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Relativistic effects in three-body bound states
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%e formulate relativistic and nonrelativistic two-particle dynamics in such a manner that the
two-body binding energies are the same for both. %e then formulate and solve the relativistic Fad-
deev equations for a simple s-wave potential (Malfliet-Tjon V). The relativistic effects are small
{about 3%}and reduce the three-body binding energy. The expectation value of the relativistic ener-

gy operator with the nonrelativistic wave function is a fairly good approximation, but approximate
expressions involving expansions in powers of the momentum are shown to be quite unreliable.

I. INTRODUCTION

Nuclear many-body dynamics is in essence a
phenomenology based on a two-body dynamics fitted to
two-body data. More fundamental theories motivate and
guide the construction of two-body potentials to some ex-
tent. Multibody forces are expected to be nonvanishing
but relatively small. The nonrelativistic many-body
theory of nuclei so constructed has been quite successful,
but quantitative discrepancies remain, especially in the tri-
ton binding energy and in the description of nuclear sa-
turation properties. ' Relativistic effects may be signifi-
cant since the velocities of nucleons in nuclei can be of the
order of one-third of the velocity of light. Such velocities
are sufficiently large for the requirements of Lorentz in-
variance to produce effects of the order of 10%. A can-
sistent treatment of the interaction with high energy
probes also requires Lorentz invariant dynamics. The
purpose of this paper is an investigation of the dynamical
consequences of the requirements of Lorentz invariance
for the ground-state properties of three-body systems.
Since the validity of widely used expansions in powers of
the momenta is suspect, we investigate a simple model for
which exact numerical computations are possible with a
moderate effort. The "relativistic effects" associated with
strong fields, comparable in strength to the nucleon mass,
which are the principal feature of relativistic mean field
formalisms are another matter and not the subject of this
paper.

If the starting point is a relativistic field theory the
nonrelativistic limit is specified by the static potentials to-
gether with the nonrelativistic kinetic energies. This
comparison of relativistic and nonrelativistic theory may
show large relativistic effects which are not relevant to the
question: To what extent does Lorentz invariance require
modifications of the conventional nuclear many-body
dynamics'7 To answer this question we need to start with
a relativistic and a nonrdativistic two-body dynamics
which both fit the two-body data. The approach first pro-
posed by Bakamjian and Thomas is well suited for that
purpose. It consists of constructing the Poincare invari-
ant dynamics by introducing the interactions in the two-
body mass operator. Starting from this construction it
has been shown that it is possible to arrive at a con-

sistent Poincare invariant many-body dynamics based on
phenomenological two-body interactions.

Given a phenomenological relativistic dynamics that
fits the two-body data, the construction of a correspond-
ing nonrelativistic theory which fits the same data, is by
no means unique. We will use this ambiguity to keep rela-
tivistic effects small. On the two-body level a particularly
simple correspondence is established by the following ob-
servation. ' Since the mass operator ho of two nonin-
teracting nucleons is ho ——2(k2+MN)'~, the operator8=h /4MN-MN has exactly the same form as the non-
relativistic two-body Hamiltonian after elimination of the
center-of-mass motion, provided we define the mass
operator h of the interacting system in terms of ho and
the nonrelativistic potential VNR by

h =ho+4MNVNR .

The eigenvalue of H is MD/4MN-MN, which differs
from the deuteron energy ED ——MD —2MN by ED/4MN.2

Therefore, the only relativistic effect in the deuteron is the
tiny adjustment in the potential required by the shift
ED/4MN in the eigenvalue. The preceding relation be-
tween relativistic and nonrelativistic two-body dynamics
was used in a study of relativistic effects in three- and
four-body models" and in the binding energy of nuclear
matter. ' This calculation showed significant relativistic
effects in individual partial waves, but the net effects on
the saturation curves turned out to be negligible. Impor-
tant three-body correlations were not included in this
study, and the importance of relativistic effects in the
three-body correlations is unknown.

The construction of the relativistic many-body Hamil-
tonians requires the two-body mass operator h rather than
its square. The relation between relativistic and nonrela-
tivistic dynamics specified by Eq. (1.1) thus requires the
extraction of the square root of the right-hand side Df Eq.
(1.1), which presents serious computational difficulties.
These difficulties can be avoided by suitable linear rela-
tions between h and VNR, which will be described in de-
tail in Sec. II.

Most studies of relativistic corrections use expansions
in powers of the momenta. Such expansions in powers of
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unbounded operators are prima facie suspect. This prob-
lem is aggravated by the general feature that net relativis-
tic effects involve cancellations between positive and nega-
tive contributions. Exact three-body calculations are
therefore essential for a reliable picture. Since realistic
three-body calculations involve considerable complexities,
exact calculations with oversimplified model potentials
can give valuable initial insight. In this paper we present
the results obtained with a simple s-wave potential, the
Malfliet-Tjon-V (MT-V) potential, ' from which we ob-
tain relativistic potentials by the procedure described in
Sec. II. In Sec. III, we discuss the relativistic Faddeev
equation and our method of solution. The numerical pro-
cedure is described in the Appendix. Our results and con-
clusions are summarized in Sec. IV.

(k'
~

h
~
k) =2E(k)5(k' —k)+u(k', k), (2.1)

where E(k)=(m +k2}'/, and k is the relative momen-
tum while the total momentum vanishes. The bound-state
Schrodinger equation has therefore the form

h Xt) (k) =Xiii (k)Mtr, (2.2)

and the deuteron vertex I D ——uXtr satisfies the eigenvalue
equation

I"D(k)=f d k'u(k, k')[Mtr —2E(k')] 'I'ti(k') . (2.3)

The two-nucleon scattering is described by the relativistic
I.ippman-Schwinger equation' '

u(k, k')t(k', ko)
t(k, ko) =u(k, ko)+ f d'k' ' „' . , (2.4)

where to(k}=2E(k), and t(k, ko) is the half-off-shell tran-
sition matrix.

In order to establish the connection to a corresponding
nonrelativistic dynamics we define' '

V(k', k)=[E(k')/m)'~ u(k', k)[E(k)/m]'r . (2.5)

The virtue of this definition is that it allows us to
transform the relativistic Eqs. (2.2)—(2.4) without approx-
imation into equations, which have almost the nonrela-
tivistic form. Let

II. RELATIVISTIC AND NONRELATIVISTIC
T%0-BODY DYNAMICS

Following Bakamjian and Thomas, ' the relativistic
two-body dynamics is specified in terms of the two-body
mass operator h,

A similar bound-state equation can be derived from Eq.
(2.3)

V(k, k') I"tr(k')
ID(k)= d k'

Eu —k' /m

m V(k, k')I D(k')

E(k')[Mg)+2E(k')] ' (2.8)

where I't)(k)=[E(k)/rn]' I D(k) and

Eg) ——Mti 14m —m =(Mg) —2m )[1+(MD 2r—n )14m ] .

V(k', k) =fVNR(k', k), (2.10)

where f is a constant factor determined by the require-
ment that the relativistic dynamics defined by Eqs.
(2.1)—(2.4) and the ordinary nonrelativistic dynamics, de-
fined by VNR, both give the correct deuteron binding en-
ergy. If the last term in Eq. (2.8) was negligible, and we

neglect the small difference ED ED, then w—e would have

f=1. For the MT-V and Reid-soft core (RSC) potentials
we find, respectively, f=1.02025 and 1.0487. This last
factor is substantially smaller than the 1.08 obtained by a
perturbation estimate in which E(k) was approximated by
MN. ' A first-order perturbation treatment which retains
the correct k dependence of E(k) still overestimates
(f 1}but only by—15%.

In Table I we summarize the results for the relativistic
and nonrelativistic energies

TABLE I. Two-body energies. (See the text for notations. )

Binding energy 2.22 0.35

(2.9)

The difference between the eigenvalue Eti and the deute-
ron energy E~ defined as M~-2m is the tiny relativistic
effect mentioned in the Introduction; Etr/4MN-0. 001
MeV. The last terms of Eqs. (2.7) and (2.8) are small
corrections to the nonrelativistic equations. Their pres-
ence is the price we have to pay for a simple relation be-
tween Vand v.

We use Eqs. (2.7) and (2.8) to establish the desired
correspondence of the relativistic and nonrelativistic
dynamics. %e assume

T(k, ko)=[E(k)/rn]'~ t(k, ko)[E(ko)/m]'~ . (2.6)

Using the definitions (2.5) and (2.6), multiplication of Eq.
(2.4}on both sides by the appropriate factors produces the
desired integral equation for T(k,ko),

V(k, k') T(k', ko)
T(k, ko) =V(k, ko)+ fd'k'

ko/m —k' 2/m +i e

ENR
kin
R

~ Ekin ~NR

«p «~NR

22.12
21.63

—24.34
—23.S5

20.91
—22.63

4.17
4.12

—4.S2
—4.47

4.07
—4.41

E(ko) —E(k')
2E(k') (2.7)

—0.14
—0.05
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TABLE II. Relativistic effects. {Seethe text for notations. ) 1 t I
]

I

Potentials

RSC two-body
MT two-body
MT three-body

~p.t~Ep t

—0.020
—0.011
—0.033

—0.022
—0.012
—0.036

and

Eg„——2&E(k) —m &a', Et„, =&k /m &wR

0.00
0.00

—0.027

(2.11)

CL

lL
iz

CL

IK
C

C4
CL

IO—

0-'h.

--- ---MT DEUTERON
MT TRITON—- ——.RSC DEUTERON

(2.12)

The subscripts 8 or NR on the angular brackets & & indi-
cate whether the expectation value was computed with
relativistic or nonrelativistic wave functions. In order to
exhibit the quality of various approximations we also
show the expectation values of the relativistic operators
with the nonrelativistic wave functions,

«h. )wR=2&«k) —m &wR: «p t)wR=&U&wR

as well as the kinetic energy difference
NR

~Ekin +kin Ekin

and the approximation

SE,'„=—&k'& /(4m') .

(2.13)

Both the relativistic kinetic and potential energies are
smaller in magnitude than the corresponding nonrelativis-
tic energies. The inadequacy of an expansion in powers of
the momentum is manifest (as seen in the large difference
between A&I„„and bE~„). Since the nonrelativistie (rela-
tivistic) wave functions decrease for large p as p
(p +), the expectation values &p" & diverge for n ~4 (3).

Taking the expectation values of the relativistic opera-
tors with the nonrelativistic wave functions involves er-
rors of the same magnitude as the relativistic effects in
the kinetic and potential energies. In Table II we show
the fractional changes in the kinetic and potential energies

PO, , I, I I

0 2 6
p (fm~)

FIG. 2. %'eighted differences between relativistic and
nonrelativistic momentum distributions calculated from the
Malfliet-Tjon {MT) potential for the deuteron and the triton,
and from the Reid-soft-core {RSC)potential for the deuteron.

~E~t/Erat ——(Enwt —E&Rt)/E&Rt

and bE~„/EP„". The momentum distributions for both
potentials shown in Fig. 1 do not reveal any dramatic ef-
fects. On the logarithmic plot the relativistic effects show
up only for momenta larger than 2 fm '. Figure 2 shows
the difference between the relativistic and nonrelativistic
momentum distributions for both potentials.

We have verified that the relativistic and nonrelativistic
models so constructed are approximately phase-shift
equivalent. For energies (50 MeV the phase shifts of the
relativistic potential are more repulsive by less than 1%.

DI. RELATIVISTIC FADDEEV EQUATION

For both relativistic and nonrelativistic dynamics the
Hamiltonian for a three-particle system with vanishing to-
tal momentum can be explicitly written as

IO H=Hp+ —, g VJ .
I+J

(3.1)

E
IO

CL

Al~ IO

cl

HwR ——g (p; /2m)+ —, g (VwR)" (3.2)

while in the relativistic case

Their difference is in the momentum dependence of the
kinetic energy and in the relation of the operators VJ to
the two-body dynamics discussed in Sec. II. In the
nonrelativistic case we have, of course,

Hp ——g[(m +p;)'~ —m] (3.3)

0 2 6
p (1m')

FIG. 1. %'eighted deuteron momentum distributions
4np2n{p) from nonrelativistic {solid curves) and relativistic
{dashed curves) calculations. MT and RSC denote, respectively,
the Malfhet- Tjon and Reid-soft-core potentials. 1&+P2+p3 =0 (3.5a)

and the relation between VJ and the two-body mass
operator h,J =ttt(k, j )+u,z

V;, = I [tp(k;, )+U;;]'+p J. ]
' '—[tp(k;;)'+p,', ]'" (3.4)

is determined by the cluster separability requirement. '

The sum of the momenta p; must vanish,
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and p,j is the total momentum of the subsystem ij,
I 4)=« —Ho} 'vjk

I Cii) i,j,k cyclic. (3.8)

PEJ Pl +PJ (3.5b)

1=—
&

'P~ —
Pg

—
P&J

(E;+EJ)+[(Ei+Ei) —(pi+pj) ]' '

(3.6)

The last term exhibits the relativistic effect in the defini-
tion of the relative momentum. The constraints of rela-
tivistic invariance require that the two-body interaction

vie be independent of the total momentum pij of the clus-
ter ij The. mass operator h,j depends therefore only on
the relative momentum k,j. Once the two-particle mass
operator h,j is defined, the three-body Haiiiiltonian H is
then completely determined by Eqs. (3.1) and (3.4}.

Our objective now is to solve the three-particle bound
state problem defined by

H
I @a&

=
I @a&Ea

where H is given in Eq. (3.1). Since the formal structure
of the Hamiltonian (3.1) is the same for relativistic and
nonrelativistic dynamics, the formal derivation of the
Faddeev equations is also the same in both cases. Follow-
ing the Faddeev method, we define three components

IA& by

The relative momentum k,j of the ij subsystem is in the
rest frame of that cluster equal to one-half the momentum
difference. For equal mass particles it is therefore related
to the momenta p; and pJ by

kg=—k(pi pj)

It follows from Eqs. (3.7) and (3.8) that

I~'a&= Iki&+ IA&+ IA& {3.9)

v23( I
((}3&+ I 6 & ) .1

8 0 23
{3.11)

To solve Eq. (3.11), it is most convenient to choose the
following representation in which Ho is diagonal:

Ho I k,p) i
——E(k, p) I k,p) i,

E(k p) =[r0 (k)+p ]' +(m +p )'

(3.12)

(3.13)

where

I
k p&i=—lk23 pi&= Ik23) x

I pi&
'

p=pi is the momentum of the particle 1, and k=k&3 is
the relative momentum of the (23}pair [as defined by Eq.
(3.6)].

An explicit representation of Eq. (3.11) is

1
v,,(I&, &+ I&„&), i,j,k cyclic.

Eg —80—Vk

(3.10)

For three identical particles, the component l&t}i) is
represented by a function &I}i{pi,'p2, p3), symmetric in the
last two arguments, and the representations of all three
components are related to each other by cyclic permuta-
tion of the three momenta. Instead of the three coupled
equations (3.10) we need to consider only one of them, for
instance,

ff f f=(«& &» &'.p' «, p'. &'~&".p"&,+,&p', «'~&",
&

"&,)y&«",p")d'k'd'&'a'k"d'&".
0 —

23 j

(3.14)

The two terms in Eq. (3.14} are identical because of the symmetry under interchange of the particles 2 and 3. The
transformation matrices i&p, k

I

k',p')3 can easily be obtained from

1&»p I pi pz p3&=5{p—pi}(ilk —k{pi pk)]~&(pl pa» pt+pz+p3

where k(pi, pk) is defined by Eq. (3.6) and N is the square root of the Jacobian,

~(pJ pi } 4&)~k
&(p, pk)=

a(k,p,&) W,', (Z, +S, )

(3.15)

(3.16)

W'lth

&Ja =[«J+Ek}'—pp]'" . (3.17)

By using Eq. (3.15), we have

i&p k Ik', p'&2= I d'pi J d'pi J d'p3 i&p.kl pi p»p3&+pi+pi+p3)&pi pz. p3I k' p'&3

=&[k—«p' —p —p') 15[k'—« —p —p' p)]~V'(p' —p —p'»( —p —p' p}l . (3.18)
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A characteristic difficulty of the relativistic dynamics
stems from the complicated nonlinear relation between

V22 and u2&, shown in Eq. (3.4). We overcome this tech-
nical difficulty by expressing the operator
(Ett Ho V23 +ie) '

V22 in terms of the half-off-shell
matrix t2&, which can be easily computed using Eqs.
(2.1)—(2.4).

The scattering states
I k22, P1&'+' and the bound states

I Pn, pi & of the 23 subsystem in the presence of the spec-
tator 1 are eigenfunctions of h2& and pi. They are also
eigenfunctions of Ho+ V22 since both Ho and V22 com-
mute with pi ———P23. It follows that these states must
satisfy the identities

I
k, p&'+'=

I k, p&+[to(k) h—p U—+i@] 'U
I
k, p&,

We note that the construction of the complete set of states

I
k, p &'+',

I PD, P & does not require an explicit matrix rep-
resentation of the operator V. They can be computed
from the matrix elements of u or t as seen in Eqs. (3.19)
and (3.20). The same is true for the states obtained by
operating with V or 00+ V on any state in this complete
set. In particular we readily derive from Eqs. (3.19) and
(3.20) the following identities needed for our computation:

E(k,p) —Ho+ ie
VIk, p '+'= . t Ik, p

to k —h&1+1 e'

co(k)+ h&&

2 1/2t Ik'p
E(k,p)+Ho 2(m —+p )'/

(3.21)

=
I k, p &+ [co(k)—ho+i@] 't

I
k, p &,

(3.19a)
ED(p) —H&1

D 0
(3.22)

=
I
k, p &+[E(k,p) —Ho —V+ ie] ' V

I k, p &,

(3.19c)

=
I k,p&+[E(k,p) —H, +1~)-'V

I k, p&'+',

(3.19d)

(Ett Ho V—+is)—'
I
k, p&'+'

= Ik p&'+'[Ea —«k p)+i&] '

and

(E, H, V)—'Iy—„p&-= Iy, ,p&[E, —E (p)]-'.

(3.24)

l(()D P&=(~t —ho) 'U IND, P&

=[ED(P)—Ho] 'V14'D P&

where

(p) (~2 +P2)1/2+ (~2+P2)1/2

(3.20)

%e use the completeness relation to write the required
matrix elements

(p,k
I «ti —Ho —V) 'VI k', p&

in the form

(y» '&'.»' fd'~0 f=~'»0&»& l4»0&'" . "'«04l&'l&'»'&
B 0 B &PO +i~

+ P 'P E E' P'-V'P'
Es —En Po

It follows from Eqs. (3.20)—(3.25) that

1 1
p, k V k', p' =Sip —p') T(k,k';p,

(3.25)

(3.26)

where [co(p)=2(m +p )'/ ]

to(k)+to(k')
E(k,p ) +E(k',p )—to(p)

d k0
co(k ) +co(ko ) co(ko )+a)(k ')

t(k,k&&), t'(k', ko)
E(ko,p)+E(k,p) t&&(p)

' E(—ko,p)+E(k', p) co(p)—
1 1x +

E(k&&,p) E(k,p) Es E—(ko,p)—
+AD(k)AD(k')[Ea —E(k P)][ED(p)—E(k' P)]/'[E21 —ED(p)] ' (3.27)
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%e are now ready to assemble the Faddeev equations in

their final form. Using the symmetry under interchange
of particles 2 and 3, Eqs. (3.18) and (3.26), we can write

Eq. (3.14) in the form

T'I:k,«p', -p-p');pl
kp = dp

Es —E(k,p) N(p', —p —p')N( —p —p', p)

(3.28)

where we have suppressed the subscript 1 of the amph-
tudes. The results which will be derived from Eq. (3.28)
must be compared with results obtained from the well-
known nonrelativistic equation

4~«p}= E E k fd'p'TNR«p'+ i p'p}

Io t 1 I
)

I I

TRITON

E—IG
-I

cv -2~ IO

where

X/NR( —,p' —p, p'), (3.29)
p (fm')

FIG. 3. %eighted triton momentum distribution 4~pan(p)
from nonrelativistic (solid curve) and relativistic (dashed curve)
calculations.

ENR(k, p)=k /m+3p /4m,

and TNR is defined by

TNR«k'P}= I'NR(»k')

, „VNR«k" »NR«"»'P)f d'k"
Es —ENR«" P}

(3.30)

Since we have only s-wave interactions of identical parti-
cles Eq. (3.32) reduces to

«p)= 3 I:&Pi I ~(p —pi) I ki &+2&0 i l@p—pz) I ki &

+2& Oi I @p—P2} I ~& )

+4&ki I @p—pi }14'~& 1/(& ki I kt &+2&6 I ki & 1 .

3

p —p.
i=1

(3.31)n(p)=
3(tP

I
tP)

By using the Faddeev decomposition Eq. (3.9) we get

n(p)=

3

4i X Sv —ni~ Ni+6+6)
i=1

(4 l@)
(3.32)

TABLE III. Three-body energies. (See the text for nota-
tions. )

Since the propagators of nonrelativistic and relativistic
equations are quite different, one can expect that they will

generate a different momentum distribution at least at
high rnomenta. It is, therefore, of interest to also investi-

gate this quantity in this calculation. In the three-body
system the probability of finding a particle with momen-
tum p is

(3.33)

By appropriate changes of variables, each term of the
above equation can be expressed in terms of an integration
over the solution tt)(k,p) of Eq. (4.4}. The numerical pro-
cedure' to solve Eqs. (3.28} and (3.30) is discussed in the
Appendix. We use a spline representation' of the ampli-
tude P(k,p) to carry out the integrations required by Eq.
(3.33). The relativistic and nonrelativistic momentum dis-
tributions obtained from the three-body wave function are
shown in Fig. 3. Figure 2 shows the difference between
the relativistic and nonrelativistic momentum distribu-
tions for the triton as well as the deuteron.

In Table III, we summarize the results for the relativis-
tic and nonrelativistic energies. The quantity (Es )NR is
the expectation value of the relativistic Hamiltonian with
the nonrelativistic wave function. This procedure pro-
duces a fair approximation to the relativistic effects in the
binding energy. In Table III, me also compare the relativ-
istic correction ~& ~ith the correction ~& calculated in
the approximations of Ref. 15,

(3.34)

Nonrelativistic
Relativistic

EE~l~' {RSC)'

—7.5
—7.3
—7.1

0.2
0.7

—0.4

28.9
27.9
28.0

—1.0
—1.3
—2.4

—36.4
—35.2
—35.1

1.2
2.0
2.0

~Epot (f 1)( ~NR )NR

+ 2 pi +pj Vjj NR NR/SPl

(3.35)

'Calculation of Ref. 15 with the correct scale factor f=1.049
for the Reid-soft-core potential.

The above approximation substantially overestimates the
effects of both the kinetic and the potential energy. It ap-
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pears that expansion in powers of the momenta are not
sufficiently accurate to predict the size of the relativistic
correction to the binding energy. The relatively large in-
crease (1.7 MeV) in binding found in Ref. 15 is mainly
due to a crude estimate in f. In the last line of Table III
(&Fase), we show the result of Ref. 15 calculated with
the correct value of the scale factor f. The corresponding
estimate of relativistic effect in the binding energy is re-
duced to 0.4 MeV. As noted in Sec. II our relativistic and
nonrelativistic two-body potentials are not exactly phase-
shift equivalent. The question arises to what extent the
decrease in binding, which we find, is associated with the
slightly more repulsive phase shifts of the relativistic
two-body potential. We have, therefore, considered a rela-
tivistic potential in which the strength of the attractive
part is the same as in the nonrelativistic potential, while
the repulsive part is reduced by a factor 0.985. The factor
is designed to give the same two-body binding energy as
the nonrelativistic potential, and phase shifts that are
slightly more attractive ( ~0.2%) than the nonrelativistic
ones. The decrease of the three-body binding energy is
then reduced to about 2%.

APPENDIX

We solve Eq. (3.28) in the partial-wave representation
defined by

[ k, p) = g (LM
~

lkmtmi )
~

kp(IA, )LM)
lLL

X&(,(k)&i, „(p) (Al)

the other hand approximate kinetic and potential energies
obtained with expansion in powers of the momenta
overestimate the relativistic effects by substantial factors.
These errors preclude a reliable estimate of the relativistic
effects in the binding energy by expansion in powers of
the momenta.

We have two main conclusions: (1) The quantitative ef-
fects of the Lorentz invarianee of the dynamics are small.
(2) Easy approximations of relativistic effects can be quite
misleading.

IV. SUMMARY AND CONCLUSIONS

The requirements of Lorentz invariance necessarily af-
fect the conclusions which can be drawn from convention-
al nuclear dynamics, which describes few-body and
many-body systems in a common framework. Canonical
relativistic dynamics is particularly suited for the precise
formulation and quantitative investigation of this prob-
lem. It should be emphasized that relativistic effects de-

pend in both sign and magnitude on the choice of the
dynamics. Different choices do not amount to different
estimates of the same effect. In the context af canonical
relativistic dynamics the instant form and the front
form'9 are equivalent only if appropriate three-body
forces are added. Relativistic effects that can be deduced
from a covariant quasipotential dynamics ' ' are a
feature of that dynamics and cannot be expected to be
comparable to the effects discussed here.

We have solved both relativistic and nonrelativistic
Faddeev equations for a simple s-wave potential. From
the Faddeev wave functions we have obtained momentum
distributions and expectation values of both kinetic and
potential energies. %e have also evaluated the expectation
values of various approximate relativistic corrections. We
find that the relativistic effect on the binding energy is a
small decrease of about 3%. In general we ean expect
that the magnitude of both the kinetic and the potential
energy will be smaller in the relativistic ease. The net ef-
fect on the binding energy depends sensitively on the
amount of cancellation of the two effects. Our model cal-
culation can therefore not be used to predict the sign of
the effect for realistic potentials. Compared to the nonre-
lativistie momentum distribution the relativistic momen-
tum distribution is enhanced at very low momenta, deplet-
ed at moderate momenta, and increased at high momenta.
The expectation values of the relativistic kinetic and po-
tential energy operators with the nonrelativistic wave
functions are a fair approximation to the exact values. On

Then the Faddeev Eq. (3.28) becomes

4m

E —E(k,p)

X f dp'p' f dz T[k,k(p', p, z};p]

(A3)

1

N(p, p', z)N(p', p,z)

&&Ilk(p p' z»p') .

For the computations we must reduce the integral equa-
tion to s finite set of linear equations. To this end we in-
troduce grids of points k„,p~ for the variables k and p.
Integrals over p are approximated by quadratures. For
any function f(p), we have

f dpp'f(p)~g +' f(p ) . (A5)

We use a spline interpolation when functions of k are
needed for values of k which are not on the grid,

Partial-wave dhomposition of Eq. (3.28) is more compli-
cated than that of Eq. (3.29), because of the angle depen-
dence of N(p2, p3) and k(pz, pi). Our restriction to
s-wave two-body interactions without spin and isospin
dependence is a source of great simplification. In that
case the matrix t(k, k'), and therefore the amplitude
Pi(k, p), depend only an the magnitudes k, k', p of the vec-
tor arguments. Since N is a scalar function of its vector
arguments it is a function of p, p', and z which is the
cosine of the angle between the two vectors

N(p, p p')~N—(p,p—',z) .

The same is true for the magnitude of the vector
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$( k)=g $(k„)S„(k), (A6) z„„..—=(w„w .)'"
+1

&(g I dz T(k„,k„-;p )C„-„(m,m')
~ E

(A8)

where S„(k) is the spline function.
The approximate Faddeev equation obtained in this

manner has the form

4n.
+ms, n m 4'rt''m

gg', pg' B NNS

+ i S„-[k(p,p,z)]S„[k(p,p, z)]
C„-„(m,m') = dz

N(p~, p~, z )N(p~, p~, z)

(A9)

We employ the efficient Malfliet-Tjon iteration method'z

to solve Eq. (A7).

and
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