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A hypernuclear nonmesonic lifetimes are calculated in the framework of the hybrid quark-hadron

model, for both infinite nuclear matter and for a finite nucleus ~ C. For nuclear matter, an approxi-
mate solution of the Bethe-Goldstone equation is used for the initial state AN cluster wave function.
For ~C a shell model wave function is used. An eikonal approximation is used to represent final

state interactions. It is shown that with an effective weak quark Hamiltonian explicitly constructed

to be consistent with the M' =
2 rule the z C nonmesonic width is about 1.3 times the free A width,

which is consistent with a recent experimental measurement.

I. INTRODUCTION

A free A decays via the weak process A~Nn with a
rate I t, =2.50X10 ' MeV, with the outgoing nucleon
having a momentum of about 101 MeV/c, which is below
the nuclear matter Fermi momentum. Thus, in medium
to heavy nuclei Pauli blocking results in the dominance of
the nonmesonic mode AN~NN, where each final state
nucleon has a momentum of about 417 MeV/c in the
center of mass frame. The rate of this nonmesonic hyper-
nuclear decay, I', is of fundamental interest. Due to the
large momentum transfer involved, a satisfactory explana-
tion of I' requires both an understanding of the under-
lying interactions and a good model for the description of
the reaction mechanism for both long and short distances.
As we demonstrate in this paper, this process provides a
constraint on the nature of the effective 8$ =1 Hamil-
tonian at short distance. Since we use weak quark interac-
tions directly in our model, we are able to extract con-
straints on the effective hS = 1 quark Hamiltonian.

In previous work, ' which we refer to as paper I, we
presented preliminary results for the calculation of the ra-
tio I /I' t, in nuclear matter. The interested reader is
referred to Ref. 1 for a more in depth discussion of the
motivation of this work and its formulation within the
hybrid quark-hadron (HQH) model, and to Refs. 2 and 3
for a description of the model itself. To summarize brief-
ly, we will calculate the amplitude for the process
AN~NN in two parts. One part is a description of the
decay in the six quark or interior region, defined by the
relative variable describing the separation of the centers of
mass of the two baryons being less than a distance ro-1
fm. Here we assume that quarks interacting via the ex-
change of weak vector bosons modified by gluons give the
appropriate weak interaction. The other part is a calcula-
tion of the contribution from the hadronic or exterior re-
gion where the description is given in terms of a weak
Hamiltonian for baryons and mesons. The HQH model
ensures that there is no double counting.

The format of this paper is as follows. In Sec. II we

discuss the interior (quark) calculation, with separate sub-
sections set aside for the consideration of wave functions
and Hamiltonians. In Sec. III we present the formulation
for the exterior region, both for nuclear matter as well as
' C. The results and conclusions are discussed in Sec. IV.

The work presented here represents a substantial im-
provement over that of paper I which, for one thing, was
a nuclear matter calculation only. We will point out other
differences as they occur in the following text. Finally,
we remark that a more detailed description of the calcula-
tional techniques employed here can be found in Ref. 4.

D. QUARK CONTRIBUTION

In this section, we outline the calculation of the quark
contribution to I . We use a spectator model, where it
is assumed that the process AN~NN can be described (in
the interior region) as four spectator quarks and two in-
teracting quarks undergoing the weak interaction depicted
in Fig. 1. We begin by discussing the quark wave func-
tions.

A. Six-quark wave functions

It is an ansatz of the hybrid quark model ' that we can
write the wave function for the six quarks of the AN sys-
tem as

4(E)=a«)QC 0 (ri r6)
6q

Here E is the total energy, the P+ constitute some com-
plete set of orthonormal six-quark states, and a (E) is the
amphtude, with its square related to the six-quark
probability —that is, the fraction of time that a two-
baryon system spends in the interior region. Drawing an
analogy to the ordinary nuclear shell model we use prod-
ucts of single particle (quark) wave functions:

6q
6

y&„—a(E)QC gy' (r, ). (2)

For our purposes, we have chosen to use massless quark
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c) ——1.51,

c2 ———0.856 .
(6)

FIG. 1. Lowest-order short-range d8 = 1 interaction.

MIT bag wave functions, truncating our model space
after the pi/2 state, with the additional proviso that the

spectator quarks are all in the Si/2 state. Thus, our most

general six-qu~~k wave function is

«)=& «)(Si/2)' «Sin, ) +f3(p3/2) +X(pin, )

+ ~ (P3/2Pi/2+Pi/2P3/2)v2

It is hoped that with proper choices of the expansion
coefficients a, P, y, and 5 we can adequately represent the
strong interaction dynamics (QCD) we ignored in arriving
at Eq. (3). Finally, we point out that this wave function is
much improved over that of paper I, where our model

space consisted only of the Si/q state.

B. Effective quark weak interaction Hamiltonian

In arriving at Eq. (5), we have used only leading operators
with the same ( V —A)( V —/I) chiral structure. Note the
first term in Eq. (5) has the same form as the uncorrected
interaction of Eq. (4), while the second term has the ap-
pearance of a strangeness changing neutral current. This
effective Hamiltonian has a greatly improved M = —, to
M =

z ratio, but still does not give the M = —,
' rule.

For the sake of comparison we can take the form of the
Hamiltonian given by Eq. (5) as an ansatz and deterinine
the values for ci and cz which preserve the M = —,

' rule.
It is easy to see that the Hamiltonian can be written as

GIAPH;„= sli18 cos8, [ —,(c i +ci )Q3/2
2

+ 2 «i —cz)Qinl

where Qq is a pure I=J operator. The ratio of the ampli-

tudes is given by

A )])2 c) —c2R=
A3y2 C) +c2

(8)

The Gilman-Wise results of Eq. (6) give R =3.6, whereas

experiment gives a value of R'*i'=20.
In the original paper of Galliard and Lee the M = —,

'

rule is obtained by calculating the ratio of the 8s operator

( I= —,, octet) to the I = —, operator 827. They find

In the absence of strong interactions, the interior Ham-
iltonian is taken as a standard M =1 Cabibbo form, cor-
responding to Fig. 1 for low energy IV exchanges,

C) —C2

c)+c2
VS Z'4'

K -o.zc
(9)

H;„,= sin8, cos8,uy„(1—yq)sdy (1—y5)u +cc .
2

(4)

This is just the result of the combination of V —A theory
with the Cabibbo hypothesis concerning the relative
strengths of EQ =1 weak currents. 6

It is possible to -derive effective quark Hamiltonians
which include strong interaction corrections through the
use of renormalization group techniques. It was the large
discrepancy between the Cabibbo model [Eq. (4)] and the
experimental M =—, rule which motivated this theory for
the bS =1 effective Hamiltonian. Using the values of
Gilman and %ise, based on the one loop gluonic correc-
tions and renormalization group evolution, one obtains

G~
H;„,= sinO, cos8, [ciuy„(1—y5)sdy"(I —yz)u

2

+c2dy„(1 y, )say"(—I —yg)u],

where the constants c
&

and c2 have the values

' 0.24
0

ci+c2 ——(1.51 —0.859)
K

=0.37 .

This should not be considered to be a renormalization

group calculation since the one loop basis is not justified,
but simply a procedure for picking the coefficients ci and

c2 for the most important terms in the effective Hamil-
tonian. Calculation of the quark contribution to the non-

mesonic rate gives

=2.73(ci+c,)'P@P(a,P, y, &),r„„
where P+ is the initial six-quark probability (see Sec. III)
and F(a,P, y, 5) is a complicated function of the expan-
sion coefficients of the wave function of Eq. (3). This
leads to the result

K =1+ ln
g2
4m. 2m

(see also Desplanques et al. ~). The Gilman-Wise values

give Eo ——5. 17. If one arbitrarily uses the functional form
of Eq. (9) to fit the experimental value of R =20, then

K =54.7. As a result we have
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1.0 uncorrected [Cabibbo, H;„,(1)]
I~g/I'~, =2.73P, E(a,P,y, 5) X 0.42 strong interaction corrected, H;„(2}

0.14 M= —,
'

rule, H;„,(3)

(12)

As a final point we should emphasize that Eq. (12) is a
phenomenological result incorporating the dd= —,

' rule,

guided by renormalization group results including
"penguins. " For this low energy region the entire pro-
cedure of obtaining effective Hamiltonians and the
M = —,

'
rule is an area of active research.

III. PIONIC CONTRIBUTION

In this section we calculate the contribution to the A
nonmesonic decay rate from the exterior —one-pion ex-
change (OPE) region. Additionally, it is from the baryon-
ic wave functions for this region that we calculate the
quantity P& present in Eq. (12). Given a two-baryon
bound wave function for the initial A-N cluster V„N(r},
where r is the relative variable, then conservation of prob-
ability requires

P@=1— %AN r r r, (13)
0

where we have neglected isospin and angular momentum
labels for clarity. Clearly Eq. (13}can be used only for
normalizable %~N. In this paper, we present results from
a nuclear matter calculation, where P@ cannot be calcu-
lated using Eq. (13) and must be obtained from other
means, and also from a hypernuclear ' C shell model cal-
culation, where P+ is directly calculable. For the final
scattering states the six-quark amplitudes are also deter-
mined by probability conservation, using the methods of
Ref. 3.

A. Nuclear matter

1. Potential

The lowest order M =1 process in the external region
is shown in Fig. 2. For the weak vertex, the phenomeno-
logical form

was used, where A, is an empirical constant' taken to be
A, = —6.87. %„represents the lambda spurion field,
which is a direct product of the usual isosinglet A field
with the

~
I,Ii ) =1——,', ——,

' ) isospinor.
Using the usual pseudoscalar coupling for the strong

vertex, and making the standard nonrelativistic reduction
gives '

V(r)=[ Vo(r)oi oz+ V, (r}o& r+ Vi(r)S»]~& ri, (15)

where

GsGw Am' e- "
Vo(r) =

12M mr

Gsgw 1m 8™
Vi(r) =

4m 2M mr

GsG~ gm' e-m~
V2(r) =

4M mr

(15a)

In Eq. (15a), M is the average baryon mass for the incom-
ing legs, M= —,

' (M~+MN), and m =107 MeV is an ef-

fective pion mass, accounting for the fact that energy as
well as momentum is transferred in the process of Fig. 2.

2. Correlations

where q is the relative AN momentum. To examine the
effects of correlations, the wave function from Adams's
paper" is used

For the initial state wave function, the AN cluster is
taken to be in a relative S state. Denoting this wave func-
tion as Ri(q&} we have, in the absence of initial state in-
teractions,

R;(qr) =j0(qr),

H~=iG~+N(l+ky5)r V~/

FIG. 2. Lowest-order long-range dd' = 1 interaction.

(14)
sin(qr, )S;(1.633r)

R;(qr) = j0(qr)+ (1.072) 8(r r, ), —
gr

(16)

where S;(x}is the sine-integral function. This represents
an approximate solution of the Bethe-Goldstone equation
for a potential consisting solely of a hard core of radius
r, =0.4 fm.

The form given in Eq. (16) causes S-S, S P, and S-D-
transitions. The effect of final state interactions is es-
timated by using an eikonal approximation along with the
central part of a ' C-I' optical potential. ' Assuming back
to back emergence of the final state nucleons, one obtains
the relative NN wave function
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g-L } m~l, (Q )= f, c*P ( Qr ——f U,s(s/2yl2s l2')8s 'Pc(ccs8)d(ccs8)

P(+=0.15, (20)

which is compatible with previous calculations using this
model' and with a study of inclusive electron scattering
from 3H, . ' In the final nuclear case, we calculate P+.

$. Finite nucleus, ~C

In this section, we sketch the methodology involved in a
finite nucleus calculation for aC. We use a weak cou-
pling model with the A taken in the lowest oscillator state

+(g C) =+ „("C) @s„,(A) . (21)

Recent hypernuclear shell model calculations" show that
this is a satisfactory modeL A pure configuration wave
function is used for the shell model core

("C)= [(Si/2)'(P3/2) ] (22)
0

where the sup~cnpts refer to the quilt~ n~b n J
and T. Our model space consists of only the Si/2 and
P3~2 orbits.

In the process AN~NN the active nucleon can be
from the p shell or the s shell. In the former, the result-
ing nucleus is in a Otic state. In the latter, the nucleus is
in a ltd state and care must be taken to subtract out con-
tributions from spurious (unphysical) components of the
wave function. The amplitude for the pionic contribution
now takes the form

T',"=~Sr, ,lf If (23)

where the spectroscopic factor S depends only on nuclear

for the Lth partial wave, where Q is the final relative NN
momentum. The effects of the distorting potential can be
examined by setting U», to zero, in which case
&f,(Qr) jI.(Qr).

Finally, the effect of smearing of the pion vertex is cal-
culated in the standard way. Modification of the propa-
gator

A~

q +m q2+m2 q +A

results in a corresponding change in the potential

A~
V(r)~, [V(r, A ) V(r, m )] .—

m —A„

We expect that the correlations discussed here, which
represent short distance corrections, will have a relatively
small effect on our results. This is because the short dis-
tance part of the problem has already been projected out
of the baryon space and into the quark regime.

The final ingredient of the nuclear matter calculation is
the initial state six-quark probability

structure, and the two-body amplitude t; depends on the

reaction mechanism.

1. Structure calculation

2 Reaction calculation

Obtaining useful relative wave functions for use in a re-
action calculation is a two-step process. First, a transfor-
mation from the JJ basis implied by Eq. (21) to the LS
basis is performed. Then the Moshinky techniques are
used to separate the relative and center of mass motions.
To avoid complications we use only those components
with center of mass angular momentum L =O„since only
these have appreciable overlap with the final state center
of mass wave function. The results are

(SI/2P3/2 ) =+I /2P3/2 s

(Si/2P3/2) —+1/3 P( +v'1/63P)

(Si/2Si/2)'= S&

(Si/2Si/2) = So s

(24)

where the quantities on the left-hand side are the AN
states expressed in shell model quantum numbers, and
those on the right-hand side are the same states expressed
in relative variables and quantum numbers, using the
standard spectroscopic notation. The lack of normaliza-
tion regarding the two I =1 states reflects the inclusion of
only L =0 components, as discussed above.

TABLE I. Spectroscopic factors for p-shell pickup from "C.

(Iy Tf )

(0,1)
(2,1)
(1,0)
(3,0)

0.75
3.75
0.75
1.75

0.25
1.25
0.75
1.75

( C2S)„

0.50
2.50

The problem encountered here is identical to that of
single nucleon pickup. We calculate the C2S factor for p
shell pickup using the techniques of Brussaard and
Glaudemans. ' The results, for all possible ( JfTf ) in our
model space, are shown in Table I.

Experiments using the (p, 2p) reaction' on p-shell nu-
clei demonstrate that states resulting from s-shell pickup
appear as a broad bump at high excitation energy. Thus it
is reasonable to concentrate all remaining strength, after
subtraction of spurious components, into a single state for
each possible ( JfTf ). Using results of Millener, "one ob-
tains the spectroscopic factors of Table II.
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{CSph)p (C Sph)„

TABLE II. Spectroscopic factors for s-shell pickup from "C. TABLE III. Initial state six-quark probabilities for AN clus-

ter in AC.

(1 0)
(l, l)
{2,0)
(2,1)

0.375
1.125
0.625
1.875

0.075
0.227
0.175
0.223

0.30
0.30
0.45
0.55

0.60 P,+ (s waves)

P,@ (p waves)

Uncorrelated

0.078
0.007

Correlated

0.051
0.005

3. Correlation function and the six qua-rk probability

Using harmonic oscillator wave functions in Eq. (24),
we are now in a position to calculate the initial state six-
quark probability from Eq. (13). To address the problem
of a lack of two-body correlations in the independent par-
ticle model we multiply our two-body densities by a
phenomenological correlation function due to Miller and
Spencer'

f(r)=1—e "(1 Pr )—.

We use the values a=1.l fm and p=0.68 fm
known to give good results in calculations of parity violat-

ing nuclear matrix elements. The six-quark probabilities
calculated for both the correlated and uncorrelated cases
are presented in Table III.

The result for uncorrelated S waves P+=0.078 is to be
compared to Eq. (20), the nuclear matter value. Presently
it is not known how to reconcile this difference.

in Eq. (3); unfortunately, no such Hamiltonian is available
to give a reliable approximation for the quark wave func-
tion. We have averaged over different reasonable sets of
these coefficients, based on our knowledge of the S-wave
content in various models of NN wave functions. i2 Using
the value of P@from Eq. (20) we perform the rather tedi-
ous calculation and get

S.19r""[H~(1)]
I'& ——2. 18I ' [H (2)] (nuclear matter),

0.731-t- [H-(3)]

for the three candidate weak interactions described in Sec.
II. Combining with the pion contribution gives

9.96r'" [H (1)]
I "m= S.S4I '~ [H (2)] (nuclear matter) . (27)

3.0I ' [H (3)]

IV. RESULTS AND CONCLUSIONS

A. Nuclear matter

1. Pionic contribution

The results for the pionic contribution to the non-
mesonic A decay rate in nuclear matter are given in Table
IV. In succeeding rows, the additional effects indicated
are turned on. The last row represents our "best" value,
pmn 0 77' fz'cc

These pionic results can be checked with the nuclear
matter calculation of McKellar and Gibson, ' who use a
conventional hadronic model, by taking rz ——0. There is
good agreement with the pionic contribution. They also
show that tensor correlation effects are small, and thus
our forms should be satisfactory.

2. Quark contribution

One needs a reliable effective quark Hamiltonian in or-
der to determine the values of the expansion coefficients

For a discussion of the relative phase between the pionic
and quark contributions, see Ref. 4.

8. Finite nucleus ~ C

1. Pionic contribution

Using the shell model calculation as discussed in Sec.
III, we obtain the results for the pionic contribution to
I in +C presented in Table V. As before, the last row
is our best value, I' =0.41I'

2. Quark contribution

Basically, the only aspect for the quark contribution
which is different for the finite nucleus calculation is the
reduction of P,+ given in Table III. The results are

1.76I ' [H;„,(1)]
I g ——~ 0.74I ' [H;„,(2)] (' C) . (28)

0.24r'" [H,„,(3)]

TABLE IV. Pionic contribution to I for nuclear matter.

I ~pl free

No short range corrections
Fermi averaging
Initial state correlations
Pion form factor A =20m
Final state correlations

6.1X10-'
7.7X10-'
1.3 X 10
1.2X10-'
9.8X10 4

0.18
0.19
0.19
0.17
0.11

0.81
0.85
0.92
0.76
0.66

0.99
1.04
1 ~ 12
0.93
0.77
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TABLE V. Pion contributions to I in ~ C.

No correlations
Miller-Spencer correlations
Pion form factor A =20
Eikonal distortions

prim ypfree

0.48
0.49
0.45
0.41

Combining the quark and pion contributions, we obtain
for our final results

3.871"- [H~ (1)]
I' = 2.25I "' [H;"„,(2)] (gC) .

1.28I'" [a~,(3)]

(29)

Our final result for a C of I =1.31 p can be compared
to a recent experimental measurement at BNL (Ref. 23)
which gives

I ex'pt'(~ C)=(1.25+0 18)+I

To the extent that the total rate is dominated by the non-
mesonic rate, the agnmnent is excellent.

In conclusion, the HQH model is seen to give a quite
satisfactory description of a A lifetime in a finite nucleus.

Since the crucial parts of the quark wave functions are
determined by parameters which have been fixed in previ-
ous work, the main uncertainty within the model is the
parametrization of the weak effective M =1 quark Ham-
iltonian. Our principal result is that if we choose the
coefficients of this Hamiltonian by following the general
prescription of the renormalization group calculations,
but pick the parameters to fit the M = —,

'
rule, we greatly

improve the theoretical result, bringing it into satisfactory
agreement with experiment. We conclude that a six-quark
cluster model not only provides a convenient description
for the short-range part of the nuclear weak interaction,
but that the parameters of the HQH model have been suf-
ficiently determined so that one can gain new information
about the weak quark Hamiltonian from nonmesonic A
hyperllllclear decay.
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