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Taking the titanium isotopes as an example, the magnetic multipole excitation strengths are calcu-
lated in the single j shell model (fi/2). Expressions are derived for the summed strength in this

model for the modes with nonvanishing strength —M1, M3, M5, and M7. An approximate expres-
sion for this sum is obtained in which only the components of the wave function in which neutrons

and protons couple to angular momentum I. =0 and 2 (U =2}in the ground state are included. The
signature selection rules for the nucleus Ti are considered. It is noted that the M1 strength is

mostly concentrated in the lowest state (at least 80%). The higher multipole modes are more strong-

)y fragmented. For these modes, there is significant strength in the isobaric analog states, especially
for M5. A closed expression for strength to the isobaric analog strength in Ti is obtained.

I. INTRODUCTION

In a previous work, ' it was noted that an analogy could
be made between the behavior of M I excitations in the
f7/i region and those recently observed in the deformed
nuclei including, and in the neighborhood of, ' Gd. The
energies and M1 strengths in the two regions were sys-
tematically similar, and the theoretical expressions in both
cases had the common thread of involving isovector tran-
sitions which did not change the overall isospin (except
for Ti where all 1+ states have T =1). The values of
8 (M 1) in the f7/2 region were of the order of one single
particle unit and the excitation energy of the lowest 1+
state was about 4 MeV. These states have been called
scissor modes in the deformed region with a picture in
which the symmetry axis of the neutrons and that of the
protons oscillate with respect to each other. In the con-
text of boson models these states are of interest because
they do not occur in IBA-1, only in IBA-2.2

In this work we extend the work to higher multipoles
and we also consider the summed strength. The latter is
important to ascertain whether or not the strength for a
given multipole is concentrated in the lowest state. The
expressions for the summed strength will only involve the
ground state wave function and therefore will be less com-
plicated than the corresponding expressions for transitions
to individual levels.

Much encouragement for this further work comes from
the fact that an Orsay, Darmstadt group, and Michigan
State collaboration has found the lowest 1+ state in Ti
and 4.3 MeV with a strength 8(M1)=1.0 pN (the
predicted value was 1.76 p~ at 4.00 MeV). Not only that
but the Darmstadt group found that the 1+ spin flip state
was at 10.2 MeV, quite far away from the "f7/i state. "
This gives us hope that in zero order at least the low lying
f7/q states and the spin-flip states will not be hopelessly
intertwined and that the f7/z model will therefore be of
considerable use in correlating the data. Of course a resi-
dual interaction will mix the basic spin flip and pure f, /2

states and there are other states like f'7/i p3/i that enter
for higher multipoles. Ultimately larger basis shell model
calculations will be done to get a more complete picture.
Nevertheless the single j model here will be shown to be
quite relevant.

We should remark that although in the original McCul-
len, Bayman, and Zamick (MBZ) paper it was not possi-
ble to list all the energy levels and wave functions [and
indeed no states of unnatural parity (1+,3+,5+,7+, etc.)

were included], we were wise enough to write a technical
report in which all the wave functions were listed. With
modern experimental techniques, and especially medium

energy probes —pions, protons, and electrons, one can now
reach these utmatural parity states. This technical report
should therefore be a gold mine of useful information.

II. THEORY

A. General expressions

The wave functions of the titanium isotopes in the

fv/2 model are

W= g D'«L. »[(f7/z) '(f7r2) ")'

where D (I.~,l.„v) is the probability amplitude that in a
state of total angular momentum J the protons couple to
angular momentum I.~ and the neutrons to angular
momentum I.„and seniority U.

We consider a transition from a J=0 ground state to a
state of angular momentum and parity A,

+ with A, = 1, 3,
5, and 7. In the f7/2 model states with angular momen-
tum J & A, do occur but they carry no (M ) strength.

The magnetic operators for protons and neutrons are
written as M" (sr) and M" (v) where rn is the magnetic
quantum number. These are tensor operators of odd rank.
The operators are defined such that 8 (MA, )

& ~

X" ~, where X is the matrix element
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X"=(|(/ fM"(m)+M (v) fO} .

In fact, because the initial state has J=0, X is indepen-
dent of m and we can write

B(MA)=(2A. +1)
f Xo f

%'e vali use the same convention as originally used by
MHZ. The VA'gner-Eckart theorem is written as

(f 0„"P"„}=(AJgpmg
f Jam')(f [0 g "] ),

where the first factor on the right is a Wigner (or
Clebsch-Gordan) coefficient, and the second factor is the
reduced matrix element in this convention. It is related to
the more common "double bar" reduced matrix element
of Edmonds9 (also de Shalit and Talmi, ' and Bohr and
Mottelson") by

(y 8[Qky A) 8) I/(Zy 1)1/2( 1) A 8

We also use the unitary Racah coefficient U which is
related to the six-j symbol as follows:

U(abed; ef)= ( —1)'+ +'+ [(2e + 1)(2f+ 1)]'/

a b e

d c f
%e now evaluate the matrix element Xo. For conveni-

ence we define the single particle matrix elements M~ and
M„with

~', = &yj[M'(~)qjy &,

etc.
Using the Racah algebra we find

Xo —g D (LL)D"(LpL„)f U(MAL;Lu0)((j ) '[M (~)(j ) ] '}5L, i,
LL L„

+( —1) ' " U(ALGAL;L„O)((j ") "[M"(v)(j") ] "}5L, , L, J

We can simplify the above by noting the following relation
1/2

(2L u+ 1)

(2A, + 1)(2L + 1)
U(ALAL;LuO) =(—1)

We further note, following de Shalit and Talmi, 'o that the matrix element of an odd tensor interaction with nucleons
of one kind have the following seniority properties

(( n) n"n[MA( n)LU) n } 5 ( [( )u] n "[Mi,(
~ il)Lu] n }

In other words, for particles of one kind the odd tensor interaction is diagonal in seniority. Furthermore, for states of
seniority u &n the n particle matrix element is equal to a u particle matrix element. In the f7/2 calculation this has the
practical consequence that the n =4, u =2 matrix elements are equal to the n =2, v =2 matrix elements.

The matrix element Xo can be written as follows

Xo ——Xp(v =2)+Xp(v =4),
1/2

(2Lp+ 1)
Xp(u =2)=2/(2k+1)'/ g (2L +1) U(Aj Loj;jL)

&(D (LL)[D"(Lp,Lv)( —1) '~~+( —1) 'D (L,Loup)M„]5„25„,2 .

The last ( u =4) matrix element applies only to the nucleus Ti (or the cross conjugate 'oCr). The expression is

Xo(u=4)=54„n/(2K+1)' gD (L Lu}D (L Loup)5u45u, 4[(2Lo+1)/(2L+1'))
LL()

Xg(j'" "&pj
f
)J"Lu)(j'"-"Zoj

f )j "Loup)U(XJLoJo.,JL)m„'
Jo

In the last expression above we have introduced the coefficients of fractional parentage.

S. Summed strength

For nuclei in which there are no components with seniority higher than 2, such as Ti and Ti, we can obtain ex res-
sions for the summed strength in each multipole, +8(MA, ). The expression is also approximately apphcable to i if
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we neglect the seniority 4 component of the neutron wave function in the ground state (of course the unnatural parity ex-
cited states can and will have large seniority 4 components).

We make use of the relation

gD" (L,LOUD)D (L',Louo) =oil 5~ ~, 5

%e obtain

(2LO+ 1)
g& (M~)=4 g I

D (LL) I'
I U(~iLoi i'L)

I
( I~i I

+ l~"
I(2L +1)

even

—8 g D (LL)D (LoLO)U(AjLOJ'jL)U(AjLj 'jLO)~p~.
Lo,L

We can simplify things further by noting

(2Lo+ 1)
~

U(AjLOJ';JL )
~

= —,[1+(—1)"U(AjjLj;j )] .
(2L +1

Hence

X& (M~) =4 X I
D'«L)

I
'&1+(—1)'«~jjL jj)1~2(

I ~p I

'+
I
~n I

')

—8 g D (LL)D (LOLO)U(AjLOJ'jL)U(AjLj;jLO)M M„.
I.z.o

This is our main resu1t in this section.

C. The magnetic dipole case

For the magnetic dipole case only terms with L =Lo contribute. The Racah coefficients have the value

i

U(1'L' 'L)
i 4(j)(j +1)

Hence,

+8 (Ml)= j(j+1) g ~

D (LL)
~

L (L +1)

Note that only the isovector combination enters. We could have obtained this result quicker by using the results of the
first paper in this series' where it was shown

8 (M 1)= ,' mpN(g~ g„—) g D —(LL)D'(LL)V'L (L + 1)

gD "(LL)D"(I,I. )=S„.

we obtain

g& (Ml)= , ~pN(g~ g„)' g—~DO(LL)—~'L(L+1)

One finds that the lowest 1+ state gets most of the strength. The percentages are 93.7 for Ti, 86.0 for Ti, and 80.5
for 4sTi.

D. The single particle matrix elements

The general expression for the Mi matrix element in the q ~0 limit is"
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M"= (j2[M"jt ]j2 )

(2j)+ 1)(2A,+1)
(2j2+ 1)4m.

X g, — g~
—(j&A, —,'0

~ jq —,
' )[1+1/A( —1) ' '(j&+ —,

' )+(—1) ' ' (jz+ —,
'

)]

+(—1) ' ' 2gI/(A, + l)[A(2A, —l)(2A, +1)j&(j&+1)(2j&+1)]'

I

Ji 1 J].
x [ji(~—1) 2 0

I j2 ~ ] '
~

The free particle values of gI and g, are

Proton
Neutron

5.5855
—3.8256

The values of the single particle reduced matrix elements for f7/2 shell orbits are

—0.276 67g, —1.66003gI
(0.661 57g, +1.69485g~)

( —1.66463g, —1.10976gI)
3.575 17g,

Note that A, =7 is a pure spin mode. The increasing importance of the spin part relative to the orbital part with increas-
ing A, has been emphasized by Heyde and Sau. ' We evaluate r" ' with harmonic oscillators using b =2 fm. The ex-
pressions are

9bg ( 4) 1l 9b4

(r )=—, x —, x-, b .13 11 9

%e obtain

—0.275 67g,
11.908 31g,

—659.1938g,
36 809.91g,

—1.660 03gI
+ 30.507 30gI
—439.4635gI

PN
pNfm
pNfm
p„fm'

With the unquenched values of gI and g, we obtain the following values (in appropriate units)

P

—3.2054
97.0212

—4121.39
206 160.3

1.0584
—45.5564
2521.812

—140820

—4.2638
142.5776

—6643.20
346980.3

—2.1469
51.4647

1599.58
65 340.3

Mp+M„
Mp —M„

0.253
0.130
0.058
0.035

E. Strength distribution in Ti: Signature

The wave function in the self-cross conjugate nucleus
has the properties D~(L~L, )=( —1)'+ D (L„L~)where
s represents the signature. The value s =0 corresponds to
even signature and s =1 to odd signature. ' ' The ex-
pression for Xp,

&o = —2/(2A, + 1)'~'
1/2

(2Lp+ 1)x
(2L +1) U( Aj Lpj;jL )Dp(LL )

XD (Lp, Lu)[M~ —( —1)'+~M,"] .
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For odd signature the matrix element is proportional
to M~ —M„while for even signature to (M~+M„).
Since Mt and M,"have opposite signs for electron probes,
the states of odd signature should, other things being
equal, be more strongly excited. For all intents and pur-

poses we can limit the sum over L to one value L =2 (we
must however sum over Lo). This is in fact done here .

%'e now list in Table I the ratio

8 (MA, )/(Mp+M„)

where the minus sign is for odd signature and the plus for
even. The list includes all odd multiples and all calculated
energies.

Concerning the fragmentation, we see that for the di-
pole case most of the strength is in the lowest state at 3.83
MeV. For the higher multipoles there is much more frag-
mentation. However, because the summed strength for
the dipole case is so small, there are individual transitions
for higher multipoles for which the strength ratios are
even larger. For example, the M5 strength ratio to the
T =3 isobaric analog state at 10.99 MeV is 15.93, whereas
it is only 5.47 for the strongest M 1 state.

We note that many of the states of even signature have

large strength ratios, e.g., for A, =3 the state at 5.29 MeV,
for A, =5 the state at 7.76 MeV, and for A, =7 the state at
5.92 MeV.

However, when we go to the next column on the per-
centage distribution of Table I, we see that the states of
even signature carry relatively little strength. This is of
course because for these states 8(MA, ) is proportional to
(M"+M„)2 and M~ and M„are of opposite sign.
Indeed, the percentage distribution in this column is very
close to the pure isovector case Mp 1 erA 1 For
the isovector case the states of even signature carry no
strength.

We list the percentage of total strength for various
choices of Mt and M„". First we use the values as calcu-
lated in subsection D using the unquenched values of gI
and g, . Next we choose M~=1, M„=O (M~=0, M„"=1
will give the same answer). Then we consider the isovec-
tor extreme M"= —M," and finally the isoscalar extreme

Mp ——M„.
Concerning the table's third column of the strength

ratio

8 (MA, )/(Mp yM„")~

it is of interest to compare the sums for the different mul-

TABLE I. Calculated MA, strength in 'Ti.

8{MA)/(m, +m„)'
X 1O'

Percent of total

Mp, M„ Mp ——1

as calculated M, =0

strength'

Mp ——1

m„= —1

Mp ——1

m„=l
3.83
7.67

13.82'
Sum

3.01
5.29'
6.04
7.03
9 04'
9.95

10.99b

Sum

4.58'
5.10
6 61'
6.95
7.76'
7.81
9.37

10.53
Sum

5.56
5.92'
6.97
8.29'
8.39

11.71'
Sum

5.471
0.555
0.228
6.25

3.698
9.327
9.737
0.503
1.428
0.487
6.225
31.4

1.98
0.541

13.56
4.160
9.551
4.316
0.144

15.93
50.2

4.594
6.595
0.023
2.187
2.215
1.952

17.6

87.53
8.88
3.66

16.78
5.51

44.15
2.28
0.84
2.21

28.23

0.43
2.04
2.97

15.65
2.08

16.25
0.55

59.99

50.51
2.57
0.25
0.85

24.35
21.45

87.53
8.88
3.66

11.78
29.70
31.00

1.60
4.55
1.55

19.82

3.96
1.08

27.01
8.29

19.03
8.60
0.29

31.74

26.15
37.54
50.13
12.45
12.61
11.11

87.53
8.88
3.66

17.91
0

47.14
2.43
0
2.36

30.14

0
2.16
0

16.58
0

17.2
0.58

63.48

52.30
0
0.26
0

25.22
22.22

0
86.72
0
0

13.28
0
0

7.92
0

54.02
0

38.06
0
0
0

0
75.08
0

24.90
0
0

'State of even signature.
'T =3 state.
'Only L =0 and I.=2 components of the ground state wave function were included in the calculation.
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tipoles. Such a comparison is meaningful because in this
ratio are have divided out the single particle reduced ma-
trix elements. The values of the sums for A, = 1, 3, 5, and
7 are, respectively, 6.25, 31.4, 50.2, and 17.6. %e see that
the MS sum is, in the sense, a factor of 8 larger than the
M1 sum.

In the last column of Table I we consider the isoscalar
case Mz ——1, M„=1. For this case all M1 transitions
vanish. All transitions to states of odd signature vanish.
Since there are relatively few states of even signature some
of them carry considerable strength.

Clearly then different probes, e.g., ir+, m, elo:trons,
and protons should excite these states quite differently. It
would be of great interest to try to excite as many of these
odd multipole states as possible. To see which of these
look promising we return to the percentage distribution
for M~ and M„as calculated with the electromagnetic
operator.

Clearly the lowest 1+ state in Ti should be seen easily
by electron scattering. Richter's group has seen the corre-
sponding state in Ti. The 1+ state has been identified
by Rasmussen from Bartol using resonance fluorescence. '

For A, =3 the lowest state, calculated to be at 3 MeV
though not predicted to be the strongest, is at a sufficient-
ly low energy to be seen. In passing, it should be
remarked that the presence of an unusually low lying 3+
state in Ti has been cited as evidence of triaxiality of
this nucleus. Such a low lying state appears quite natural-
ly in a shell model calculation. Another state at a calcu-
lated energy of 6.04 MeV which is predicted to clirry 44%
of the strength certainly looks like a promising candidate.
Certainly, the 3+ isobaric analog state at about 11 MeV
excitation should be looked for. The calculation gives it
28% of the strength.

For A, =3 the lowest state, calculated to be at 3 MeU
though not predicted to be the strongest, is at a sufficient-
ly low energy to be seen. In passing, it should be
remarked that the presence of an unusually low lying 3+
state in Ti has ban cited as evidence of triaxiality of
this nucleus. Such a low lying state appears quite natural-
ly in a shell model calculation. Another state at a calcu-
lated energy of 6.04 MeV which is predicted to carry 44%
of the strength certainly looks like a promising candidate.
Certainly, the 3+ isobaric analog state at about 11 MeV
excitation should be looked for. The calculation gives it
28% of the strength.

An interesting behavior for the M5 and M7 modes is
worth mentioning. As seen in Table I the sum of the
strength ratio 8(MA, )/(M~+M„")2 is the same for states
of even signature as it is for states of odd signature. This
comes from our approximation of keeping only the
D (2,2) term. By examining the expression for the
summed strength the reason for this behavior becomes
clear. The second term, proportional to M~,", will van-
ish because 2+2 cannot add up to 5 or 7. The first term
is then the only finite term. It is proportional to

which can be written as —,
'
(M~ —M, )

+ —,
' (M~+M, ), i.e., half isovector and half isoscalar.

We thus see that in the single j shell mode the different
multipoles behave in rather different way. from the very

high concentration of strength in the lowest 1+ state for
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FIG. 1. The percent, to a given state, of the total strength for
each multipole, 1,=1, 3, 5, and 7 is shown. The single particle
matrix elements of the MA, operators are calculated with base g
factors. The results are very close to what one obtains in the
isovector case M~ = —M, .

the dipole case (80%), generally strong fragmentation for
the octupole mode, high concentration in the analog state
for the M5 mode (60%), back to substantial concentra-
tion (50%) in the lowest 7+ state for the M7 mode.

F. Closed expressions for the magnetic multipole strengths
to isobaric analog states in Ti

7/2e 7/2v

Because of the uniqueness of the Sc wave functions
one expects the coefficients D"(I.,Lo) for the T =3 states
in Ti to have simple dosed forms. We write the wave
function for Sc in a form similar to that for sTi. We
obtain

The ground state of Ti has isospin T =2. The T =3
states of the f7&2 configuration for A, = 1, 3, 5, and 7 are
predicted to be at excitation energies E'=13.8, 11.0,
10.5, and 11.7 MeV, respectively. These states are analogs
of states in Sc, which have in the single j shell model,
unique configurations
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li i. ']'=+V 'Li
I li 'J)[i.[j.(J '), 'l I",

L0

- - L.—2L0X=XV 'Ld
I IJ 'J)«ii~o, Li)[V.i.)'V ').']'.

L0

Using a relation from page 4 of the MBZ technical re-

port one can show that

V 'Loi
I lj j)=[(2Lo+1)~28]'n

We thus expect D (L,Lo) for T =3 states in Ti to be
proportional to

we find

D (LLo)=
(2Lo+ 1)

U(jj ALo, Lj) .

V(2Lo+ 1)U(jjM o'Lj )

and indeed by imposing the normalization condition

g ID"(LLo)
I

=1
LL0

This expression is symmetric under the interchange of L
and Lo. The expression for Xo for sTi involves a sum
over Lo. Since all the dependence on Lo is now explicit
this sum can be performed. The expression for 8(Mi)
becomes

' 1/2 2

8(MA, )r 3=(M~ —M"„)2 +Do(LL) [1+(—1) U(AjjL;jj)]

A, =l—4
21

A, =3—20
21

A, =S—32
21

A, =7—8
15

This factor is smallest for A, =l and largest for A, =S
consistent with previous discussion.

Note that for A, =5 and 7 the summed strength for these
modes is proportional to [1+(—1) U(Ajj2;jj)]. Thus
the ratio of analog to summed strength for these states is
proportional to [1+(—1) U(Ajj2;jj)]. For A, =S this
factor is —", times larger than for A, =7. More generally,
we can show in the large j limit that, for odd iL, the above
factor is a maximum for A, =V 2j.

G. Comparison mth Larson wave functions

The expressions for the transition strength depend very
strongly on the coefficient D (22) in the Ti ground state
wave function

y= +Do(LL)[LL, ]o .

This is the main result of this section.
With the further approximation that only the L =2

part contributes, we obtain

8(MA)z-3=(Mp —M", ) ID (22)
I

X [1+(—1) U(A jj2;jj)]' .

From the above expression we can readily understand
why the strength ratio for different multipoles is so dif-
ferent. The factor

[1+(—1)"U(~ii 2;ii )I

has the following values

Recall that Lawson' was able to obtain wave functions
in the f7n region by constructing intrinsic states then

projecting out states of good angular momentum. Al-
though he used deformed model ideas, Lawson' restricted
the intrinsic wave functions to have only f7/i com-
ponents. A comparison was made between the MBZ (Ref.
6) and Lawson' wave functions, and it was emphasized
that the overlap was large.

However overlap comparisons can be deceiving. More
relevant are the comparisons with measurable quantities.
Here we will compare the summed strengths for magnetic
multipole excitations in the two models.

The appropriate intrinsic state for Ti is

1 1 7 7~ (f7n k = if7n k = —i )~~ (f7n~k = if~n~k = —i )

This can be written as

4=+(iii —
2 I Lo)(iii —i IL'0)(LL'001»)[LL']'.

From this we can see that

D (LL), ( —, —, —,
' ——, ILO)( —,—', —,——', ILO)

x(LLOOIOO) .

Hence,

ft ~„=—0.7929[00]+O.S835[22]

-0.2135[44]+0.0329[66],

whereas,

PMaz = —0.9136[00l+0.4058[221

+0.0196[44]-0.0146[66] .

The quantity
I
D (22)

I
is equal to 0.165 for MBZ
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(Refs. 6 and 7) and 0.341 for Lawson. " Thus we expect
the suirlmed strength to be about a factor of 2 larger for
the Lawson wave functions than for those of MBZ. A
more detailed calculation shows that the surrlmed

strengths for the Ml, M3, M5, and M7 modes are,
respectively, factors of 3, 2.5, 2.2, and 2.5 larger. The
difference is due to the lack of pairing in the Lawson cal-
culation.

III. CLOSING REMARKS

We have considered magnetic multipole transitions in
the single j shell model. Although this model is far from
complete it should have sufficient validity to give a rough
picture of what is going on and to direct experimentalists
to energy regions where interesting results should appear.
The model should be especially relevant to low lying exci-
tations and for the excitation of isobaric analog states.

We have obtained results not only for the individual
transitions but have also obtained formulas for the
summed strength for the relevant odd multipoles A, = 1, 3,
5, and 7. Whereas one could not possibly describe most of
the odd multipole states in teiaus of only L =0 and L =2
couplings of neutrons and protons, the summed strength
involves only the ground state wave functions, and for
~Ti the L =2 component D (2,2} is the only relevant one
[D (0,0) is of course large but L =0 cannot contribute
due to an angular momentum selection rule].

We have noted a varied pattern for the different mul-

tipoles. For A, = 1 the lowest state is the one most strongly
excited. For A, =5 the isobaric analog state is the most
strongly excited state.

We are able to completely understand the isobaric ana-
log state excitation strength for the various multipoles in
4'Ti because the wave functions can be determined in
closed form and the sum over Lz can be performed to
give. a closed expression. This expression is proportional
to

[1+(—1) U(AJJL;JJ)] L =2 domlntIIltly .

This is smallest for A, = 1 and largest for A, =5 (for odd
multipoles).

In a previous work' we noted an analogy between the
lowest 1+ states in the titanium isotopes and those occur-
ring in deformed nuclei in the region of ' Gd (such
modes were first prediced by LoIudice and Palumbo' and
Suzuki and Rowe ). The energies and excitation
strengths of these scissor modes in the two regions are
systematically similar. In the f7&& model, though, the ex-
citation involves almost equal mixtures of spin and orbital
excitation, whereas for the heavier nuclei the orbital most-

ly enters. The 1+ state has been found in Ti at 4.3 MeV
via electron scattering by the Darmstadt group, 5 and via
proton scattering by the Orsay and Michigan State colla-
boration. The energy and 8(M1) strength in electron
scattering ( —1 pN} agrees pretty well with the f7qI
model. However a comparison of the proton and electron
scattering results suggests that the orbital contribution is
larger than the spin contribution, somewhat more than is
predicted by the f7~I model, even allowing for a respect-
able amount of spin quenching.

This experimental result may be a manifestation of the
general trend in which the residual interaction causes the
wave function to go from the j-j limit towards the L S-
limit.

At any rate, we hope that this work will stimulate fur-
ther experimental work to help locate the odd multipole
states, and further theoretical work to help understand the
systematics of odd state spectroscopy.

Before closing we should take note of work in other
parts of the periodic table on hi~her multipoles. These in-
clude works by Scholten et a/. , who also find that for
higher multipoles, e.g., k, =3 and 5, the lowest state does
not necessarily get the most strength. It would appear
that even for higher multipoles there is a strong analogy
between the behaviors in the deformed and in the single j
shell approximations.
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