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Model-space nuclear matter calculations with the Paris nucleon-nucleon potential
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Using a model-space Brueckner-Hartree-Pock approach, ve have carried out nuclear matter cal-

culations using the Paris nucleon-nucleon potential. The self-consistent single particle spectrum

from this approach is continuous for momentum up to k~, where k~-2kF is the momentum space
boundary of our chosen model space. The nuclear matter average binding energy and saturation
Fermi momentum given by our calculations are -15.6 MeV and —1.56 fm ', respectively. %hen
using the conventional Brueckner-Hartree-Pock approach with a spectrum which has a gap at kq,
the corresponding results are —11.5 MeV and —1.50 fm '. The gain of approximately 4 MeV in

binding energy between the two calculations comes mainly from the Sl and 'So partial wave chan-

nels. %'e have investigated the effect of adding an empirical density dependent central potential to
the Paris potential. It is found that the addition of such a potential whose strength is -10% of the
central component of the Paris potential is adequate in making the nuclear matter binding energy

and saturation density in simultaneous agreement with the empirical values.

I. INTRODUCTION

In recent years nucleon-nucleon potentials derived from
meson and isobar degrees of freedom have been able to
describe rather satisfactorily experimental nucleon-
nucleon phase shifts and deuteron properties. The next
question to be answered is whether such potentials are
able to predict nuclear many-body properties. As is well
known, the simplest many-body system as far as theoreti-
cal calculations are concerned is the infinitely large and
homogeneous nuclear matter. Many methods have been
proposed for carrying out nuclear matter calculations,
such as the Brueckner-Hartree-Fock (BHF), ' the Fermi
hypernetted chain, the e (Ref. 3), and the model-space
BHF (Refs. 4 and 5) methods. From the Weiszacker
einpirical nuclear mass formula, the binding energy per
nucleon (BE/A) in nuclear matter is deduced to be —16
MeV, and from electron scattering experiments of nuclei,
the nuclear matter saturation density (po) is deduced to be
-0.17 nucleon per fm . Theoretical derivations using the
methods mentioned above have, however, never been able
to reproduce the values of the binding energy per nucleon
(BE/A) and po which are in simultaneous agreement with
the corresponding empirical values; the calculated values
of BE/A and pz using various nucleon-nucleon potentials
generally lie on a band —the Coester band —which devi-
ates significantly from the corresponding empirical
values. This deviation can be attributed to different
sources. It could be due to the inadequacy of the many-
body techniques used so far in the calculations. It could
also be that the assumption that two-body forces are dom-
inant in nuclear matter is not accurate enough and that
three or more body forces are not negligible. This point
was, in fact, suggested by several recent studies, ' al-
though, even in the case of three-body forces, the deriva-
tion of these forces is still very ambiguous.

In this paper, we report our results of several model-
space BHF (MBHF) calculations of nuclear matter, using

the Paris nucleon-nucleon (NN) potential. This method
was introduced by Ma and Kuo. They have applied it
using the Reid NN potential. They have also carried out
some preliminary MBHF nuclear matter calculations us-

ing the Paris NN potential, including only partial waves
with 1&5. Results of these calculations have been very
briefiy reported. The present paper carrie out more ex-
tensive MBHF calculations using the Paris NN potential
and will report the results in more detail. In addition, we
will study the effect of adding an empirical density depen-
dent two-body effective interaction to the Paris potential.
This effective density dependent interaction is assumed to
represent all effects due to the modification of the two-
body forces by the medium, three-body forces, etc. We
will show indeed that we only need to add a fairly small
density dependent component to the Paris potential so as
to make the calculated nuclear matter saturation density
in good agreement with the experimental one.

We will first, in Sec. II, briefiy describe the MBHF
method for nuclear matter calculations. Mahaux and his
collaborators' have pointed out that the discontinuous
single particle spectrum used in conventional BHF calcu-
lations is unsatisfactory on several fundamental grounds,
mainly because this spectrum has an artificial energy gap
of -60 MeV at the Ferm. i surface kz. These authors
therefore proposed a continuous single particle spectrum
based on a Green's function method. The MBHF method
is derived from a model-space approach, which leads to a
single particle spectrum which is continuous within the
chosen model space. Hence if one chooses a model space
which extends beyond kF, one will obtain a single particle
spectrum which is continuous is kF. As discussed later,
one may choose to treat the hole-line spectrum slightly
different when carrying out nuclear matter calculations
within the model space. Then the resulting single particle
spectrum will have a small gap at kF. An important
feature of our spectrum is that its potential energy is gen-
erally attractive in the momentum region kF to -2kF. In
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Sec. III we will report on our results of nuclear matter
calculations by using the Paris nucleon-nucleon potential
as well as describing some details of our computational
methods, such as the Born approximation for calculating
the potential energy contribution from partial waves with
I &5. In Sec. IV, we will describe and discuss several
MBHF nuclear matter calculations using the Paris
nucleon-nucleon potential with its central component
modified by an empirical density dependent factor. A dis-
cussion and a conclusion are presented in Sec. V.

II. THE MBHF METHOD FOR NUCLEAR MA x-j.I.R

and we have chosen PUQ=QUP=QUQ=0. ' I.et us
mention that the unknown to be solved for from Eq. (6) is
PUP, and in doing so a self-consistent procedure must be
employed. This is because, briefly speaking, we need to
know Ho and I' in order to calculate the matrix elements
of U from Eq. (6), while H0 and P themselves are also
dependent on U. For nuclear matter, this self-consistent
procedure is simplified because our P, given in terms of
plane-wave single particle states, is independent of U. As
in Ref. 4, we use a one-6-matrix approximation in solving
Eq. (6), and this leads to the following self-consistent
equations for PUP:

In this section we briefly describe the MBHF method
for nuclear rnatter. ' In treating nuclear many-body
problems, one usually introduces a one-body auxiliary po-
tential U to the nuclear Hamiltonian H =T+ V, where V
is a chosen nucleon-nucleon (NN) potential, and rewrite it
as

H =(T+U)+( V —U) =H0+Hi .

The exact solutions of the Schrodinger equation
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(7a)

are, of course, independent of the choice of U. But when
solving Eq. (2), using some approximation methods as in-
variably done in practice, the choice of U can play a very
important role. The MBHF method is basically a method
for the choice of U. For nuclear matter calculations, we
begin with choosing a model space P defined by

with

H ff P(HO+V ff)P (4a)

where Heff and V,ff are, respectively, the model-space ef-
fective Hamiltonian and interaction. Clearly V,ff itself is
dependent on U.

The effective interaction V,ff generally contains many-
body components, i.e.,

y y(0)+ y(1)+ y(2)+. . .

where V'"' denotes the n body c-omponents of V,ff. This
is so even when the original interaction V is taken merely
as a two-body interaction, such as the Paris potential. A
basic step of the MBHF method is to choose U such that

s v")s =o.
This is in fact a model-space Hartree-Fock condition, as it
is equivalent to requiring & lplh

~
PH, ffP ~

Opoh & =0
where 1plh and OpOh are the familiar one-particle —one-
hole and zero-particle —zero-hole eigenstates of H0,
respectively. From Eq. (6) we can only determine PUP,

where all nucleons are restricted to have momentum k
less than kM, the momentum space boundary of P. Typi-
cal values for ksf are -3 fm, as will be discussed later.
Using effective interaction theories, "' we can transform
Eq. (2) into a model space equation

(4)

CO=Eg +es

&i=ti+ & ki I

u"""
I
ki & ki + kM

=ti, ki & kM,

(7b)

('7c)

where ti is the kinetic
enemy

i' k, /2m. U and UM~" are
related by U = gi" i tt (i). Note that the intermediate
states of the 6 matrix must belong to the Q space, and
this is ensured by using in Eq. (7a)

Q(mn) =1, if max(k, k„)& kit and min(k~, k„)& ki;,
(7d)

=0, otherwise .

FIG. 1. Angle averaged projection operator Q(nt, n) pf Eq.
(7). k, is (kp+k~)/2.

An angle-average approximation for Q (Ref. 4) has been
used in our calculations. In this way, Q is dependent only
on the magnitudes of the center of mass and relative mo-
menta K and It. Then, as shown in Fig. 1, the values of
Q are calculated depending on which regions the magni-
tudes of K and k belong to. These regions (a to f) are di-
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FIG. 2. Structure of 5 and 6 matrices. Particles with

momentum p k~ are denoted by railed lines. Bare particle lines

are those anth momentum & k~.

vided by three lines, k —K/2=+kF and k+K/2=k]]r,
and two ellipses k +K /4=k]]r and ( kF+k ]]i) /2. In re-

gions a and b we have Q =1, and in the shaded region c
we have Q=O. The angle-averaged approximations are

used only for regions d, e, and f, and the values of Q in

these regions are, respectively, (k kF K—/4)/—kK,
[(k+K/2) kl]/kK—, and (2k' kF k—si+K—i/2}/kK.

The 6 interaction defined above contains only those di-

I'.]r =6—6 f 6+6 f 6 f 6— =—6~ . (8)

We then carry out BHF nuclear matter calculations
within the model space, using the Gz as the effective
nucleon-nucleon interaction within the model space. This
leads to the following self-consistent equations:

agrams whose intermediate states have at least one parti-
cle with momentum &k]]r. In nuclear matter calcula-
tions, particle-hole excitations with particle momentum
& k~ should also be included, and this can be done by in-
cluding processes corresponding to repeated 6 interac-
tions within the model space P. Let us give some exam-
ples. As shown in Fig. 2, diagram (a) is contained in 6
but not (b). This is because the bare particle lines i and j
both have momentum &k]]r, while the railed line a is a
line with momentum & kj]r. To include diagram (b) in
the nuclear matter calculation, we need to calculate dia-
grams second order in G. To include this type of diagram
more completely, we adopt the MBHF method. Briefly
speaking, we first calculate the model-space two-body ef-
fective interaction by including 6 and all the two-body
folded diagrams generated by 6, i.e.,

h lh2 I
GF I

mn &Q(mn)&mn I 6]]r{~)I
"]h

&h]h2 IG]]r(CO) I
h]h2&= h]hi

I
GF Ih]h2 +

N E' E
(9)

where~=eh +eh and
1 2

Q(m, n) =1, if kF &(k,k„)&kyar,

=0, otherwise,

~~=4+ g &mhIG]]i(~ +ss) Imh& ]f k &kF
h &kF

(9b)
=e if k &kF,

where e was given in Eq. (7b). The potential energy (PE}
per particle in nuclear matter is given in terms of GM by

1
& h 1 h z I 6]]r( ex ] + 'ss, )

I
h ]h z &

h), h2 gkF

with the single particle energies e given by Eq. (9b).
We can simplify the above calculations. By substitut-

ing 6~ of Eq. (8) into Eq. (9) and making use of Eqs.
(7a)—(7d), we can rewrite Eq. (9) as

&hih2
I

I'
I
mn &[Q(mn}+Q(mn)]&rnn

I 6]]r(~) I h]h2 &

h ]hi GM(~) hih2 = h]h2 VI h]h2 +
lllll &m —&n

(10)

with co=a], , +e], and Q and Q given, respectively, by

Eqs. (7d) and (9a). Equation (10) is more convenient for
calculation than Eq. (9), because we now calculate GM
directly from @whereas for Eq. (9) we need to first calcu-
late G~ and then calculate 6]]r from GF From Eq. (10)
we can see rather clearly the connection between the
MBHF method and the conventional BHF method. The
essential difference is in the treatment of the single parti-
cle spectrum for k ~ kz. In the BHF method, free-
particle spectrum is used for particles with k ~ kz. In the
present method, free particle spectrum is used on1y for
k & k]]r, whereas the model-space HF spectrum of Eq. (7c)
is used for kF &k &k]]r. It is easily seen that the above
MBHF method reduces to the conventional BHF method

1

if we choose k]]r ——kF. How should we choose k~7 If the
calculations are carried out exactly, the results should be
independent of kl. In practice, we must make some ap-
proximations, and therefore the choice of k]]r will affect
our results. We have found that for kM-2k+ or -3
fm ' the results of our nuclear matter binding energy cal-
culations are quite stable with respect to small variations
of k~. %'e have therefore chosen k~ ——2k+ in our calcu-
lations.

III. NUCLEAR MA l j.ER CALCULATIONS
USING PARIS POTENTIAL

The Paris potential reproduces the low-energy (E & 330
MeV) two-nucleon scattering data and deuteron properties
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very well, and its long- and medium-range parts are field
theoretically derived including components from one-,
two-, and three-pion exchanges. The short-range (r &0.8
fm) part of this potential is determined phenomenological-
ly. In our nuclear matter calculations, we have used the
parametrized form of this potential as the NN potential V
of Eq. (1}. This form of the Paris NN potential has a sig-
nificant momentum dependent component which has been
shown'3 to have important effects on the nuclear matter
single-particle spectrum, effective mass, and binding ener-

gy. It should be pointed out that in numerical calcula-
tions special care must be given to the treatment of this
momentum dependent component, as was found in coor-
dinate space phase-shift and nuclear matter calculations. '

We calculate the nuclear matter G matrix using momen-
tum space integral equation methods, and have found that
it is very important to treat the momentum space mesh
points at high momentum (-30 fm ') with great care.
A fairly high concentration of momentum space Gaussian
points must be placed in this region in order to obtain nu-

merical stability.
A first step in our calculation is the evaluation of the

partial wave matrix element of the form

(kl
I

V
I

O'I') = I r2drji(kr)V(rj)&. (k'r), (11)

where V(r) is the Paris potential. This matrix element
may be evaluated using numerical integration, but in this
way high accuracy is difficult to obtain; this is because of
the strong short-range components contained in V(r) and
the rapid oscillations of the Bessel functions when k
and/or k' become large. The parametrized form of V(r)
is particularly convenient because it is composed of a sum
of Yukawa terms of the form e '/r and their deriva-
tives. Then the matrix elements of Eq. (11)can be analyt-
ically evaluated by way of the integration formula

~ ~

—tent

0
r drjI(kr) ji(k'r)dr'=, Qi(z),r 2kk' (12)

where z =(k +k' +m )/2kk' and Qi(z) is the Legendre
function of the second kind. Thus the matrix elements
(kl

I
V

I

k'I') can be calculated either numerically or
analytically. We have used both methods, and obtained
satisfactory agreement between their results; this serves to
check our computer programs. Results reported in this
work were all carried out using analytically calculated
(kl

I
V Ik'I').

The Gsr matrix of Eq. (10) is then calculated in a par-
tial wave bash, using angle average approximations for Q
and Q, iusmely

(«
I

V
I pP)(Q+Q)(uP I Gw(~)

I

k'tz')

CO —E p
—E'

rk,'
(13)

where a and P denote the two-nucleon partial wave quan-
tum numbers ( ISTj ), k and k' the relative momenta, and

e&, and ek, are the single particle energies given by Eq.
1 2

(9b). The average potential energy per nucleon as given by
Eq. (9c) is also calculated in terms of the partial wave Gsr
matrices, namely

(PE)= g g (2T+1)(2j+1)
k&, k2 g k+ a

)& (ka
I
GM(Kz) Ika), (14)

where A and 0 are, respectively, the mass number and
volume of nuclear matter. The relative and center-of-
mass momenta k and j: are integrated over under the

constraint that k i and k2 are both less than kr.
(ki ——k+ K/2, kz ——k —K/2. ) Furthermore, an angle
average approximation' for E has been used in our cal-
culation. For high partial waves (l & 5 }, short-range
correlations between nucleons in nuclear matter are not
important. Hence for these partial waves we have re-
placed Gsr by V in Eq. (14). As shown in Table I, this re-
placement is judged to be a very accurate approximation
for evaluating the nuclear matter potential energy for par-
tial waves with /)4. Here we see that the short-range
correlations are important only for /&2 partial waves.
For example, the l =0 contributions to U from V are gen-
erally repulsive. The main effect of including the short-
range correlations is the conversion of V into Gsr, and we
see that the contributions from G~ are mostly attractive.

TABLE I. Average nuclear matter potential energies, in MeV, for various I values. The entries
headed by G~ are calculated according to Eq. (14), while those under V are calculated in the same way

except that G~ is replaced by V.

kp (fm ')
I

29.97
5.19

—2.91
0.87

—0.48

1.2

—29.44
2.26

—3.24
0.86

—0.48

V

50.16
9.27

—5.56
1.64

—1.09

1.4

—37.66
4.04

—6.16
1.61

—1.08

V

77.99
15.49

—9.54
2.71

—2.12

1.6

—44.91
7.00

—10.57
2.64

—2.10
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gd E
x =9p

dp + kp

=k2 d E
dk' ~ kF

(15)

We have found that the high (1 ~ 5}partial waves have the
effect of reducing the saturation density of nuclear
matter. Their contribution to U at saturation density is
found to be -0.6 MeV per nucleon. In a previous calcu-
lation, the 1 ~ 5 partial waves mere not included and the
resulting saturation density was slightly larger than the
one found in this work.

In Fig. 3, we show our results for the nuclear matter
saturation curves, using the MBHF method as described
above [mainly Eqs. (10), (13},and (14)) and elsewhere. '

The average binding energy and saturation density are
found to be 15.6 MeV and kF ——1.56 fm ', respectively.
(The calculations were performed using k 2kF.——) We
have also performed the usual BHF calculations, which
correspond to the MBHF calculations with the special
choice of kyar ——k~. As shown, saturation k~ and average
binding energy for BHF are 1.5 fm ' and 11.5 MeV,
respectively. When compared with BHF, our MBHF cal-
culations give an additional binding energy of -4 MeV
per nucleon. The nuclear matter incompressibility coeffi-
cient

can be deduced from the saturation curves of Fig. 3. It is
deduced to be approximately 150 MeV for BHF and 190
MeV for MBHF. Both are somewhat smaller than the
empirical value of a =220+20 MeV.

In Table II, contributions to average potential energies
from individual partial waves are tabulated, for two kF
values for both BHF and MBHF. As shown, the increase
in binding energy from BHF to MBHF mainly comes
from the S~- D& and 'So channels. (We have checked
our computer programs by comparing our BHF results
with those of Day. ' For example, our BHF binding ener-

gy per nucleon at kF ——1.4 fm ' is 11.19 MeV while his
value is 11.15 MeV. In general, satisfactory agreeme~t
between our results and those of Day has been obtained. )

As discussed in Sec. II and elsewhere, ' an essential
difference between BHF and MBHF is the choice or
determination of the single particle spectrum ek used in
nuclear matter calculations. Let us divide ek into three
regions and express it as

flak
ek —— , —b,2 for k &kF,2' 2

fi k, —b,
&

for k~ & k & kyar,
2m

for k) kyar .
Ak2

(16)
2

K (fm )

l.2 I.h I.4 l.5 l.s I .7 I .8

PAR IS V~N TABLE II. Decomposition of average nuclear matter poten-
tial energies (PE), in MeV, calculated from the Paris NN poten-
tial. See the text for other explanations.

-IO-

)
tDx

~0
UJ
tXI

I )5

J'

BHF ~~ ] 4
/

/
/+

MBHF+ DOC{I)

-20-

FIG. 3. Nuclear matter saturation curves. Curves BHF and

MBHF are calculated using the Paris NN potential. The other
two curves are both MBHF calculations using the Paris poten-

tial supplemented by density dependent central components.
The binding energy per nucleon BE/A, saturation kF and in-
compressibility coefficient e for these curves are

BHF
MBHF
DDC{I)
DDC(II)

11.5
15.5
17.1
16.4

1.50
1.56
1.45
1.45

153
188
231
336

The empirical values for BE/A and saturation density are indi-
cated by the box.

kF
Channel

'So

D)- Di
1p

'po
3p

p2- p2
F2- F2
la
3D

3D 3D

36 36
1F
3F
F4- F4
H4- H4
16
36
Gs- Gs

'Is-'Is
1&4

—16.97
—17.99

1.69
4.87

—3.84
11.96

—8.14
—0.69
—3.21
—4.65

0.13
0.25
0.97
1.84

—0.51
—0.11
—0.56
—0.87

0.09
0.04
0.31

—35.57
24.38

—11.19

—17.26
—20.40

1.68
4.81

—3.86
11.46

—8.35
—0.69
—3.22
—4.70

0.07
0.25
0.97
1.84

—0.51
—0.11
—0.56
—0.86

0.08
0.04
0.31

—38.94
24.38

—14.55

1.4 (fm-')
BHF MBHF

—19.16
—19.29

2.22
6.14

—4.52
15.03

—10.65
—0.95
—4.30
—6.13

0.18
0.36
1.31
2.50

—0.76
—0.17
—0.79
—1.24

0.13
0.07
0.43

—39.48
27.99

—11.49

—19.57
—21.96

2.21
6.05

—4.57
14.72

—10.90
—0.95
—4.31
—6.18

0.11
0.36
1.30
2.50

—0.76
—0.17
—0.79
—1.24

0.13
0.07
0.43

—43.41
27.99

—15.42

1.5 (fm ')
BHF MBHF
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TABLE III. Single particle spectra derived from BHF and

MBHF, using the Paris NN potential.

Fff /Pl )

m/m2
b,2

BHF

1

0
1.52

83.79

MBHF

1.28
66.74

1.49
89.87

BHF

1

0
1.56

94.58

MBHF

1.31
74.40

1.53
101.77

In MBHF, one first determines m; and hi based on
Eqs. (7). Then within the model space (k &k~) we can
further include the hole-line self-energy insertions. This
leads to the (m2, d2) spectrum for k &kz, as shown in
Eq. (16). For k ~ k~ we use the free particle spectrum.
In Table ID, we give some typical values for m i, hi, rn 2,
and hz. In BHF, the self-consistent spectrum is used only
for k & kF, while the free particle is used for all other mo-
menta. The values of m2 and 52 for BHF are also shown
in Table III. Clearly the MBHF and BHF spectruin are
quite different for kF &k &ksi. For k &kp, the two are
rather similar except that the MBHF spectrum is about 5
MeV lower than the BHF spectrum.

IV. DENSITY DEPENDENT CENTRAL POTENTIAL

We have seen that the binding energy per nucleon given
by the MBHF nuclear matter calculations using the Paris
NN potential is rather close to the empirical value of —16
MeV/A. The saturation density given by such calcula-
tions is, however, larger than the empirical value corre-
sponding to kF-1.36 fm '. Day' has pointed out that
by using only a two-body NN interaction that fits the low
energy scattering data and the deuteron properties, it is
difficult to reproduce the empirical nuclear matter satura-
tion properties. One can therefore conjecture that a densi-

ty dependent component in the bare NN interaction for
nucleons in nuclear matter may be needed. Based on our
calculations, we would like this component to have a net
repulsive effect in nuclear matter binding energy calcula-
tions for k~ ) 1.5 fm ', while for kF & 1.5 fm ' it should
have a net attractive effect. Recently there has been much
discussion on the effect of the three-body NN interaction
in nuclear matter calculations. Although the effect of
three-body and higher-body NN interactions to nuclear
matter binding energy calculations may be small as com-
pared to the contribution from the two-body NN interac-
tion, their effect on nuclear matter saturation properties
may, however, not be negligible.

In this work, we would like to investigate the effect of
an empirical density dependent force in nuclear matter
saturation density calculations. Our purpose is mainly to
estimate the general strength of such a density dependent
force so that its addition to the Paris NN potential will
shift the nuclear matter saturation density given by
MBHF to kz-1.36 fm '. We regard this density depen-
dent central (DDC) piece as an empirical device to ac-

count for effects other than the two-body forces. Ii; is
well-known that a three-body force in nuclear matter can
be generally represented by a two-body density dependent
force. Thus we introduce a parametrized density depen-
dent two-body force

p(kF-ko)
VDDC(kF) =ae ~c

where Vc is the isospin independent central component of
the Paris NN potential. a, P, and ko are parameters. We
have performed MBHF calculations using various values
for a, P, and ko. In Fig. 3, the curve labeled
MBHF+ DDC(I) is obtained using a=0. 1, P=20 fm,
and ko ——1.30 fm '. The NN interaction used in this
MBHF calculation is given by the sum of Vi,„,and

VDDc. As shown, the resulting saturation Fermi momen-
tum and binding energy per nucleon are, respectively,
—1.45 fm ' and —17 MeV, in good agreement with the
empirical values. The resulting incompressibility coeffi-
cient is -230 MeV, which is also in good agreement with
the empirical value of -200+20 MeV. The above results
indicate clearly that we only need a rather weak density-
dependent two-body central interaction, whose strength is
of the order of 10% of that of the Paris central potential,
in order to bring the calculated nuclear matter saturation
density and binding energy in simultaneous agreement
with the empirical values. Based on a cr model, Jackson,
Rho, and Krotscheck have investigated the three-body
forces for nucleons in nuclear matter. They suggested
that the main effect of such forces may be represented by
a two-body effective central interaction due to one o-
meson exchange with effective mass m~, which is related
to the bare mass m~ by m' =m (1—ap+Pp ), where

p is the nuclear matter density. The constants a and P
were given as -0.5 fmi and —1.2 fm~, respectively. The
medium range attraction of the NN potential comes
mainly from the cr exchange. Thus, the renormalized m'

makes this part of the NN interaction density dependent.
It is difficult to rigorously incorporate this effect into the
Paris NN potential, because its medium range attractive
part is due to the nm S wave interaction rather than a "o
meson. " As a preliminary investigation, we have simply
modified the central part of the Paris potential Vc by a
similar density dependent factor, converting it into
Vc/(1 —a'p+P'p ~ ). When using this modified poten-
tial with a'= l.7 fm and P'=4. 3 fm5 in our MBHF cal-
culation of nuclear matter, the resulting binding energy
and saturation density are both in reasonably good agree-
ment with the empirical values, as shown by the curve
MBHF+ DDC(II) of Fig. 3. The incompressibility coef-
ficient obtained from this curve is -336 MeV, which is
somewhat too large as compared with the empirical value.

V. DISCUSSION AND CONCLUSION

We have carried out MBHF nuclear matter calculations
using the Paris NN potential. Comparing with the corre-
sponding BHF results, MBHF gives an additional binding
energy of about 4 MeV per nucleon while slightly increas-
ing the saturation density. The trend of these results is
approximately the same as that observed in a MBHF cal-
culation of nuclear matter using the Reid NN potential.
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The main difference between MBHF and BHF is the
use of the single particle potential. Using a model-space

HF approach, the self-consistent single particle spectrum
given by MBHF is a continuous one for momentum
0~ k g k~ where k~ is the chosen momentum-space
model-space boundary. If one chooses k~ & kF, then one
has a continuous single particle spectrum extended beyond
k~. If one chooses k~ ——kF, then MBHF reduces to BHF
whose single particle spectrum has a huge discontinuity at
kz, this is rather unphysical, as has been pointed by
Mahaux and his collaborators'0' some time ago. Nu-
clear matter calculations are numerically rather compli-
cated, and it will be very helpful to have checks with in-
dependent calculations. The present calculation is rather
similar to a recent nuclear matter calculation using the
Paris NN potential carried out by Lejeune, Martzolff, and
Grange. ' They also used a continuous single particle
spectrum, but theirs is derived from a Green's function
approach while ours is from a model space HF approach.
Their single particle potential is generally complex, awhile

ours is real. Nevertheless, the real parts of their single
particle spectrum and our spectrum are numerically very
close to each other for momentum & 3 fm ', with differ-
ence =10 MeV or less. (They used the real part of their
single particle potential in their nuclear matter calcula-
tion. ) Note that their spectrum is continuous for all mo-
menta while ours has a small gap at k~. It is rather satis-
factory to note that the resulting BE/A and saturation kF
for their and our calculations are, respectively, (16.0+2
MeV, 1.62 fm ') and (1S.5 MeV and 1.56 fm '). They
are in remarkably good agreement. (Note that in addition
to the above difference in the single particle spectrum,
these two calculations also differ in methods of calcula-
tions. Their reaction matrix was obtained by solving dif-
ferential equations in the coordinate space, while we have
calculated our reaction matrix using the momentum space
matrix inversion method. ) The above confirms the gen-
eral trend that nuclear matter calculations using a con-
tinuous single particle similar to the one derived in this
work or that of Ref. 13 can increase the average nuclear
matter binding energy by about 4 MeV, as compared with
the conventional BHF results.

As discussed elsewhere, the gain in BE/A from BHF
to MBHF nuclear matter calculations is primarily due to
the difference in the single particle spectrum used in these
two calculations. The particle-hole gap in the single parti-
cle spectrum of MBHF is considerably smaBer than that
of BHF. Consequently, the energy denominators for low
energy particle-hole excitations in nuclear matter are sig-
nificantly reduced. This increases the contribution from
these excitations to the nuclear matter binding energy,
particularly for the Si- Di channel (see Table II) where
the NN tensor interaction is important.

The above gain in BE/A can also be explained from a
different viewpoint. In BHF, the potential energy for a
nucleon in the momentum region k~ to k~ is zero, while
in MBHF it is generally attractive and has an average
value of about —40 MeV. The probability of having a
nucleon excited from «k~ to the above momentum re-
gion is approximately given by the familiar wound in-

tegral whose value is found to be -0.1. The potential en-
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FIG. 4. Nuclear matter calculations using the V2 test poten-
tial. Results of our calculations are denoted by BHF and
MBHF. Those from the Green's function Monte-Carlo calcula-
tions (Ref. 17), the Fermi hypernetted chain calculations (Ref.
18), and Day's four-hole-line calculations (Ref. 19) are denoted

by Monte-Carlo, FHC, and BB(4), respectively. Results for
Monte Carlo and BB(4)are given with error estimates.

ergy for a nucleon below kz in BHF and MBHF are ap-

proximately equal to each other. Hence the gain in BE/A
from BHF to MBHF should be approximately
Q. 1 &&( —4Q) = —4 MeV. This estimate agrees well with

the result shown in Fig. 3.
We have found that the contribution from the high-

order partial waves (I &4) to the nuclear matter binding

energy to be generally not important as indicated by Table
II. This is consistent with the results of Sprung et al. '

who estimated the contributions from high-order partial
waves to nuclear matter binding energy directly from
phase shifts, and the results of Grange et a/. ' who inves-

tigated these contributions for nuclear matter calculations
using continuous single particle spectra.

Although the calculated BE/A is in fairly good agree-
ment with the empirical value, the calculated saturation
density, however, is too high. %e have investigated the
effect of adding a weak density dependent central poten-
tial to the Paris NN potential. Although our investigation
in this regard is rather preliminary, its results do indicate
that we only need a rather weak (about 10% of the Paris
central potential) additional density dependent central
force to make the calculated BE/A and saturation kF in
simultaneous agreement with the empirical values.

To further present calculations, it seems to be of the
highest priority to calculate some higher-order diagrams
within the framework of MBHF. In MBHF, one essen-

tially includes only the two-hole-line diagrams. Hence it
is basically the same as BHF except for the use of the



T. T. S. KUO, Z. Y. MA, AND R. VINH MAU 33

MBHF continuous single particle spectrum as mentioned
above. An important question to be answered is the fol-
lowing: Now that the MBHF BE/A is already in fairly
good agreement with the empirical value, will this good

agreement remain when one further includes some
higher-order diagrams such as the ring diagrams within
the model space'? If it is so, then the net effect of all the
higher-order diagrams must be small. It will be of much
interest to find out if this turns out to be true. Ring dia-
gram nuclear matter calculations using the Paris potential
and the MBHF approach are now being carried out. '

To test the accuracy of the MBHF approach, we have
carried out model nuclear matter calculations using the
V2 test potential. This potential is just the central part of
the Si Reid NN potential, and for this potential highly
accurate and elaborate nuclear rnatter calculations are
available, namely the Monte-Carlo calculation, ' the Fer-
mi hypernetted chain calculation, and Day's four-hole-
line BHF calculation. ' As shown in Fig. 4, our BHF re-
sults largely deviate from the results of these calculations.
But our MBHF results agree with the latter two remark-

ably well. This is certainly an encouraging agreement.
Note added in proof. M. A. Matin and M. Dey [Phys.

Rev. C 27, 2356 (1983); 29, 344 (1984}]have performed
similar nuclear matter calculations and obtained
BE/A =21 MeV and a saturation point at kz-1.6 fm
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