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We establish the general form of inelastic scattering amplitudes based on invariance principles

and derive simple relations between these amplitudes and spin-transfer observables. We then exam-

ine a plane-wave relativistic impulse approximation for (p,p ) which is a simple extension of the rela-

tivistic impulse approximation for elastic scattering. We show under what approximations this am-

plitude reduces to the standard (nonrelativistic) impulse approximation and then examine the novel

features of the free relativistic impulse approximation which results from less restrictive assump-

tions. We also derive free relativistic impulse approximation inelastic electron scattering form fac-

tors and then use our (p,p') and {e,e') formulations to extract nuclear structure information for the

first two 1+ levels in ' C. We consider possible experimental signatures of the strong scalar and

timehke vector potentials of modern relativistic theories.

I. INTRODUCTION

Following the successful application to intermediate en-

ergy, proton-nucleus elastic scattering, the relativistic im-

pulse approximation is currently being extended to inelas-
tic scattering. The basic elements of the inelastic ap-
proach have already been established. ' A computer pro-
gi'ani DRIA (Ref. 2) has been written to calculate inelastic
observables in the relativistic impulse approximation and
a considerable amount of experience in the application of
the model to experimental data is currently being
amassed. The process of distilling understanding from ex-
perience of this kind is greatly facilitated by an approxi-
mate version of the full theoretical treatment, which is
simple enough that the dynatriical dependences on the
various input qumtities are obvious, but at the same time
is comprehensive enough so that these dynamical depen-
dences are at least qua&itatively correct. The plane-wave
approximation to the standard distorted wave impulse ap-
proximation has repeatedly been shown to be useful in
this regard. Moss, for example, has used the plane-wave
approximation to demonstrate in a pedagogically appeal-
ing way the relationship between inelastic scattering spin
obuuvables and the nucleon-nucleon amplitude. In many
cases the simple relations which emerge in the plane-wave
limit persist when distortion effects are included.

In a very similar spirit, we develop here a plane-wave
version of the relativistic impulse approximation which
reveals the new elements of the overall approach. We
find, in particular, that the structure of the formulation
immediately suggests a generalization to the standard
nonrelativistic approaches to proton-nucleus inelastic
scattering. This generalization consists of including the
effects of nuclear currents on the transition amplitude in
just the way such current contributions are use&ly includ-
ed in standard microscopic treatments of electron-nucleus

inelastic scattering. We also show that these current con-
tributions should be included whether or not we assume
that the nuclear dynamics are governed by strong scalar
and timelike vector potentials which characterize modern
relativistic approaches. However, we also find that the
magnitudes of the current terms are sensitive to the pres-
ence of such potentials (as is also the case in elastic elec-
tron scattering ) and that observables sensitive to the
currents will in turn reflect relativistic nuclear dynamics
to some degree. The present plane-wave formulation per-
mits the straightforward identification of such observ-
ables. We also treat inelastic electron scattering in the
same relativistic formulation which allows us to make a
systematic comparison between proton- and electron-
induced inelastic processes.

II. GENERAL STRUCTURE
OF THE INELASTIC AMPLITUDES

We begin by examining the general structure of the
nucleon-nucleus inelastic scattering amplitude as deter-
mined by the requirements of parity, rotational, and
time-reversal invariance. s For a transition from a 0+ ini-
tial state to a final state of spin parity J, we may write
the amplitude as

Tst(m', m)=(J M;m'~ M~0+;m),

where W is the projectile-target interaction, m (m ) is the
initial {final) projectile spin projection, and M is the spin
projection of the final nuclear state. &e now define the
following right-handed coordinate system:

ti=(kf —k;)/( kf —k, [,
p=-,'(kf+k, )/[ kf+k,. [,
n=pXt|=k;xkf/~ k;Xkf ~,
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where k; (kf) is the initial (final) projectile momentum.
(We have ignored the nuclear excitation energy so that
k; =kf. ) As shown in Appendix A, when we choose t1 as
the quantization axis, the general structure of the transi-
tion amplitude dtyends on whether the final state has
natural [n =(—1) ] or unnatural [rr= —( —1) ] parity. It
is convenient to express the transition amplitude of Eq. (1)
as an operator in the projectile spin space. We then write
Tst ——g, tt 8;, where the ti are not active in the projec-
tile spin space and the 8; are. We choose

I8;]= I l,o„,o~„oq I

where

I= —,
' tr g TstTst

alI M

It is useful to recall the relation between some familiar ob-
servables and those defined in Eq. (5). For instance, the
polarization is given by P=D„O while the analyzing
power is given by A„=DO„. Similarly the spin-rotation
function is given by Q =D~, we also define a comple-
mentary quantity7 8—= D~—. Certain combinations of
these particular observables are very simple functions of
the amplitudes presented in Eq. (3). For example,

=
I l,o n, o p, tr t]I

and find for natural parity transitions
IXs I [i——(Q+8)+(P+As)]=4+ AstBs't, (6a)

Tp =Apl+Spa'z,

TM —~M I+~M +n ~

(+)

( —) (-) ( —)=CM ap+DM Oq

while for unnatural parity transitions (3)

Ihs —I[(Q—8)+i—(P —As )]=4g Cs'tDst, (6b)

I(1+D~+D~+D~)=4+
~
A~

~

M
(6c)

which defines the spin sutn function, Xs, and the spin
difference function, hs. We also have

Tp —CpcÃp +Dpoq

TM —CM &p+DM q ~

(+) (+) (+)

TM ~M I+~M &pg

where we have defined

I(1+D Dpp D~—)=4—+ (Bst ~

I(1 D„„+Dpi'——D~)=4+ i Cst
~

I(l —D D~+D~—)=4+ ~Dst ~

(6d)

(6e)

for M)0.
The time-reversal properties of the inelastic scattering

amplitudes are also derived in Appendix A. These can be
summarized as follows: for Ast, BM, and Cst',

g;+M =even,

while for Dst',

g;+M =odd,

(4)

ID;1 = —,
' tr g 8;Tst81.Tst

all M

2 tri TOjTO

+ —,
' tr g (8,T~+'8/T~+' +8tTst 8zTjt )

M&0

where ri; =0 (1) implies that the target-space operator giv-
ing rise to the nuclear matrix element implicit in the A, 8,
C, or D is time-reversal even (odd). (See Appendix A.)
For a given value of M ~ 0, these relations apply to both
TM+ and TM

%e may now express all inelastic observables in a sim-
ple form using the results of Eq. (3). We define the spin
transfer observables

We observe that no other independent combinations of ob-
servables (with the final nuclear polarization being unob-
served) can be constructed since combinations involving

Ast or Bst and Cst or Dst (e.g., AstCs't) never occur in
Eq. (3) due to parity and rotational invariance. It is in-
teresting to note that the spin difference function defined
in Eq. (6b) involves the interference of amplitudes with
opposite time-reversal properties. [See Eq. (4).]

III. THE (RELATIVISTIC)
PLANE-%AVE IMPULSE APPROXIMATION

We now formulate a relativistic plane-wave impulse ap-
proximation for nucleon-nucleus inelastic scattering
which is a simple extension of the relativistic impulse ap-
proximation for elastic scattering. We work in the Breit
frame with the three-momenta defined in Fig. 1. Assum-
ing that the bound state wave functions have a simple har-
monic time dependence, the explicit treatment of the time
integrations is trivial' and the inelastic amplitude can be
written as

Tfg =I 3 Qp(K+q/2)+f(P —K/A —q/2)tNN(s, t)
dP

(2m )

X u~(K —q/2)%;(P —K/A +q/2),

where the u~'s are the usual Dirac free spinors for the
projectile, the %"s are four-component spinors for the nu-
cleus, and the NN t matrix is given by

t~(s, t)=( Snip, m /E, —I )y (1)|' (2)ENN(s, t) . (S)
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-K+q/P -K-q/2

FIG. 1. Kinematical variables used to describe the Ip,p') re-
action.

In Eq. (8), p, and F, are the nucleon momentum
and energy in the nucleon-nucleon center of momentum
frame, yo is the usual Dirac y matrix and, FNN is the rel-
ativistic invariant representation of the free NN ampli-
tude which depends on the kinematical invariants s and t
In the present work, we take FNN to have the following
orm:8

FNN=~s+y"(1)yc (2}Fv+y'(l )y'(2)Fr

+y'(l)y'(2)y"(1)y„(2)Fg+cr""(1)cr„„(2)Fr. (9)

The carets over FicN and tNN in Eqs. (7) and (8) indicate
that they are taken to be operators active in the space of
the nuclear bound states. This is the full relativistic
plane-wave impulse approximation. With relatively
minor approximations (to be discussed in Sec. V) it can be
evaluated as it stands given some model for the four-
component bound state spinors.

relativistic formulation. For on-shell, positive-energy nu-
cleons, we have the following identity

MM)i ( 1,2 )=u i u p cNN u i u 2, (10)

MNN(1, 2)=a+cr, a,b+ cq(a, +cr, } ne

+cri qcrzgq d+cri pcr2pe .

As will be discussed in Sec. VI, we decompose the full
nuclear spinors in terms of four-component, single-
particle, bound state wave functions which for the mo-
ment we construct according to the following prescrip-
tion:

1((P)=& . P(P)=» (P)$(P),

8+m
(12)

where $(p} is the usual two-component (Schrodinger)
wave function and N is a normalization constant. The re-
lation between upper and lower components in Eq. (12) is
clearly that prescribed by the free Dirac equation,

where MNN is the representation of the NN t matrix in
the space of Pauli spinors (in contrast to tNN which is the
representation in the space of Dirac spinors). The quanti-
ty MNN is frequently expressed in terms of the Wolfen-
stein amplitudes; in the NN center of momentum frame,
we may write

IV. THE STANDARD IMPULSE APPROXIMATION

%e now show how the standard nonrelativistic plane-
wave impulse approximation can be recovered from the

(y E —y p —m)qP=O.

With the preceding definitions, we may rewrite Eq. (7)
as

TI —NIN~ J ql(P —KI' ( —ql2)[u (K+q/2)u, (P —KIA ql2)(NN(—s
(2ir}3

Xu, (P—K/A +q/2)ur(K —q/2)]4;(P —K/A +q/2), (13)

where the 4's are the usual two-component nuclear wave
functions.

If we ignore the P dependence inside the square brack-
ets, we can use the identity of Eq. (10) to obtain the stan-
dard impulse approximation (SIA}.

MN„(1,2)=M(q, cri)+cr2 (q, cri) i

where

W=a+icri nqc,

A =crib+inqc+qcri gq d +peri pe

(15a)

(15b)

Tf; —— 3' p' —q 2 MNN4] p'+q 2, 14ap
(2n )3

Tfc=&f IMNN(q)e "'lc'& (14b)

In evaluating the amplitude of Eq. (14b), it is con-
venient to write the Pauli representation of MNN in Eq.
(11) somewhat differently. We have

where MNN is the Pauli representation of the NN ampli-
tude in the appropriate frame of reference. In configura-
tion space, we have

Then, remembering that we are considering transitions
from 0+ initial states, we have

Tf; =M(q, cr~ ) (JM
~

e 'q'
(
00}

+9f (q, crr ).(JM
~

cre ' i'
~

00}, (16)

where
~
JM } is the final nuclear state and crr is the Pauli

spin operator for the projectile. Since we have chosen the
quantization axis to lie along Q, the possible spin projec-
tions for the final state are M=O for the first term on the
right-hand side of Eq. (16) while M=O, +1 is allowed for
the second term. We then have
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To ——T»
——M(JO~e '«'(00)+A qg(JO(oe »'(00),

T',+'= ' (u e+, (J,+1 ~o+ie-'«'(00&+u e', (J,—1 ~o,e-'«'~00&),
2

TI-'= (~.e+, (J,+1[o+ie '«'(00) —& e i(J, —1 ~g ie '«'~00)),
2

(17a)

(171}

(17c}

where co=/, e+i ——+(n+ip)/W2 are the usual spherical
unit vectors, and o~ ——n esr. For I greater than one,
T~+'= Tsr

' ——0 in this approximation where all transverse
operators are at most rank one.

In proceeding further, it is useful to define the follow-
ing nuclear transition densities (see Appendix 8 for de-
tails): "Coulomb" form factor

T„=+i% pXJO=( —igXA) neo
=+i (b +e)Xg os, (21c)

(J, +1
~

cr~~e '«'~ 0,0) =+X~0

where, in this instance, we have used the following identi-
ty:

pq= (J,O
i
e '«'

i
0,0),

longitudinal form factor

X,'—= (J,O
~

o~-'«'~ 0,0),

(18a)

(18b)

which is valid for natural parity transitions. The
correspondence of the natural parity transition amplitude
with Eq. (3) is

transverse form factors

Xx,o= (J +1
I
o+l(e «)L=J 10,0& (natural »r),

(18c}
Xz i

= (J,+ 1
~
o+ i(e '«')i, q~i ~

0,0) {unnatural ir) .

For unnatural parity transitions, pq
——X&0——0 and we can

write

To =T» =A '/X' = (b +q d )X go'»

T~+'i ——Tp
——A pXg i (b+e)X——g icrp,

Tsr 'i ——T„=Sf nXg i (iqc+bo——„)Xg i .

(191)

(19c)

In deriving these expressions, we have made use of the
fact that

(J,+1
~
cr ie'«'

~
0,0)=Xg i

for unnatural parity transitions and the relations
&/~2(e+i+e i)=p and —1/~2(e+i —e i)=n.

&y comparing with Eq. (3), we can establish the follow-
ing correspondence:

C»=0~ D»=(b+q d)Xs ~

Cp (b +e)Xg i, ——Dq ——0,

~n =iqcXz, i &'s =be, i

(20}

where we have defined C»
——Co, Cz=C'i+', A„—:A'i

etc., as suggested by Eq. (19). We note that two of the
amplitudes allowed by parity and rotational invariance,
namely Co and Dp, are zero in the SIA.

For natural parity transitions, XJ ——XJ &

——0, and we can
write

A» =apJ, 8» =lqcpg,

gp =qc Xg 0, Bp =—lb Xg 0,

C„=i (b +e)XJ0, D„=O

where, again, one of the allowed amplitudes, D„, is found
to be zero in the SIA.

We may summarize these results by writing the follow-
ing expression which is valid for both natural and un-
natural parity transitions:

Tfl M —(~pJ+ '4XZ)SM»

g ( igXA—Xqo+&Xqi) e)5~i, (23)
J =lt,p

where we understand that Xq and Xq i (pq and Xqo) are
zero for natural (unnatural) parity transitions. If all form
factors in Eq. (23) were unity, then the observables calcu-
lated using Eq. (5) would be just those for free NN
scattering. This fact lies at the heart of the close relation-
ship between the inelastic scattering and NN observables.

We note that the spin-difference function, hs defined in
Eq. (61), is identically zero in the SIA due to the
correspondences appesmng in Eqs. (20) and (22), even
though symmetry considerations do not require this result.
This is interesting in light of the fact that measurements
show that P —A„ is large for some inelastic transitions, '

suggesting that some important physics has been dropped
in the series of approximations leading to the SIA. In
what follows, we demonstrate that this is indeed the case
and that a straightforward extension of the SIA results in
a new class of terms which {among other things) can yield
a nonzero spin-difference function.

T» =sd'pz (a +iqccr„)pq,——

Tp
——i A nXg 0——( —iQ XA ).pXg, s

i (iqc +bo„)Xg,o, —

(21a)

(211)

V. THE FREE RELATIVISTIC
IMPULSE APPROXIMATION

The proposed extension consists of rewriting Eq. (13) by
moving the square brackets in as follows:
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T =Nf¹ ' ef -K A-q 2 ' +q 2 " -K A-q 2
(2n )

X [tNN(s, t}]u,(P K/A +q/2)up(K. —q/2)4;(P —K/A +q/2) (24)

I
JM&=N —l 0"

8+m
IJM&. (26)

It is convenient, when evaluating nuclear matrix ele-
ments, to cast the Dirac matrix content of tNN in a form
which is different from the manifestly covariant expres-
sion in Eqs. (8}and (9). Specifically we have

tNN(q) = g (f;+cri cr2g;)r;(1)r;(2),

where the 2)&2 matrices, Ir; j, act only in component
space and are defined by

and again dropping the P dependences inside the square
brackets. In making this approximation, me have retained
the dependence of the lower components of the target nu-

cleon on the nuclear dynamics which bind it. In contrast,
the SIA of Eq. (14} implicitly includes only the lower
component dependences arising from kinematic effects
such as recoil or boosting to an appropriate reference
frame. This is equivalent to setting the lower components
of the bound state wave function to zero in the nuclear
rest frame. We refer to the expression in Eq. (24) as the
free relativistic impulse approximation (FRIA) since the
free space relation between the upper and lower com-
ponents of the target nucleon is assumed [Eq. (12}]. We
note that such an approach is implicit in standard micro-
scopic treatments of electron-. nucleus inelastic scatter-
ing.

We now wish to rewrite Eq. (24) so as to facilitate com-
parison with the SIA amplitude appearing in Eq. (23}.
For notational convenience we assume an infinitely mas-
sive target (1/A-+0) in which case the Breit frame and
the nuclear rest frame coincide.

We may now express Eq. (24) as

Tf; up(K——+q/2)& JM
I tNNe

' 'I 00&up(K —q/2),

(25)

where the tildes over the bra and ket indicate that they are
four-component target wave functions related to the usual
two-component bras and kets by Eq. (12) which, in con-
figuration space, becomes

fi =tp& f2=ts~ fi=tg~ f~=tp ~

g2 ——2tT, g3 — tV p g4=2tT .
The FRIA amplitudes may then be written as

4

~f = X(ftuprtup&JM Ir e "'IOO&

(29)

+g;upcrpt';up &JM IcrI;e ''i'Ioo&) (30a)

or
4

Tf;= g [W'(q, crp)&JM
I r, e-'&. 'IOO&

+ (q, crp) &JM
I
crl;e 'q'I 00&) (30b)

p,'=—&J,oI r,'-"
I
o,o&,

x' =&J,oI~r;e '&'Io, o&,

X)0= &J, +1
I
cr+iI;(e 'q')L, J I

0,0&,

Xz, —= &J,+1
I
cr+iI;(e 'q')I, —J+] I

0 0& .

(31a)

(31b)

(31c}

The selection rules for these quantities are trivially ob-
tained from those of their SIA counterparts [Eq. (18)] by
noting that upper and lower components of Dirac spinors
have opposite parities. Therefore, matrix elements con-
taining I

&
or I 2, which are diagonal in component space,

have the same selection rules as the SIA matrix elements,
but those containing I i or I &, which are off diagonal,
have the opposite parity selection rules. Thus, only the
following matrix elements can be nonzero:

which defines the quantities W' and At'. The expression
in Eq. (30b) has been written so as to facilitate comparison
with the SIA amplitude appearing in Eq. (16}. The
momentum dependence of the NN amplitude as weil as
the projectile spin dependence are carried in the W and
A quantities in Eq. (16) and in their relativistic generali-
*ations in Eq. (30b). The nuclear transition densities ap-
pearing in the SIA are likewise generalized in the FRIA
and in analogy with Eq. (18) we define the following
quantities:

1 0 1 0
I~= 0 1

I2= 0

(28} Natural parity

i =1,2
j j, T

PJp~J, O

i =3,4
yj,I yi, TJ p J, 1

0
0 —1 0

Unnatural parity gjqL gjp TJ p J, 1
j j, T

PJp~J, O

(32)

The f, and gt are determined by the NN invariants ap-
pearing in Eqs. (8) and (9).

Following the procedures used to obtain Eq. (23), we
may write
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Tg, sr(FRIA)= g (W'pJ+%'gXJ' )5~q+ g ( —irlxht'Xg p+&'Xg i) ej5sr J. (33)

where again we understand that half of the nuclear struc-
ture matrix elements apl@+ring in Eq. (33) are zero for a
given spin and parity of the final state according to the re-
lation in Eq. (32).

We may now ascertain directly the values of the quanti-
ties Asr, B~, C~, and Dsr of Eq. (3) implied by the
ATRIA amplitude by Eq. (33). We can then convert these
qiumtities into observables using Eqs. (6a)—(6fl. The de-
tails of this procedure are given in Appendix C and the re-
sults are presented in Table I.

Examination of Table I shows that none of the ampli-
tudes allowed by parity and rotational invariance are iden-

tically zero in the PRIA. This means, among other
things, that the spin-difference function, b,s in Eq. (6b),
can be nonzero in this approximation. Clearly, nuclear
structure terms not present in the SIA appear in the
FRIA. In order to identify these new terms -snd to facil-
itate comparison between the two approaches generally-
we must establish the relations between the two-
component nuclear transition densities of the SIA [ap-
pearing in Eq. (23)] and the four-component densities of
the FRIA [appearing in Eq. (33)].

We begin by noting that

pj=gOil', e '"'f00)=NyWIJO 1+
~

e '~' 00)(E+m)2

(J,O~e 'q'~0, 0)= ~, (34)

Z' —e'~4
2m (E+m)

p2+q2/4
2m (E+m)

X,=—
2m (E+rn)

Natural parity

TABLE I. Plane wave proton-nucleus inelastic scattering am-
plitudes.

Xg =AXJ+2TXJ

where we understand here and in the expressions which
follow that the gradients in these matrix elements do not
act on the exponential and where the approximate equali-
ty is obtained by assuming that the lower-lower com-
ponent combination is negligible compared to the upper-
upper one. Similar arguments establish additional rela-
tions leading to the correspondences presented in Table II
for nuclear structure amplitudes containing I'i or I'2.

Interpretation of the remaining FRIA nuclear transi-
tion densities is somewhat more involved. We proceed by
considering pz. We have

Tp o

~,=X,pJ++X2pJ- —X52TZ,"
Bq ———iX6pJ —iX42TXJ

+T 3T

Bp =lx1XJO —lX2XJO +lX5 VXJ]

4
pg ——J,O

0 1

O
-fq-r 0 0

C„=—iX1XJo +iX3XJ+0 —iX5 VXJ1
Dyg —LX42TXJ 1

(J,o/[ i~(V+V)e-'~'][0,0).8+m

Unnatural parity

Cq ——X4A pJ
3

Dq ———X5I'pJ —X1Xg 1 +X3XJ14 -L +L

TABLE II. Reduction of four-component nuclear transition
densities to two-component form: I.

Four-component Two-component

Tp 0 Cp
———X1XJ1 —X3XJ1 —X5 ~JO—T +T 3T

Dp ——X42TXgo

g„=—lX,XJ+jT—lX4VXJ3TO

&+=—X1&Z1 +X2&J1 —X5~JO—T +T 3T

1 2
PJsPJ

ylL y2L

y1T g2T

=PJ

yL
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Integration by parts yields

pq = &J,o I
cr-qe '1'

I
0,0)= ~ Xz~,

E+m 2m

'ABLE III. Reduction of four-component nudear transition
densities to tom-component form: II. An asterisk ( ) denotes
transition densities not present in the SIA.

where we have assumed that E+m=2m for the target
nucleon. Equation (35) demonstrates that pz does not
represent a new transition density appeuing in the FRIA
but not the SIA.

%e now consider p~. %e have

0 1

pg ——J,o
1 0 e 's' 0,0

Four-component TYCHO-compoIlent

0

p~ —(JOI [crxjloe "'I00)'
2@k

~ X +(J,+1 lj, e 'q'IOO)

= —i(J, +1 I [crxj]+)e 'q'IOO)'

&J,o I
i cr (V V—)e '1'

I 0,0) .8+m
Manipulation such as integration by parts does not allow
reduction of this term and we conclude that it does give
rise to a new transition density not present in SIA. Its na-
ture is made more apparent by rewriting it as:

p,'=&J,olcr je 'q'-Io, o&, (36)

where j=i/2m(V —V ) is the familiar' probability (or
convection) current operator. Following Love and Com-
fart, '3 we call this a composite-current transition density
since j is combined with cr. Referring to Table I, we see
that, for unnatural parity transitions, the Ce amplitude,
which was identically zero in the SIA, is linear in pz.
Therefore, the M =q contribution to the spin-difference
function, b,s, in Eq. (6b), is also linear in pq. We also ob-
serve that the composite-current operator appearing in the
expression for pq, in Eq. (36), cr j, is time-reversal even,
while that appearing for p~ in Eq. (35), cr q, is time-
reversal odd. This is consistent with the general time-
reversal requirements presented in Eq. (4).

The remaining nuclear transition densities can be inter-
preted in a like manner. The resulting correspondences
are summarized in Table III. In obtaining these expres-
sions, we have eliminated the longitudinal convection
current contribution using current conservation and our
assumption of zero Q value. We note that, for unnatural
parity transitions, the D amplitude, which was zero in
the SIA, is linear in Xz'0 and that the M ~p contribution
to the spin difference function is therefore linear in this
quantity. Similarly, for natural parity transitions, the D„
amplitude is proportional to Xz'I (but is zero in the SIA)
implying that the sale contribution to the spin-difference
function for natural parity is proportional to this quanti-
ty. Examination of Table III shows that Xz'0 and Xz',
can be expressed as two-component transition matrix ele-

ments of the operator cr Xj.
We have identified a class of nuclear transition densi-

ties, absent in SIA, but arising naturally in FRIA, involv-
ing the convection current operator, j, by itself and in
combination with the spin operator, cr, of the target nu-
cleon, namely the composite current operators:

~ j and crXj. (37)

The composite-current transition densities make unique
contributions to the spin difference function which would
be identically zero without them. The time-reversal prop-
erties of these operators (j is time-reversal odd while cr j
and crX j are time-reversal even) are consistent with the
general time-reversal constraints presented in Eq. (4).

UI. NUCLEAR STRUCTURE
DEPENDENCE IN THE FRIA

We now introduce a complete set of single-particle states

I njlm). These may be either two-component or four-
component wave functions. In the latter case, n and i
refer to the number of radial nodes and the orbital angular
momentum of the upper component. [See Eqs. (12) and
(26).] Using standard techniques we may write

It is useful to establish general relationships between
the nuclear structure properties of the initial and final tar-
get states and the nuclear transition densities appearing in
Eqs. (33)—(36) and in Tables I—III. This is most readily
accomplished by introducing the concept of nuclear struc-
ture amplitudes or, as they are sometimes referred to,
one-body density matrix elements. ' We may consider the
following general nuclear matrix element of a one-body
operator, HJst '.

& JfMf I ~est I
JM &= (JJMM

I
JfMf—) X ~&('f', , )JyJ (38a)

where ~&i',', , i=&Jfll[o',b', lilIJ &, . (38c)

and

a=(nji)
where a,I& and b,IJ are particle and hole creation opera-
tors, respectively, and where j —=V'2j+1. We have de-
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fined the reduced matrix element according to

&&yMf I Tk I
J J)/I &={J klan l&@if}&JIIITkIIJ &.

(38d)

The operators giving rise to tue-component transition

densities can usually be characterized by the orbital and
spin angular momentum transfer they imply. Such a
characterization is not straightforward for four co-mponent
transition densities which are of necessity formulated in a
j-j coupling scheme as in Eq. (38). For two-component
transition densities, we may write, omitting the principle
quantum number index for the single particle states,

v 2lf
&~f~f I

[() 6 1 I
J~ &= (J~W—~

I Jf~f }X~;,;, &Ifl l~ ll~ && 1/2ll@lli/2&
J.S

(39)

where the LS representation of the nuclear structure am-
plitude is related to its j-j counterpart, [Eq. (38c)],by

lg I; L
JP,. ~~~a' i 1

~ftlfl), L;1/21/2, ,S)= gL ~jfji '
2 2 ~ '~AJ/ J))

Jf J~

TABLE IV. Nuclear structure amplitudes Wq&~~ governing
various transition densities. {For0+~J and lf ——l&. )

Transition
density

pz
Xg
&JO

I
n je '~'

I 00)
&J0lljl+)e "'I00)
&JM

I [nXj]~e ')'IOO)

Natural
parity

I. S

Unnatural
parity

J+1
J
J
J

SIld 1ts Qbv10QS inverse.
Equation (39) implies that, if lf and li are restricted ta

the same fixed value (as in the lp shell, for example), the
magnitude of a transition density characterized by given
values of L and S is proportional ta the nuclear structureJ
amplitude W ~rs). The identification of the L-S structure
amplitudes goveriiing the SIA transition densities is quite
straightforward. This procedure is less obviaus in the
case of the composite-current transition densities but is
dealt with in detail in Appendix D. All results (for
lf =li) are summarized in Table IV. Referring to this
table, we note that the composite-current transition densi-
ties are governed by so-called "abnormal parity" ampli-
tudes. We may then conclude that the magnitude of the
spin-difference function, for example, is closely related to
the spin-transfer abnormal parity amplitudes and, in fact,
is proportional to Mg/» for unnatural parity transitions
such as the 0+~1+ excitation in ' C. These arguments
also apply to transitions in the s-d shell since only the
1=2 single particle wave functions can participate in tran-
sitions with odd I..

VH. APPLICATION OF FRIA FORMULATION

Because the FRIA formulatian discussed above works
directly with the relativistic invariant form of the funda-
mental NN interaction, it is especially easy to generalize
to the inelastic scattering of other fundamental probes for
which the relativistic invariant form of their interaction
with nucleons is known. The electron is such a probe and
the FRIA electron-nucleus inelastic scattering amplitude
is derived in Appendix E. We now wish to demonstrate
how the similarity between the FRIA amplitudes for
(p,p') and (e,e'} can be exploited to extract nuclear struc-
ture information. This is most readily accomplished by
rewriting the FRIA {p,p') amplitudes and (e,e') form fac-
tors making use of the FRIA-SIA correspondences af
Tables II and III. The resulting expressions appear in
Tables V and VI for (p,p') and (e,e'), respectively. In the

(p,p'} expressions, we have used a hybrid notation for the
NN interaction, mixing the relativistic invariant form of
Eq. (8) with the Wolfenstein representation of Eq. (11}.
Those quantities common to the FRIA and SIA are writ-
ten in the SIA form consistent with Eq. (23} while those
unique to the FRIA retain the form of Table I. We note
that the (e,e') form factors of Table VI are the same as
those obtained in standard nonrelativistic microscopic for-
mulations.

We may now express the (p,p') obseroables in a very
compact form using Eqs. (6a)—(6f). The resulting (p,p')
expressions appear in Table VII. The expressions of
Tables VI and VII explicitly demonstrate the relatively
simple relations between {p,p') observables and the (e,e')
form factors in the FRIA limit. We may now demon-
strate the utility of these relationships by using them to
analyze and interpret (p,p') spin transfer data' and to re-
late these data to measured (e,e'} form factors'5 for the
transitions to the 12.71 MeV 1+ T=O and 15.11 MeV 1+
T=1 levels in ' C. Specific relations are implied by the
FRIA amplitude and the full calculations can be used to
determine if the FRIA relations persist when additional
effects arising from, e.g., distortion, nonzero g-value,
off-shell extrapolation of tNN, etc., are included. The data
can also be examined to see if the implied relations are
present. Finally, as will be discussed more fully below, we
can use the FRIA relations ta identify observables which
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TABLE V. FRIA inelastic scattering amplitudes for (p,p').

Natural parity

To Tq o As=ePJ+t2Tq/{2m)&JOI [&Xj]oe "'IOO)
Be iqc——pJ 2T—p/m(JOI [srxj]oe '~'IOO)

Cq
——0 Dq ——0

A~=qcX~~ Vp/—m(J, +1
I [j]+~e '~'IOO)

B = ibX—qq+iVqi{2rn)(J, +1 I [j] e '~'I 00)

Cp ——0 Dp ——0

T~ ' ——T„: A„=O 8„=0
C i(b +e)XJO iVq/(2m){j, + 1

I [g]+)e ' '
I
00)

D„=2Tplm(J, +1I [nXj]+)e '~'100)

Unnatural parity

Tq o Aq
——0 Bq ——0

C, =Ap lm (JO
I
o je ' i'

I
00)

D —($ +q2dg, JL

Tp s Ap =0 Bp =0
Cr=(b+e)XJ& —Vq/{2m)(J, +1I [j]+~e 'r'IOO)
Dr —— i 2Tp/m—(J, + 1

I
[cr &(j ]+]e '~'

I
00)

A„=iqcX&, iVpl—m(J, +1I [j]+,e ' 'IOO)
B„=bXJ~ Vq/(2m—)(J,+1

I [j]+~e '~'I 00)
C„=O D„=O

are sensitive to differences between the FRIA and the full
DRIA calculations. These differences are due to the pres-
ence of the strong scalar and timelike vector potentials
which characterize modern relativistic models of the
nucleon-nucleus interaction and which are included in the
dynamical RIA (or DRIA). We may then be able to iden-
tify experimental signatures of strong relativistic dynam-
ics in (p,p') just as a possible signature has already been
identified in (e,e').

To begin, let us consider how we might extract the
transverse spin transition density, X'~~, for the T=1
transition. This extraction is the most straightforward if
the transverse convection current transition density van-
ishes, i.e., j™s~O.In this case, we have, from Tables VI

and VII.

IF
Cg

(41a)

(41d)

(41b)
&

I
qc

+2
trans 2 (41c)

alb Ii
where g =eN+rrN and the other symbols are defined in
the tables. If in addition, we may ignore composite
current transition densities, we also have

—
I

X™s
I

'
irlb+c

I

z

IFi sl'=Z '

TABLE VI. FRIA form factors for (e,e').

Natural parity

2 2

&N pj + ~N& JO
I [~xj]w

4m 2ftl

{eN+rN)Xgo+eN( J, + 1
I j+ )e 'q'

I
00)2'

Unnatural parity

I
F s I

=2Z i — {eN+~N)Xg(+eN(J, +1
I j+)e 'q'I 00)

2EFg
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TmLE vn. O~ bservables for unnunnatural parity transitions in lanin p e wave FRIA.

(1+D1 do ~+D~+D )=x' X~ =a qc q~
— V(j)

Pf

1 do (1+D82= — —D~ —D )=x bX v( &'
2~

) (b T(1—D1 der
2

+.)~;,—' ~( &' + ~pimA(cr j) ~'

where

2
( 1 D D Drr+D~) =ic

~
(b+qid)X+D = q J ~'+ T(crXj &'

(j)'=—&= ~, +1lljl+ie "'IOO&,

2

(cr j =—(JO~cr je 'q'. ~00)

&cr X j)'=—& J, +1
~
[cr Xj] e '~'

~

00)

PNN

where NN and N A

respectively.
refer to the nnucleon-nucleon and nan nucleon-nucleus cecenter-of-mome tn um rames
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lo'
C(e, e') to 1271 MeV I' T=O

Data
w/0 LS = IO

— ——with LS = IO-

IO
CU

(p,p ) calculations in the plane-wave approximation. Fig-
ure 2 shows that the extracted values of

~

X™~
~

are very
similar for the two (p,p') observable combinations. In
turn, these quantities have a similar momentum transfer
dependence to that extracted from the (e,e') data, but are
systematically lo~er by ——,. This renormalization is due

to distortion (attentuation) effects as is demonstrated by
the full distorted wave calculation of the quantity of Eq.
(41c) which is shown as the dashed line in Fig. 2. (Recall
that in the plane-a&ave approximation, this same quantity
would be identical to the solid line. ) The good agreement
between the dashed line and the (p,p'} data suggests that
distortion effects can be accounted for qmmtitatively and
that, under the assumptions outlined above, information
about

~

X
~

can be extracted in a consistent fashion
from both (e,e') and (p,p') data.

I.et us now consider extraction of
~

X™ifor the
1+ T=O level. Here the situation is more complicated
than for the 1+ T 1 level because both the convection
current and isospin mixing produce large effects in

~
F,s ~

. The sensitivity to the convection current is
demonstrated in Fig. 3 which shows the (e,e') observable
given by Eq. (8). The data are compared with calculations
using Cohen and Kurath amplitudes' with (solid line}
and without (dashed line) convection-current contribution
which is quite large. Consequently

~

X"
i

is not direct-
ly accessible in (e,e ) for the 1+ T=O transition as it was

for the 1+ T= 1 one. In order to extract
~

X™~
~

2 from

(p,p') we must also address the roles of the convection
current and isospin mixing as well as the contributions of
the composite currents. Because of the empirical
strengths of the NN amplitudes, isospin mixing is a negli-

gibie effect for (p,p'). In some observable combinations,
as will be discussed below, currents give rise to large ef-
fects. However, in the observable combination 8, com-
posite currents do not enter and the convection current is
minimized by virtue of the factor of q multiplying it (see
Table VII). Full DRIA calculations also show that 8 is
insensitive to currents and therefore directly reflects
~X'

~

in a way that the (e,e') data do not. Unfor-
tunately, the existing (p,p') spin transfer data are not of
sufficient quality to permit a meaningful comparison with
either the (e,e') data or distorted wave (p,p') calculations.

We now turn our attention to the extraction of informa-
tion about j'n~ which is very important in (e,e'} for the
1+ T=O transition. Examination of Table VII shows
that the observable combination A is maximally sensitive
to j" since it is multiplied by a factor of p here, but by
a factor of q in all other observable combinations where it
appears. DRIA calculations with and without the convec-
tion current contribution are compared with the (p,p'}
data in Fig. 4. A very strong signature of the convection
current is indeed observed in A, but the data clearly indi-
cate that convection current contribution should be much
smaller than that implied by the Cohen and Kurath wave
functions. '7 [It is interesting to note that the Cohen and
Kurath amplitude governing the convection current
(L,S=1,0) is relatively small for both the 1+ T=O and
T= 1 transitions, but that the T=O amplitude is nearly

four times the T= 1 amplitude. ] It may therefore be that
the convection current nuclear structure amplitude is
poorly determined in the Cohen and Kurath wave func-
tions and that the (p,p') data demonstrate that this partic-
ular amplitude is incorrect. Such a conclusion would
have major implications for the interpretation of the (e,e')
data for the 1+ T=O level.

The preceding discussion suggests that X' and j'

-I
IO I I I I

C (p, j) to 1271MeV I T=a

with LS =IQ

——w/0 LS=IQ
with LS - IQ FRIA

ch

C3
+

+

E
C3

IO

IO'

FIG. 3. The 12.71 MeV 1+ T=O transverse spin transition
density as extracted from the (e,e') data of Ref. 15 using the ex-
pression for

I F~ I

i in Table VI and assuming j" =0. The
solid (dashed) curve is the same quantity as computed using the
Cohen and Kurath {Ref. 13) wave functions without (with) the
(L,S)={1,0) amplitude which governs the convection current.

0 I0 Is 20 25 30 55
8, (deg)

FIG. 4. The 150 MeV (p,p') data of Ref. 14 are compared
with DRIA {Ref.2) calculations. See the text.



33 RELATIVISTIC PLANE-O'AVE IMPULSE APPROXIMATION. . .

can be separated in (p,p ) in a manner which is not possi-
ble using (e,e') data alone. We now consider how the
composite currents might manifest themselves in the
(p,p'} observables. [They do not enter in (e,e'}, but the
(o"j) transition density mould appear in reactions involv-
ing weak probes, e.g., ( vv'). ] We note that

~
(a"g )

~

ap-
pears in the observable combination C . As noted above,
this composite current does nor make a significant contri-
bution to the relevant (p,p') observable for the 1+ T=1
transition. This is due to the detailed nature of the isovec-
tor NN amplitude which strongly emphasizes the

~

X~
~

contribution to C (see Table VII). In contrast
~

(n.j )
~

has a very large effect on C for the 1+ T=0 transition.
This is demonstrated in Fig. 5 where the (p,p') data are
compared to DRIA calculations with (solid line) and
without (dashed line) the composite current amplitudes
(i.e., WitL, i s i~~0). At 8=15', the calculated com-
posite current contribution is more than an order of mag-
nitude greater than all the others. Unfortunately, the ex-
isting data are too poor to allow for a meaningful compar-
ison with the calculations even when the latter contain
such a strong signature of the composite currents. We
also observe that the composite currents play an essential
role in determining the spin difference function
hs=—(P 2„)—+i (Q —8) and can be constrained by this
observable combination„ too. (See Ref. 7.)

It is interesting to note that the work of Moss and of
Bleszysnki et al. , ' where current contributions are ig-
nored, advocates the use of the observable combination C
for the extraction of

~

X™s
~

. As we have seen, this hap-
pens to be an acceptable procedure for the 1+ T=1 tran-
sition but would be disastrous for the 1+ T=O transition
due to the overwhelming contribution of the composite
current. In general, the contribution Bi is to be preferred
for examining

~

X~~ .
We now turn to the extraction of

~

X''"s
~

2 from the

IO l l N

o 1511 MeV I T= I

DRlA

IO

l

E

O

b
U

IO'—

IO'
0

I ~ I s

IO l5 20 25 30 35
Hc ~ (deg)

FIG. 6. The (p,p') data of Ref. 14 are compared with DRIA
(Ref, 2) calculations. See the text.

(p,p') data. Again, as is well known, there is no contribu-
tion to (e,e') from this quantity. Table VII shows that

~

X' s
~

2 is directly accessible from D if the (cr Xj)™~
contribution is small. DRIA calculations show that this
is indeed the case for the 1+ T=l transition and the
relevant observable combination is compared with data in
Fig. 6. Although the error bars are quite large, there does
appeir to be agreement, suggesting that the Cohen and
Kurath wave functions give a reasonable description of

IO I I

="C;(p, p'} to 12.71MeV I'T=O VIII. BEYOND FRIA

C3
I

C3
+

E
O

-2
lG

+ith LS =II
~/o LS =II

-----with LS=II, FRIA

[p—m S(r) yV(r)]$=0—, — (42}

where S and V are the scalar and vector potentials,
respectively. We may then write the DMA wave function

Let us now consider possible signatures of the strong
scalar and timelike vector potentials of relativistic models
of the nucleon-nucleus interaction. Implicit in the FRIA
is the free-space relation between upper and lower com-
ponents appearing in Eqs. (12) and (26). In many modern
relativistic models, single particle wave functions satisfy

f(r)=N
S

—1/2

k(r),

E+m

(43)

io~ I I

IO IS 20 25 ~O 35
e, ~ (deg)

FIG. 5, The 150 MeV (p,p') data of Ref. 14 are compared
with DRIA (Ref. 2) calc~tions. See the text.

E+m
E+m —V(r)+S(r)

Since 5 —450 McV and V + 350 MeV, s 1.75 in the
nuclear interior, implying that the upper/lower com-



J. R. SHEPARD, E. ROSY, AND J. A. McNEII. 33

1

2' Qqy Q =Qy 8

which is proved using the on-shell condition

(p —m)u =u(p —rn) =0 .

(45)

(46)

These two forms are not equivalent off shell and if we
consider wave functions satisfying Eq. (46), we may write

Sf+S; Vf —V;, 0qy'0=0 1+, '+y', y'0
A

+ity'0 . (47}

The third term on the right-hand side is present only for
the projectile wave function since we assume Vf ——V, for
the bound state. As shown above, the spin-difference
function, hs, arises from the interference of a pseudosea-
lar amplitude (containing y5) with a timelike axial vector
amplitude (containing yoy ). Clearly the third term of
Eq. (47) can interfere with the first two to make a contri-
bution to hs. This happens only if the qy form of the
pseudoscalar invariant is used. Hence hs is particularly
sensitive, in DRIA, to the form of the pseudoscalar in-
variant which cannot be determined by the free NN data.
Preliminary calculations of P —A„ for the ' C(p,p')' C'
(15.11 MeV 1+ T= 1} transition at T~ = 150 MeV show
that the data are much better described when qy5 is used.
This is consistent with the finding that the energy depen-
dence of the impulse approximation scalar and timelike
vector potentials for elastic scattering is correct only when
the pseudoscalar invariant, which contributes through ex-
change processes, is taken to have the qy form. '

IX. SUMMARY ANO CONCLUSIONS

We have established the general properties of inelastic
scattering amplitudes assuming parity, rotational, and
tiine-reversal invariance and have then shown simple rela-
tions between these amplitudes and spin-transfer observ-

ponent ratio can be quite different for FRIA and DRIA.
This difference will manifest itself most strongly for the
inelastic transition driven by matrix elements quadratic in
lower components such as those which would be identified
with the natural parity spin-orbit interaction in nonrela-
tivistic treatments. %e do not consider such matrix ele-
ments here, but instead examine the current transition
densities which are linear in the lower components and
hence will also be sensitive —although to a lesser

degrade —to the differences between FRIA and DRIA. In
Figs. 4 and 5, ATRIA calculations of the observable com-
binations sensitive to convection and composite currents,
respectively, are compared with DRIA results discussed
earlier. The differences are not large —generally less than
a factor of 2—but some sensitivity is apparent.

We finally consider the sensitivity of (p,p') observables
to ambiguities in the form of NN invariants appeiiring in
Eq. (9). In particular, we examine the pseudoscalar in-
variant which can be written in two different forms which
are totally equivalent on shell by using the following rela-
tion:

ables. We have also examined a relativistic plane-wave
impulse approximation for proton-nucleus inelastic
scattering which is a simple generalization of the Born
amphtude for elastic scattering in the relativistic impulse
approximation. We have shown that this amplitude cor-
responds to the standard impulse approximation (SIA) if
we drop the dynamical dependence of the lower com-
ponents of the target nucleons. Retaining this dependence
leads to the free relativisttc impulse approximation
(FRIA) which differs from the SIA by the appearance, in
lowest order, of convection and composite current ampli-
tudes. These latter amplitudes make unique contributions
to the spin-difference function which is identically zero in
the SIA.

We have also examined the nuclear structure depen-
dence of the various nuclear transition densities appearing
in the FRIA. We have shown, for example, that under a
restriction to a basis of single-particle wave functions with
a single orbital angular momentum, the composite current
transition densities depend only on abnormal parity spin
transfer amplitudes.

We have also used the plane-wave relativistic impulse
approximation to establish a simple relation between (p,p')
observables and various nuclear transition densities. The
formulation has been shown to be particularly useful be-
cause it facilitates the comparison of (p,p') and (e,e') ob-
serv'ables. These relations can be exploited to extract

~

X™s
~

for the transition to the 15.11 MeV 1+ T=1
level in 'zC from both (p,p') and (e,e') data in a consistent
manner. We have found that, in general, spin and convec-
tion current contributions can be examined separately in

(p,p') while this is often not possible (e.g., for the 12.71
MeV 1+ T=O level in ' C) in (e,e'). We have also identi-
fied (p,p } quantities which are maximally sensitive to
convection and composite currents and have found large
signatures of the currents in the 1+ T=0 transition. The
existing data suggest that the Cohen and Kurath ampli-
tude governing the convection current for this transition
is too large. We have also shown that

~

X""s
~

can be
straightforwardly extracted from the (p,p') data for the
1+ T=1 transition, but probably not for the 1+ T=O
transition. Moderately strong signatures of relativistic
dynamics of the DRIA have been identified for the 1+
T=O transition. We have also demonstrated that the
spin-difference function is potentially sensitive to the off-
shell extrapolation of the pseudoscalar invariant implied
by the operator y and qy /2m.

This work is intended to serve as a "handbook" which
can be used to understand (p,p'} in a relativistic formula-
tion containing all of the features implicit in standard mi-
croscopic formulations of {e,e'). The vast majority of the
material presented is "relativistic" in form only and does
not make reference to the dynamics of modern relativistic
theories of nuclear structure and scattering any more than
do the {e,e') formulations referred to above. However, one
of the important advantages of the present treatment is
that it can readily incorporate relativistic nuclear dynam-
ics. Furthermore, as stressed earlier, any inelastic scatter-
ing process can be treated using the present formulation
given a relativistic invariant representation of the interac-
tion between the probe and a nucleon.
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To(m(, rna)~Aol+Bo(ra =Aol+Bo(ra (A6)

Expressed in terms of operators in the projectile spin
space (i.e., in teiaras of Pauli spin matrices), this equation
implies

APPENDIX A: SYMMETRIES
OF TRANSITION AMPLITUDES

For unnatura/ parity transitions, we have

To(mb, m, )= —To( —mb, —m, ) (A7)
This development follows closely that found in

Satchler. We begin by examining the properties of the
transition amplitude under reflection in the scattering
plane. Such a transformation implies that the initial and
final projectile momenta are unchanged. We use the coor-
dinate system defined in Eq. (2} and choose the quantiza-
tion axis along Q=%. Reflection in the scattering plane
(the y-z plane) can be described by the following sequence
of transformations:

reflection in the y-z plane

=R ( —m/2, z)R (n,y)R (r'r/2, z)I', (A 1)

where I' is the parity or spatial inversion operator and
R(8,i) represents a rotation of the coordinate system

through an angle 8 about the i axis. In general, wave
functions transform as follows under these transforma-
tions:

or

To(mba ma )~Co(ry +Do(ra =Co(Is +Do(rs (AS)

We now consider Ms+0. We define the following
quantities:

TM, (mb, m. )=-- (TM (m, ,m. )-T M (m, ,rn. )],(-)

(A9b)

for Ms &0 where the coefficients have been chosen for
later convenience. For natural parity transitions, we find

TM (mb m )=TM ( mb m )
(+) (+)

TM+ (mb, m )= [(TM (mb, m )+T M (mb, m )),V2

(A9a)

I'
i K, ;I M ) =tr,

i

—K;I M ),
R (8,z)

i I,Ma ) =(—1) '
i
I M, ), (A2)

or

TM (mb ma }~~M 1+BM (ra (A10a)
R (n,y)

~
I,Ma ) =(—1) ' '

~
I„—M, ),

where rr, is the parity of a. With this information and
the assumption that the projectile-target interaction W, is
invariant with respect to parity and rotational transforma-
tions, we may write

Tf( &Kb'IsMs Ib—mb I
~

I K. I~M„,I.'m

(
1)i((+Ig+Ib+Ia(

)
—2(M~+m )

X&Kb',Is Ms, Ib —mb ~P—
~
K„Iq Mq, Ia —m, —).

(A3)

For Iz ——0, I, =Ib ———,, mz ——m, =orb ——+1, this expres-
sion becomes

Tf(=TM, (m, ,m. )= &Kb.,IsMs, mb
~ W~ K.;m. &

Likewise

TM (mb~ma }~CM (rp+DM (rs . (A10b)

TM (mb~ma }~CM (rs+DM (rs ~
(+) (+) (+)

TM '(mb, ma)~AM 1+BM '(rs .

(Al la)

(Al lb)

We now examine the time-reversal properties of the
scattering amplitudes. For microscopic treatments of
nucleon-nucleus inelastic scattering, the projectile-nucleus
interaction is taken to be some nucleon-nucleon effective
interaction, tN~, which we assume to be invariant under
time reversal, i.e., 8tNN8 '=tNN, where 8 is the time-
reversal operator. ' We may express tNN as a sum of sym-
metric combinations of operators acting individually on
the interacting nucleons:

For unnatura/ parity transitions, these relationships are
just reversed

tNN= g t((1)t((2) .
IB=ms( —1) &Kb,Is Ms, —ms i

M—
i K„m,)—

B=ms( —1) aT M ( rnb, —m, ) . — (A4)
The individual operators, t;, may be even or odd under
time reversal:

IBWe observe that the quantity ms( —1) =+1 ( —1) for
so-called natural (unnatural) parity tratisitions.

We now consider the case of Ms ——0. Then we have,
for natural parity,

( 1)v; 0 for eveny

1 for odd .

We can write the inelastic amplitude as

(A12)
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&Kb IttMtt i mb ltNNIK. '4M~ 2 m. &=+ T(t)=g&IzMz l«(2}&Kb mb lt(1) IK *m. & IAM~) (A13)

where 1 (2) refers to the projectile (target) nucleon.
We now apply the time-reversal transformation to the partial matrix element involving the projectile. We have, for the

ith terra,

& Kb'mb I ai 'i)it (1)~i '()i
I K. m. &=( —1) ' '( —1)"'&—K.' —m. ( t; (

—Kb,' —mb & (A14)

T(i)=(IttMtt ) tt(2)(Kb, mb ( t;(1) ( K.;m. ) )I„M„)

=(—1)"'(—1) ' (IttMz )
tt(2)(Kb„' —m, [ t;(1) ) K„rnb—) )I„Mq) .

We now apply 8 (n,z) and obtain

1) ' "(IzMs
~
t,(2)(K,; —m. ( t, (1)

( K.; m, —) ( I„M„), (A15)

where we have used the fact that, under R (n,z}, —K, ~Kb and —Kb ~K, if
( K, (

=
( Kb

~

as is the case for Q=O
which we assume throughout.

For Iz ——0 and m~ ——+ 1, we have

Tbt (i;mb, m, )=(Isa [ t)(2)(Kb, mb [ t((1) ) K, ;m, ) [Mg)

1&"'+ '(I,M, [ t, (2&(K„—m. ( t, (1) [ K.;—m, ) ( M„)

=(—1) Tbt (i; —m~, mb} . —&r+ma
(A16)

We now consider Mtt ——0 and m, =mb ——m. We then
have

gg+Mg ——odd ==-D~ term . (A18b)

To(i;m, m) =(—1) 'To(i; —m, m) . —

For time-reversal even operators (ri; =0), we have

To(i;m, m)=TO(i; —m, m) or T—o(i)~AOI .

For time-reversal odd, we have

(A17a)

These findings are consistent with the time-reversal rela-
tions

Hence I, cr„, and o& are time-reversal even operators in
the projectile space while oe is time-reversal odd.

To(i;m, m)= To(i; rn,—rn} or T—o(i}—~Dooe .

(A17b)
APPENDIX 8: INELASTIC SCA x-x BRING

NUCLPWR STRUC IVRE AMPLER.rUDES

If we now assume rn, = —mb ——m, we have

To(i; —m, m)=( —1) 'To(i;, —m, m},

which requires rit ——0 or time-reversal even. We then con-
clude that Ao, 80, and Co arise from time-reversal even

operators while Do originates with time-reversal odd
operators.

If we allow Ms&0, we follow the above procedure and
find thatin ge, neral, for

We wish to evaluate explicitly the nuclear structure ma;
trix elements appearing in the standard impulse approxi-
mation of Eq. (18). Similar developments have appeared
elsewhere but we wish to formulate the problem in a
specific notation which we then generalize for use in the
relativistic impulse approximation (either FRIA or
DRIA}.

Initially we will consider the Coulomb" or non-spin-
transfer matrix element:

Tbt (™bma)~Abt I+&bt on+Cbt tr~+Dbt o,

we require

pJ(q) = (J,O
(
e '~'

( 0,0)

=V'4r(2J+1)( —i) (J
~
Pq(qr) I'q(f)

~
~0), (&1)

&&+~&=e"en = ~M~ »M~sckr~ terms s (A18a)
where the reduced matrix element is defined by Eq. (38d).

Next we treat the spin-transfer matrix element.
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XJM ——&JM la eMe 'q'loo&

=v'4ir(2J ~1)(—1)'[iv'(2J —1)/(2J + 1)(J—110~
I
J~}&J I IjJ-i(e~)[I'J-i«)o i]J I Io &

+(J 10~
I
JM) & JlljJ(q~}[I'J(r}oi]JIIo& —1&(2J+3}J'(2J+1}

x [(J+ 1) 1 om
I
Jm]&J

I ljJ+,(e~)[r,+,(+)~,]J I
lo& l .

Substituting explicit formulas for the Clebsch-Gordan coefficients enables us to write

XJM ~M 0(~JXJJ—1++2J+2XJJ pi }+('(~M,~i+5M, —1}

J+1XJJ—1 ~JXJJ+1)+((~M,+1 5M, —1}( +2J+1XJJ}

~As J+(~%+1+~%—l}XJ,1+(5M, +1 ~M, —1}XJO s

(82)

(83)

which defines the X and X" terms and where we have
used the following definitions:

XJJ+1=~2~(—1} &JIIJJ+l(Ir)[~J+i(»~i]JIIo&

(84a}

XJ, l &J + 1
l
++1(e )I =J+1 I

0 0&

XJO——&J,~l la~i(e 'q')I J lo, o& .

APPENDIX C: THE FRIA
INELASTIC SCA I IBRING AMPLITUDE

(85b)

(85c)

XJJ—=v 2ir( —1) & JlljJ(qr)[I'J(f)oi]Jl lo& . (84b)

X,'=&J,oleo(e-'&'}, J~, lo,o&, (85a)

In these expressions, I. and T refer to longitudinal and
transverse, respectively. The transition operator carries
the parity of the spherical harmonic, i.e., b,~=(—1) .
Therefore XJ and XJ1 can contribute only to unnatural
parity transitions while X3'1 can be present only for natur-
al parity transitions. Note that, by construction, we have

We wish to obtain the values of the AM, BM, CM, and

DM [see Eq. (3)] implied by the FRIA for proton-nucleus
inelastic scattering [Eq. (33)]. To begin, we require the
expressions for the quantities M' and A' appearing in
Eqs. (30b) and (33). These are related to the Dirac spinor
matrix elements given in Table VIH. According to Eq.
(30), we then obtain the projectile spin functions, M and
A', presented in Table IX.

The 1 KIA plane-wave, proton-nucleus inelastic scatter-
ing amplitudes appearing in Table I are obtained using
Eq. (33) in conjunction with the definitions of Eq. (3) and
the projectile spin functions appearing in Table IX.

TABLE VIII. Dirac spinor matrix elements.

8+m p~ —q~/4 io npq

(E ~m)2 (E ~m)2

E+m
&

p~ —q /4 io.apq
(E gm)2 (g ~m)2

u'r, u =
m

9 I 4u=- o-q
2m

E~m p —q /4 1 1
u oI ]u=o 1— + {2opp —

2
o.qq+inpq)2m, (E ~m)2 2m (E+m)

8+m
&

p —q~/4
u orqu=o

(E ~m)2
1 1 ~ ~(2o.pp ——o".qq+ t npq)

2m (E+m)

u oI 3u= {2p+ioXq)
2m

u oI 4u = — (q+2io&p)
2m
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APPENDIX D: NUCLEAR STRUCTURE
DEPENDENCE OF COMPOSITE-CURRENT

TRANSmGN DENSITIES

We rewrite Eq. (38a}, specifying four-component wave
functions, J; =0, and n; =n& n—,—l; = lJ 1:——

&JJtf l~z~ Ioo&= —g~~tJ J )iyJff

can be written in the following general form:

~i)m

Ajm =
I
IJn & =

l&ljm

&i~(r)[~i»n]J

iw~&(r}[YpXggg]J
(D2)

(Dl)

where J=1+—,'. We note that a four-component, bound-

state wave function satisfying the time-independent Dirac
equation

[p—m S(r)—yV(—r)]yg~ —0

where 1'=2j —land where u~&(r) and m~&(r) are real. This
is also, of course, the form of the FRIA wave functions
[Eqs. (12) and (26)] where, in effect, S(r) and V(r) are
zero.

We now use Eq. (38} to write, for an unnatural parity
transition (J odd),

pj(q)= &JO
I
—I'3e '«'IOO&

&JJ I II'3j~(qr} I'~(»
I IJ &

fff;

=(—~)'+'~4[&J J J (&uj III~-l'Jll&g & &&g Ilh—~~lluJ &}

+~J,J J+(&&~, llii~~ll~g & &&g, llh—yJlluj &}

+&J J,i (&nj Iil~-~zll~J, & &~g Ihl—~.lluJ, &}

+~,,~,i i(&uj, I il~~zl l~), & &)~ lily—~~l luJ, & }] (D3)

where j ~ ——I+—,
' . This expression can be rearranged with

the help of the following identity:

%'e may write

JO JP A A A A
~g~J, ~+~~~J J ~

——g j+J' LS[1~( }]—
JS

We then obtain

&«if ll[~z.

~s]Ilies

& . i+
X ' l 2 i— ~z(r,s) (D6)

L S
Pq(q)=( i) +'v kn(W—J J ~~J J )j+

x(&uJ, lljzl'JlluJ & &uJ, IIJJ~illu, —&) .

(D5)

~h~~e W is the sum of all entries in the 9-j symbol and

evidently must b eve. This amounts to requiring
L+S=even since j++j =2l and J is odd. This latter
fact also requires that S= 1 and therefore that L=odd.
Equation (D5} then becomes

pj 2( i) +'M——12m—g j ~j L ' I
J odd

1

J~
J- ~~~~~Zz(&t J, IIJ~~~ll~g & &u), liljl'Jll~~ &}—. (D7)

If we are in the p shell, for example, and consider the excitation of a 1+ level, then only the L =S=J= 1 nuclear struc-
ture amplitude will contribute to pq, or &1+,0

I
cr je '«'

I
0+,0& in .the FRIA limit. We now consider
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X~j = &J,+ 1
I cr+) I'4e '~'

I
0,0 &

= —g( —i) v 4~«L lo ll Jl) g ~J(jgj;)jfJ &jf III'4jL[~L~)~&IIj &

)fJ';

= g ( i—) +'v 4frL J '(L 101
I
J1)

x[~j j j-(&&j lljz[I'j. ~)blltcj &
—&tcj lljz[I'c. o)blluj &)

+~j j j+(&uj llh[~t~)bllu)j &
—&u)j I IJJ[~j.~)blluj

+~j j,j (&uj -Iljjf~co)bllu)j, & &)jjj —Iljz[~c, ob)ll ju, &)

+~j+j+j+(&uj, lljJ[Ic&)bllu)j, &
—&)Jj,llj~[~«)blluj, &)&

For unnatural parity transitions, we have L =J and, consequently,

X~grc ———( —i')+~)2~(~ j, j+~j j.)j+(&uj, lljj[I'z~)blltoj &+&uj, lljz[I'z~)blluj &)

which gives

2 j+
X~o= 2( —i) +—'~6n g j+j L ' i 2 j '~i&a))j~(&uj, l le[~so)bll)j)j &+&)Jj lib[I'jo)&jlluj

'L 1 J
indicating that this transition density depends on the same nuclear structure amplitudes as pj(q).

For natural parity transitions, L =J+1. We may then write

Xg) ——g ( i) +—'~4rL J '(L 101
I
J1)

(D9)

(DIO)

x[2~j j j-&uj II&, [I'co')bllu)j &+2~j,j,j &uj, ll j-el ~a ~))zllu)j, &

+(~j,j —~j j,V+(&uj IIA, [I'c.o)blltoj-&+&u)j, lljz[I'z, o)blluj &)3

=g( —)'i+~4 LJ-'( L101IJ1)
L

X g L S ~z(i s ) 2(2j—+1)

2

~'1
gt gl

1 ~J-
T j 'j &uj lljr. [I'~~)b-lite &+2(2j++1)
S' J

1

2 J+

T J—
S' J

J+ i

j+ j+&uj, I ilz[~z, ~') lzl l~,,&+j+j [I+( )'+-
/ L'

&&j+(&uj, lljz, [I"r.~)blltcj &+ &u)j, Ill, [I'r.~)blluj &) (Dl 1)

The symmetry of the 9-j symbols and the requirement that A be odd both imply that L'+S'=even. In general, L'=J,
S'=0 and L'=J+1, S'= 1 will satisfy this condition. However, referring to Table III, we note that, in FRIA,

i &J, +1
I [crxj]+,(e-"')c=z+)

I
00& .

Comparison of this expression with Eq. (43) tells us that S'= 1 in the FRIA limit therefore implying L'=odd. We may
then write, in FRIA,
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2g( —t)'+'&12~1.J '-(I. 101
l
J1)

X g L, W". (2J +1)'"
L'

+(2J++»'"' l -' J+ &u,, llJil:I'i~ifill~, , &

L' 1 J
z J+

+(2J++1)J- ' l z J- '(&t J, IIJz. (I'L, &i)illg &+&ttg IIJL, LI'L, ~ibllte, , &)

I.' 1 J
(D12)

Thus, only nuclear structure amplitudes WJ~z &~ with 1.'=J+1 contribute to Xq& (in FRIA) for lf ——l&. We note
that WJ(go) can contribute to Xq ~ in FRIA and to Xz& if the FRIA limit is not taken.

The amplitudes Mq~~s} with L =odd are referred to as "abnormal parity" amplitudes for lf ——1;.

TABLE IX. Projectile spin functions ( tg~S, t&~ V, etc.). APPENDIX E: ELECTRON-NUCLEUS (e,e') IN FRIA

E+m p —q /4 ipq
2m 2m(E+m) Sm(E+m) The electron-nucleus scattering amplitude may be writ-

ten as

E+m p2 —q2/4 ipq
2m 2m (E+m) 8m (E+m) M~r =J.'JN /q' (El)

w'=a~a
m ' w'= —pq e

2m

where the electron and nucleon currents are, respectively,

E+m p~+q2/4
2m 2m (E+m)

.g —i p tf Oje=" e'V ~e=~e 'V 3' ~e ~

J"N=tT'NJ "ttN =ttN y'J "ttN

(E2a)

~ q=2T '+- "+"/'
2m 2m (E+m)

and the free nucleon electromagnetic current operator is
given by

8'.g=0 'g =—2T + ~CTg
2m m

EKN
JtN=e F,(q )y"+ F (q )M"(pf —p;)„,

2@i
(E3)

E+m p~+q2/4
2m 2m (E+m)

E+m
2m

p 2+q 2/4

2m (E+m)

g'.Q= —V +— o„
m 2m

—ipq E+m p —q /4
2m (E+m)

E+m p' —q'/4
2m (E+m) 2m 2m (E+m)

2~~=u. ~Nte~u. uN/q, (E4a)

t,N
——y (e)y (N) eNy(e) y(N) .y„(e)—W"(N)q„2'

(E4b)

where F;(q ) denotes the nucleon form factors, and eN
and ttN are the charge and anomalous magnetic moment
of the nucleon, respectively. We use p to designate the
nucleon momentum, implying pf p' —k' kf-
where k is the electron momentum.

%e may no~ write the electron-nucleon amplitude in a
form analogous to that of the NN t matrix of Eq. (10):

I=V
2m

u'.n=2T ~
m

where the form factors are now implicit. The "t matrix"
of Eq. (FA) may be rewritten so as to facilitate comparison
with the expression for tNN appearing in Eq. (27):
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KN
I~ ——I l(e) eNl l(N) — crN qI 4(N)

2ptl
Tj;(es )='W, (JM e„I',— (r ql„'e'~'~00)2'

EK~
cr I 3(e) eNcrNI 3(N) — oNXqI &(N)

2pal

KN
IrNqol 4(» ~

Note that qo is just the overall Q value of the reaction
and, since we have assumed qo ——Q=O throughout, we
now drop the last term in Eq. (E5).

We may straightforwardly express the electron-nucleus
inelastic scattering amplitude in a form analogous to the
proton-nucleus amplitude of Eq. (30b):

where

q &aaW

Sm(E+m) 2m(E+m) '

. =~+ '
~Xq

m 2m

and where p:——,
' (kf +k; ) as in Eq. (2).

Then, in analogy with Eq. (33), we may write

(E6b)

(E6c)

~fl, hr( ) ~e NP1 2
KNXJ 5M, s

~L,

—I q XA CNXgo — KNXg I +A CNXz I
— KNXgo Ck5sI 'k,3r 9 2T 3T 9 zr

2m 2m
(E7)

where we have used A, .g =0 (Table IX).
By referring to Eq. (E7), we may directly obtain the

qualltltlcs Asr, Bsr, Csr, alld Dsr [scc Eq. (3)] for (c,c ).
There quantities are presented in Table X which stands as
the (e,e') analog to Table I. It is then a straightforward

der

dQ

Z 0'

1+2(E/Mz )sin 8/2

matter to obtain the (e,e') differential cross section:

(ES)

TABLE X. Plane-wave inelastic electron scattering amplitudes.
T

~L = NPJ +N~J
1 q 4L

2m
~T:—N~J1 — &N~JO

W~ 3T q 2T

2m

Natural parity

~T = eN~JO &N~J1
UXe 3T q 2T

2m

Tq.. Aq —— E+m p2 —q2/4 ~ &
—iraq

2m 2m (E+m) '
2m (E+m)

Cq ——Dq ——0

m 2m

Ce = — ~T ~

w~

2m

Unnatural parity

Aq ——Bq ——Cq
——Dq ——0

Ap
—8, =0, Cp

———q
2m

~UX~
m

~Use'
2m



J. R. SHEPARD, E. ROST, AND J. A. McNEIL 33

2
a cos(8/2)
4E sinz8l2

I~ I'= I~i s I'+(2+tan'8~2)( l~.i I'+ l~ .s I')

where the usual (e,e') form factors can be expressed as

l~ions I'=Z 'I~L, I' (E9b)

tz is the fine-structure constant, E is the target mass, 8 is
the scattering angle, and the term in the denominator ac-
counts for the target recoil. The form factor is

f
F [

2 2Z —2
f

~U¹P
f

2

(E9c)

(E9d)

The expressions of Eq. (E9}summarize the results of Ref.

The amplitudes of Table X reveal the well-known im-
poverishment of singles electron scattering spin transfer
observables. One immediately finds that P =A» =0 and
Q =B E. ven the nonzero values of Q and B are unin-
teresting since they depend on the same combinations of
nucleon transition densities as the cross section and there-
fore provide no new information. Finally we observe that
the procedure outlined here for (e,e') can readily be ap-
plied to the analysis of the inelastic scattering of other
probes such as neutrinos, kaons, etc.

~J. R. Shepard, E. Rost, and J, Piekarewicz, Phys. Rev. C 30,
1604 (1984};J. R. Shepard, Proceedings of 19S3 RCNP Sym-
posium on Light Ion Reaction Mechanisms, Osaka, Japan,
edited by H. Ogata, T. Kammuri, and L Katayma (RCNP,
Osaka, 1983), p. 34; and J. R. Shepard, in The Interaction Be-
tioeen Medium Energy Nucleons in Nuclei 19S2—(Indiana
Uniuersity), ProctMdings of the Interaction Between Medium

Energy Nucleons in Nuclei, AIP Conf. Proc. No. 97, edited

by H. O. Meyer (AIP, New York, 1983),p. 288.
~E. Rost and J. R. Shepard, computer pxogram DRAMA. (unpub-

lished).
3J. M. Moss, Phys. Rev. C 26, 727 (1982).
J. R. Shepard, E. Rost, E. R. Siciliano, and J. A. McNeil, Phys.

Rev. C 29, 2243 (1984).
5G. R. Satchler, Direct Nuclear Reactions (Clarendon, Oxford,

1983).
6R. J. Glauber and P. Osland, Phys. Lett. 808, 401 (1979).
7D. A. Sparrow et al. , Phys. Rev. Lett. 54, 2207 (1985).

J. D. Bjorken and S. D. Drell, Relatiuistic Quantum Mechanics
(McGraw-Hill, New York, 1964}.

~J. A. McNeil, L. Ray, and S. L. Wallace, Phys. Rev. C 27, 2123
(1983).

' T. A. Carey et al., Phys. Rev. Lett. 49, 266 (1982).
T. W. Donnelly and J. D. Walecka, Annu. Rev. Nucl. Sci. 25,
329 (1975).

izL I. Schiff, Quantum Mechanics (McGraw-Hill, New York,
1968).

W. G. Love and J. R. Comfort, Phys. Rev. C 29, 2135 (1984).
J. B.McClelland et a/. , Phys. Rev. Lett. 52, 98 (1984).
J. B.Flanz et al. , Phys. Rev. Lett. 43, 1922 (1979).

'6E. Bleszynski, M. Bleszynski, and C. A. Whitten, Phys. Rev.
C 26, 2063 (1982).

~7S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965); T. H. S.
Lee and D. Kurath, Phys. Rev. C 21, 293 (1980).

8C. Horomtz„Phys. Rev. C 31, 1340 (1985).


