESULTS

In all our calculations we used the following low energy
input parameters for the Yamaguchi form factors: singlet
scattering length, a,=—23.68 fm; triplet scattering
length, a4=5.416 fm; singlet effective range, r,=2.67
fm; deuteron binding energy, E;=2.224 MeV, yielding
the triton binding energy E,=10.98 MeV.

As already mentioned the GUPE was used to expand

TABLE II. Spin-isospin recoupling coefficients.

PA.y  PAs, PAcy o
(1,8) = (1,0)
(x,y) = (tr,tr) 1 -1
(1,S) = (1,1)
(x,y) = (tr,tr) 1 —%
= (tr,qu) 0 -2
= (qu,tr) 0 -3v2
= (qu,qu) 1 %
= (tr,ppd) —-V'1/3 —-V'1/3
= (qu,pd) V2/3 V'2/3
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FIG. 1. *He(p,pd)'H cross section at fixed proton-deuteron
angles 6,=63=35", in coplanar geometry for incident proton
laboratory energy, E,, =45 MeV, as a function of outgoing pro-
ton energy E,. All allowed spin-isospin channels are included.
Experimental results are from Ref. 19.

the (3 + 1) and (2 + 1) subsystem amplitudes in separable
terms. Our choice was motivated solely by the fact that
this is the simplest expansion. Its numerical advantage
lies in the fact that the form factors are not energy depen-
dent and therefore they are evaluated once and for all
through an eigenfunction analysis. This advantage in our
case outweighs the slower convergence of the GUPE com-
pared to those expansions which have energy-dependent
form factors, like the EDPE,’* SE1, and SE2.!> An idea of
the numerical effort required to solve the problem is given

1 I 1 T T T ) T T T

1600 .

>
g 1200}

N;

v - —
~
0
31

~a 800 .
w
el
O

d - -
©
(:;O.

S 400 -
0

el - -

0 L 1 1 1 1 1 1 i 1 1
5 7 9 Il 131517 1921 23
Ep (MeV)

FIG. 2. Same as for Fig. 1 but with angles 6,=6,=35" and
incident energy, Ej,=35 MeV. Experimental results are from
Ref. 18.
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FIG. 3. Same as for Fig. 2 but with angles 6,=63=45" and
incident energy Ej,=35 MeV. Experimental results are from
Ref. 17.
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FIG. 4. Partial *He(p,pd)'H cross section at proton-deuteron
angles 6,=03=45" and proton incident energy E,, =35 MeV is
given by the continuous curves. These curves represent the con-
tribution of the channels qu, tr, and ¢d, respectively. The
dashed curve represents the laboratory energy of the spectator
E,, while the dash-dot curve gives the proton-proton relative en-

ergy Ep,.
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by the fact that a single point on the cross-section curve
requires about one hour CPU time on a Burroughs 7900.

We denote the number of expansion terms for the sub-
system amplitudes in the qu, tr, and @d-dg states by N31,
N33, and N22. Up to an accuracy of <7%, it was suffi-
cient to go up to N31=4 and N33=N22=6.

The process *H(p,pd)'H is well known to be predom-
inantly coplanar,'® indicating that the reaction proceeds
preferentially as a quasi-two-body reaction which can re-
sult from either proton-proton (proton-deuteron) quasi-
free scattering or proton-proton final state interaction
(FSD) in the 'S, state. These quasi-two-body phenomena
result in the enhancement of the cross section when ap-
propriate kinematical conditions are satisfied. At a QFS
peak the recoil momentum of the deuteron (p-p QFS) or
proton (p-d) QFS is a minimum, while the FSI peaks
occur at minima of the energy of relative motion between
the protons in the final state. In our formalism the *He
nucleus is a mixture of d + nucleon and ¢ + nucleon.
Consequently the p-p, 'S, state FSI can be viewed as re-
sulting from a neutron pickup reaction.'® The greatest
contribution to the cross section for this mechanism can
therefore be expected to come from the amplitude
STxx.¢ddptr  The rest of the amplitudes would then
describe QFS processes.

In Figs. 1—3 we have plotted the differential cross sec-
tion for a selection of kinematical conditions. OQur results
are in reasonable agreement with experiment. In this con-
text it should be noted that the overbinding of the triton
in our model, based on Yamaguchi potentials, results in a
shortening of the kinematically allowed region for the
measured energy of the outgoing proton. Hence, there are
experimental values beyond our theoretical limits. A typi-
cal feature of breakup spectra at both three-body (Ref. 20)
and four-body levels is that there exist proton energies and
angles (of reaction products) for which the pole of the
phase space factor, Eq. (18), moves sufficiently near to the
kinematically allowed region to cause a sharp increase in
the cross section near the maximum proton energy; hence
the spike in Fig. 3. In this case, it is aggravated by our
distorted kinematics. In Fig. 4 we have selected one set of
kinematical conditions in order to illustrate the contribu-
tions of various channels and the kinematical variables

that govern various quasi-two-body processes. It is clearly
seen that for each quasi-two-body process there are inter-
mediate channels in Eq. (19) which dominate the cross
section. In particular, we find that the amplitude
SIxx¢d—dp:tr essentially determines the FSI while the p-d
QFS is dominated by the quartet channel.

In Ref. 17 “anomalies in QFS from p + *He reactions”
were reported which consist of shifts of the experimental
peaks away from the minimum of the spectator energy.
This shift was partly explained!” by starting from the
ad hoc assumption that a pickup amplitude calculated in
the diffraction model can be added coherently to the QFS
amplitude. According to Fig. 4, the combination of am-
plitudes for various processes is seen to arise automatical-
ly in the AGS approach with the result that the peak is
quite naturally shifted towards its experimental position.

Let us finally add some comments on the previous
breakup calculations by Sawicki.! We have already men-
tioned the shortcomings of the rearrangement results of
Ref. 9 which enter his calculations. Moreover, in the
breakup case, as an additional complication not taken care
of in Ref. 10, many more expansion terms are needed to
reach convergence (compare the above discussion of this
point). In fact, only with their full incorporation the
magnitude of the experiments is sufficiently well fitted.

In conclusion we have found that, already in first-order
K-matrix approximation, the AGS theory enables us to
reproduce the main features of those breakup processes
considered in this paper. It should be emphasized that
our calculations, while being based on a simple two-body
interaction, represent a real microscopic approach without
any free parameters.
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